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PAPER A

INTEGRATED CROSSWELL IMAGING:
REFLECTION TOMOGRAPHY- SYNTHETIC
EXAMPLES

Mark A. Van Schaack

ABSTRACT

Last year I introduced a proposal to integrate the processing of crosswell reflection
imaging and traveltime tomography. I have modified this scheme to allow an interpretation
of the reflection image to be used to guide the picking of reflection traveltimes. This
requires an ability to map reflection data using the 2-D traveltime tomogram and to inverse
map, or forward model, the interpreted reflections.

I am currently working on programming the various processors required in the
integrated iterative inversion. A program allowing the simultaneous inversion of reflection
and direct arrival traveltime picks is now complete. Traveltime inversions run on synthetic
data show that including reflections in the traveltime inversion improves the imaging ability
at the top and bottom of the surveyed zone where ray coverage is typically poor for direct
arrivals. Also, reflection tomography improves the vertical resolution midway, between the
wells. This improvement in resolution is required to reduce the "dog bone" and "football"

artifacts which occur as a result of bowed interfaces.
INTRODUCTION

An approach to integrating crosswell reflection imaging and traveltime tomography was
presented by Van Schaack and Lazaratos (1993). As observed by Lazaratos (1993),
inaccuracies in the velocity model used in the XSP-CDP mapping technique result in lateral
and vertical mispositioning of reflection events. These mispositioning errors cause
destructive interference when stacked and result in a loss of resolution in the reflection
image. An inversion was proposed which perturbs the velocity model to minimize these
errors. Although this inversion is similar in philosophy to surface seismic velocity analysis
it is better described as crosswell reflection traveltime tomography (CRTT). It utilizes both
direct and reflected arrival traveltimes in a single inversion for the velocity field.
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There are a number of different ways in which CRTT can be parameterized and solved.
It would be preferable to solve for "everything", e.g., a finely-gridded, fully 3-dimensional
anisotropic velocity distribution including the location and orientation of arbitrarily defined
reflectors. Unfortunately, even a simple 2-dimensional isotropic velocity inversion may end
up being underdetermined if care is not taken in defining the gridding. To optimize a
solution, the parameterization should be made to reduce the number of variables wherever
possible. An example of this in CRTT is a parameterization developed by Michelena
(personal comm.) which solves for the location and dip of linear interfaces and the velocity
of homogeneous isotropic layers. In a geology where layers can be accurately described as
constant velocity, this parameterization might be ideal.

In this paper I review a philosophy of integrated reflection and tomographic inversion.
This philosophy determines the parameterization of the reflection traveltime inversion. A
number of synthetic examples are presented to illustrate the potential of including
reflections in crosswell traveltime tomography. Finally, I discuss the next steps required to

apply this technique to real data.

PHILOSOPHY OF THE INTEGRATED CROSSWELL INVERSION
Background

A large number of the published crosswell studies have been of areas where the
geologic structure is predominantly flat or mildly dipping (homocline). Examples of this
are: Amoco/Conoco's North Cowden study, West Texas (Lines et al., 1993),
Stanford/Chevron's McElroy study, West Texas (Harris et al., 1992), Exxon's Friendswood
test site, Texas (Chen et al., 1990) and BP's Devine test site, West Texas (Harris, 1988).
Areas with simple geologic structure are ideal for CRTT since structural interpretation of the
reflection image is relatively straightforward and easily checked against the well log
interpretation. If reflectors can be found, and their orientations determined manually, the
reflection tomography problem is much simpler.

If the structure is simple, what is the benefit of crosswell imaging? There are several
potential uses of crosswell imaging in simple structures. One application is reservoir
characterization. Even when the basic structure of the geology is simple, stratigraphic
variations within layers can exist. These stratigraphic variations may result from primary
depositional processes, or from secondary infilling or enlargement of the pore space.
Secondary processes are occasionally the direct result of oil production and injection
programs. These variations may be measured seismically as small velocity perturbations. A
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second application is monitoring. The injection of fluids in a reservoir may be monitored
directly with crosswell imaging if the injected fluid results in a seismic velocity change.

Both of the above applications, reservoir characterization and monitoring, benefit from
the highest resolution, most accurate information available. One of the advantages of
integrating reflection imaging and traveltime tomography is that resolution and accuracy are
added to both. In this paper I will describe an approach to integrated inversion using
CRTT. This approach is designed to work optimally when the basic geologic structure is

simple and the crosswell reflection images can be interpreted in a straightforward manner.

Simple structures

The definition of simple structure that I have used in the design of the integrated

inversion is subject to several conditions:

1) Reflectors must be interpretable from the crosswell reflection image

2) Each interpreted reflector must intersect both wells

3) Each interpreted reflector must expressible as a function of horizontal, interwell
offset
These conditions are required to define the position of each reflector in terms of a simple
equation. For the i'th reflector, the depth of that reflector is defined as a function of offset,

z; = f;(x) (1)

In this equation, z; is the reflector depth, and x is the horizontal offset. The fi(x) is a
function describing the i'th reflector which is determined from the interpreted reflection

image.

THE INTEGRATED INVERSION
Data preparation

Figure 1 is a schematic of the integrated crosswell imaging procedure. Prior to the
iterative imaging process the crosswell data are processed in a standard fashion. First, direct
arrival traveltimes are picked from the raw waveforms. The next step is wavefield separation
and reflector enhancement. Typically traveltime picks are used to design filters to perform
this processing (Rector, 1994). The results of these steps, the direct arrival traveltimes and

the processed wavefield, are passed to the iterative integrated inversion.
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Iterative Inversion: Step 1 — Direct Arrival Tomography and Reflection Imaging

The first step in the iterative inversion is direct arrival traveltime tomography. The traveltime
inversion is run in a standard fashion to calculate a 2-D velocity model. The result of the
velocity inversion, a velocity map, v(x,z), is passed to the mapping routine. The mapping
and stacking process is performed in a similar manner to that described by Lazaratos
(1993). There are two differences to Lazaratos' technique. First, a fully 2-D mapping
algorithm is used to accommodate the 2-D traveltime tomogram. Second, the "residual
statics" step, used to line up reflection events prior to stacking, is not required.

The purpose of residual statics processing is to align reflections prior to stacking to
ensure an optimal stack. The use of the residual statics technique was originally justified by
several reasons (Lazaratos, 1993). The XSP-CDP mapping algorithm used by Lazaratos
was designed to use only a 1-dimensional velocity models. Also, corrections were not made
for well deviations. The McElroy data processed using this technique were collected in a
setting where the geology was primarily layer-cake and well deviations were mild. The
validity of the 1-D and straight well assumptions was supported by the observation that the
mispositioning of the reflection events, prior to stacking, was also rather mild. Nevertheless,
Lazaratos found that additional resolution could be obtained in the reflection image by
"forcing" the reflectors to align. This technique is similar to "non-surface consistent
statics", which is used occasionally in surface seismic data processing. Since I intend to use
a 2-D mapping algorithm, which will also correct for well deviations, the residual statics

technique should not be necessary.

Iterative Inversion: Step 2 — Convergence test

These decision boxes, seen in Figure 1, following the traveltime tomography and
reflection imaging, test the images for convergence. Acceptable limits for convergence are
primarily subjective and the number of iterations performed may be determined, in reality,
by available computer and human resources. If the convergence criteria are met, the velocity

tomogram and reflection image are judged acceptable and the processing is finished.

Iterative Inversion: Step 3 — Reflector picking from stacked reflection image

In this step the two reflection images, upgoing and downgoing, are interpreted.
Although nothing prohibits the use complex dipping structures the algorithm has been
designed to use reflectors defined as single-valued functions of offset. This is done to
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simplify several steps: the definition of the reflector, inverse mapping (not yet discussed),
and raytracing. Equation (1) provides the mathematical description of the reflection events.
Any phase can be used to define the reflector: peaks, troughs, zero crossings, or an
intermediate phase. The important point is that this same phase must be used to identify the
reflections in the space-time domain.

The reflection events are picked separately from the upgoing and downgoing sections.
In practice, the downgoing section is typically the best at the top of the surveyed zone and
the upgoing section is the best at the bottom. Past experience suggests that the number of
events that are imaged by both up and downgoing events is not that large. The small
number of these twice imaged reflections, plus the difficulty of ensuring that the events
picked actually are the same reflection, suggests that the inversion is best parameterized

without them.

Iterative Inversion: Step 4 — Inverse mapping reflection events

The traveltime tomogram and picked reflection events are next input to the inverse
mapping routine. Inverse mapping, as it is used here, is essentially forward modeling. For
a given source-receiver-reflector combination, and an assumed velocity model (the traveltime
tomogram), a traveltime is calculated. This time is calculated using an energetic-arrival
finite-differences eikonal solver (Mo, 1994). This solver is used to calculate two traveltime
maps using the traveltime tomogram as the velocity model. One map is calculated using the
source's location and another map is calculated using the receiver's location. These two
maps are then added together. The resulting combined traveltime map defines the traveltime
from every point on the image to the source and receiver. Described another way, the
traveltime from the source, to a point, to the receiver, is stored at the location of that point.

For a particular reflector, the reflection traveltime can be found on the combined
traveltime map as the minimum time on that reflector's trajectory. This approach is an
application of Fermat's principle. Forward modeled traveltimes for each source-receiver-

reflector combination are calculated and stored for both upgoing and downgoing images.

Tterative Inversion: Step 5 — Reflection traveltime residuals

Step 4, inverse mapping/forward modeling, calculates the traveltimes of reflected events
using with the traveltime tomogram as the velocity model. If the traveltime tomogram is
"correct", in other words, accurately reflects the true velocities of the medium, several

observations can be made:
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1) The traveltime residual of the tomographic inversion will be zero (or a minimum)

2) There will be no misalignments of reflection events in the pre-stack, mapped
reflection data

3) The reflection traveltimes calculated in step 4,. forward modeling, will equal the
observed reflection traveltimes
Since step 5 is reached by failing the convergence test, step 2, observations 1 and 2 are not
true. The failure of the convergence test also ensures that observation 3 will be untrue.

In step 5 the residual error, 7, is calculated. The residual error is the difference between
the forward-modeled reflection traveltimes and the observed reflection traveltimes. This can

be expressed as
F=1ops ~ Leale (2)

The observed traveltime used in the tomographic inversion, can be calculated by adding the
residual to the calculated traveltime. This indirect approach to obtaining the true reflection
traveltimes is necessitated by the fact that reflections are normally very difficult to see even
in the processed data. By calculating the reflection traveltimes as a perturbation of a
predicted set of times, the search window can be focused, minimizing errors.

There are several approaches to obtaining the reflection traveltime residuals. The most
direct approach, although very labor intensive, is to manually correct the traveltimes in the
space-time domain. This produces the observed traveltimes directly. By perturbing the
forward-modeled times the residual is added in one step. The disadvantage of this
technique is that it is so labor intensive that it would be difficult to process a large number
of reflectors in a reasonable time. The advantage is that this technique allows the human
operator to interpret and reject noise that might overwhelm other techniques.

A more automated approach is to use a semblance, correlation, or maximum coherency
technique. Each of these has its own advantages and disadvantages which are currently
under study. The primary motivation for research in this area is that a robust automated

traveltime picker will allow a large number of reflectors to be processed.

Iterative Inversion; Step 6 — Completing the iteration with CRTT

The final step of the combined iterative inversion is to use both reflection and direct
arrival traveltimes in a single tomographic inversion. Mathematically, the combined
inversion is identical to the inversion using only direct arrivals. For each source-receiver-

reflector combination where a traveltime is obtained, a raypath can be computed and a
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traveltime calculated. The difference between observed and calculated traveltimes is then
backprojected along the raypath. This is done for all reflection and direct arrival traveltimes
and iterated until a convergence criteria is met. The output velocity model is then passed

along to the mapping routine for processing and the entire process is repeated again.

CROSSWELL REFLECTION TOMOGRAPHY — SYNTHETIC EXAMPLES

Introduction

There are several algorithms to build in order to implement the integrated crosswell
inversion. In this section I show the results of two synthetic crosswell reflection traveltime
inversions. The algorithm used in these crosswell inversions uses a SIRT inversion scheme
parameterized with orthogonal pixels describing a 2-D velocity image. Raytracing is
performed with an initial value ray tracer described by Harris (1992).

These inversions simulate the final iteration of the integrated inversion process. In the
final iteration, reflector geometries are known and the reflection traveltimes are considered
accurate. With accurate direct arrival and reflection traveltimes, the traveltime inversion is
run to convergence to obtain the optimum velocity image. The results of these inversions

show the potential of a combined reflection and direct traveltime inversion.

Simulation 1 — A simple 3-layer model

Figure 2 shows the simple 3-layered model used in the first simulation. The data set for
this model consists of 101 source by 101 receiver locations. Reflection traveltimes are
modeled for 4 reflectors: one at the top of the surveyed zone, one at 200 ft, one at 300 ft, and
one at 500 ft, the bottom of the surveyed zone. Both upgoing and downgoing reflection
traveltimes are calculated for each reflector.

Examples of the traveltime picks used in the inversion are shown in Figure 3. The direct
arrival picks are displayed (Figure 3a) with the receiver elevation on the horizontal axis and
source elevation on the vertical axis. The reflection traveltime picks for the 200 ft reflector
are shown in Figure 3b. The same display is used for these picks. Note that a large part of
the receiver pick map is zero valued. These null values occur at source and receiver
positions that straddle the reflector. One of these pick maps is required for each reflector

used in the traveltime inversion.
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Simulation 1 Model
Depth (ft)
O —

100 =

Velocity (ft/s)
21,000

200 =
300 =—

400 — |

14,000

0 150
Offset (ft)

Figure 2: A simple 3-layered model used to generate traveltime data for a combined direct
arrival and reflected arrival traveltime inversion. The shooting geometry is 101
sources by 101 receivers evenly spaced every 5 ft down the sides of the model.
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Direct Arrival Traveltime Map Reflected Arrival Traveltime Map
Reflector Depth = 300 ft
Receiver Depth Receiver Depth
0 500 0 500
[ I R N S — | M S EE— E— —
0 0 =g, , ;
Source Source
Depth Depth
500 500
(@) (b)

Figure 3: Direct arrival (a) and reflected arrival (b) traveltime maps. These images are
displayed using a "random" colortable to accentuate the isochron contours of the pick
images. Figure 3b is an example of reflected arrival traveltime picks for a horizontal
reflector at 300 ft. The homogeneous gray areas of the map are null picks. This
occurs when the source and receiver locations straddle the reflector and no reflection
is possible. Both up and downgoing reflection picks are present on this image.

The results of the traveltime inversions are shown in Figure 4. Figure 4a is the model
used to create the traveltime data. Figure 4b is the final image of a traveltime inversion
using only direct arrivals . Figure 4c is the final image of the traveltime inversion using
both direct and reflected arrivals. Both of these inversion were run in an identical manner:
10 iterations with 4 backprojections for each inversion.

The most obvious improvements seen in the reflection traveltime tomogram can be
found in the vicinity of the interfaces located at 200 and 300 ft. The bowing in the
interfaces seen in Figure 4b, a common artifact in crosswell traveltime inversions, is virtually
eliminated by including the reflection traveltimes. Lateral variations in the top and bottom

layers in Figure 4b are also absent in the reflection traveltime tomogram.
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Simulation 2 — A 7-layer model

Figure 5a shows the model used in the second simulation. This model includes 7 layers
and reflection traveltime picks were used for all 8 interfaces, which includes the top and
bottom of the model. Traveltime inversions were run using only direct arrival picks and
combined direct arrival and reflected arrival picks. Again, the inversions were run
identically. In this test, 10 iterations were calculated with 20 backprojections for each
iteration. The source and receiver geometries are identical to the first simulation: 101 source
by 101 receiver locations spaced evenly every 5 ft.

The results of simulation 2 are shown in Figures 5b and 5c. The improvements offered
by the combined inversion are essentially the same as seen in simulation 1. The artifacts in
Figure 5b are comparatively larger than those seen in Figure 4b. This is a result of the
interfaces near the top and bottom edges of the model where ray coverage and resolution are

poor.
CONCLUSIONS

Integrated iterative inversion of crosswell reflection and traveltime data can potentially
lead to improvements in the resolution obtainable in crosswell imaging. In this paper I
outline a scheme by which these data can be simultaneously processed. Nearly all of the
programs required to accomplish this processing are in place. The next step will be to write
a general 2-D mapping program which corrects for well deviations and to automate
reflection traveltime picking so that large numbers of reflections can be processed.

The combined reflection and traveltime inversion offers improvements in the resolution
of interfaces near the middle of the surveyed region. Also, improvements in resolution are
seen at the top and bottoms of the surveyed zone where transmission traveltime tomography

fails due to poor ray coverage.
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SEISMIC ATTENUATION TOMOGRAPHY USING
THE FREQUENCY SHIFT METHOD: PRACTICAL
CONSIDERATIONS AND APPLICATIONS

Youli Quan

ABSTRACT

This paper focuses on the implementation and application of seismic attenuation
tomography based on the central frequency shift method. The frequency shift method
uses the central frequency difference between incident and transmitted waves as the data
to calculate the attenuation coefficient. The central frequency of transmitted waves can
be measured from recorded seismograms, but the central frequency of incident waves
may not be directly obtained. We suggest an approach which includes this frequency as
an unknown in the inversion problem. This method is applied to 1-D geological structure
(Devine data) and 2-D geological structure (King Mountain data).

INTRODUCTION

We have introduced the central frequency shift method to seismic wave
attenuation tomography. Quan and Harris (1993) presented the basic theory with
verification tests. In this paper we discuss more problems related to implementation of
the method, and give more crosswell real data examples of 1-D and 2-D cases. Integrated

geological interpretation with attenuation tomograms is in process.
BRIEF OF THE THEORY

We use a Gaussian spectrum as an example to briefly review the basic idea of the
central frequency shift method. We assume that an incident wave has a spectrum of

Gaussian distribution:

o\
1S(f)l= exp[—%], (1)

S
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and the attenuation response of the medium is given by

|H(f)|=expl—f [et,df], )

ray

where ¢, is attenuation coefficient. Then the wave spectrum recorded at a receiver still

has a Gaussian shape which is represented as

RGI=ISCHINHP)I= Aexpl~. Gf n) 3)
N
where,
2 2
A= cxp[——————-fS _,{R]
2 S
and
fr=fs—0F [o,df. )

ray

Equation (4) can be rewritten as a tomographic inversion equation

fOC df_(fs fR) )

ray S

where (f; — f,) is the central frequency difference between incident and transmitted

waves, and 1/ O'S2 acts as a scaling factor. (Note that Eqn (4) in Quan & Harris (1993) had

a typing error).
PRACTICAL CONSIDERATIONS

Static Correction Of Source Frequency fs

Egn (5) is the basic equation used for attenuation tomography which can be

written in a discrete form as

Yy fs—fr
%wlj 0's2 . (6)
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Here index i represents the ith ray and j is for the jth pixel of the medium, l;- is the ray
length within the jth pixel. In practice we can measure f;z from recorded seismograms,
but may not directly obtain the source central frequency f;and variance ¢7>. From Eqns
(1) and (3) we understand that the source spectrum IS(f}| and receiver spectrum IR(f)!
exhibit the same variance of, under the conditions given in Eqns (1) and (2). Therefore,
we can choose the average of variances o> at receivers as 6.. We include the source
spectral frequency f; as an unknown in addition to ocj.. By solving simultaneous

equations we obtain aftenuation coefficients o] as well as f;. Let
fs=Ts+4f, )

where f; =max{ f;} is an initial estimation of f;, and Af is static correction. Then

fs_zfzie=J?s+AJ:—f;?=fs_2f’i‘+éJ;. 3
Lo} o) o, o

s s s s

Eqn (6) can be written as

zalt Af fS fR (9)

GS
where Otj. and Af are unknowns to solve. We need to properly scale the coefficients of
these simultaneous equations to make the numerical calculation stable, since coefficients

lj- and 1/ 0';)' have different dimensions.

Data Processing

We first pick and align the direct wave. Then we mix traces to reduce scattering

interference, and perform FFT to the direct wave which is covered by a short time

2

window. The central frequency frand variance oy are calculated by the following

formulas:

_ ARG
© JIRGoEf
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If we treat ( fs - f;)/ 0's2 as "travel time", aj. as "slowness", and add one more term
—Af [ ¢! into the system of equations, then we can slightly modify the techniques and

programs for travel time tomography to do the attenuation tomography.
APPLICATIONS

Devine Data Survey 2

Quan and Harris (1993) took a test on the Devine crosswell data set. We here
apply the modified inversion method and program based on Eqn (9) to the same data
again. To run the program, we only need to input travel time picks, central frequency
picks and spectral variances. The program selects the average variance, the initial model
and the source frequency, and then calculates the velocity tomogram and attenuation
tomogram with source frequency static correction. Figure 1 shows data picks and
inversion results for this data set. Figure la displays the central frequency picks which
are used to inverse the P-wave attenuation coefficient o, We use straight rays and a 1-D
model for the inversion. The model in vertical direction is divided into 300 pixels.
Figure lc gives the calculated o, which is displayed in the form of 1/0,. Figure 1b

shows travel time picks which are used to inverse P-wave velocity displayed in Figure 1f.
In Figure 1d we convert attenuation ¢, and velocity v to Q-values by the definition

Q=—. (10)

The geological structure and a well log are shown in Figures le and 1g which exhibit an

excellent agrement with the inversion results. structure.

King Mountain Data

The geological structure in the King Mountain survey is complicated. We use a
7-D model for this crosswell data set. The model is divided into 30 (horizontal) by 60
(vertical). pixels. The central frequency picks of this data range from 600 - 1000 Hz.
Figure 2 shows the 2-D P-wave velocity and attenuation tomograms which exhibit good

correlation.
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CONCLUSIONS

The frequency shift method can be used to estimate seismic attenuation, even in a
complicated medium. The source frequency static correction this method makes the

attenuation estimation relatively unique and stable.
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CALCULATING FRESNEL ZONES
FOR CROSSWELL TOMOGRAPHY

Mark A. Van Schaack

ABSTRACT

Ray-theoretic tomography relies on the high frequency approximation of ray theory.
Using ray theory, the traveltime from a source to a receiver is simply the line integral of
slowness along the raypath. In practical applications the high frequency assumption of ray
theory is often incorrect. In these cases the traveltime should be calculated as a function of
the slowness within a wavepath.

The first step in wavepath tomography is defining the wavepath. This can be a difficult
task in a general 2-dimensional medium. I define the Fresnel volume wavepaths
numerically using an energetic-arrival finite-differences eikonal solver. Traveltime maps
calculated in a 2-dimensional medium for the source and receiver are added together and
any traveltime on this combined map falling within 1/27T of the energetic arrival defines a
point lying within the Fresnel volume. Here, T is the period of the source wavelet. The
advantage of using the energetic arrival solver is that critically refracted energy is ignored in
the wavepath and traveltime calculations. This is a useful feature because forward-modeling
critical refractions is inherently inaccurate in the non-linear traveltime tomography inversion.
The use of the energetic arrival eikonal solver provides a fast, robust technique to calculate
Fresnel wavepaths.

I use these wavepaths in a simple tomographic application. In this application the
wavepaths are used as the basis for backprojecting over an area rather than a line. This

builds a smoothing criterion into the tomographic inversion.
INTRODUCTION

The technique most commonly used to process crosswell seismic data is traveltime
tomography. Seismic traveltime tomography uses the source-to-receiver propagation times
for multiple source and receiver positions to estimate the velocity structure of a surveyed

zone. The general approach to solving this inversion problem is to perturb an assumed
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velocity model to minimize the difference between the traveltimes calculated using the
assumed model and the observed traveltimes. There are two particularly important parts in
this inversion. First is the forward modeling step, €.g., calculating traveltimes through the
assumed model. Second is the backprojection technique. The backprojection technique is
the formulation used to update the velocity model to minimize the difference between the
calculated and observed traveltimes.

The most popular method used for calculating traveltimes through the velocity model is
"ray-tracing". The use of ray-tracing implies a fundamental assumption of high frequency
and invokes Snell's law along the path to calculate a ray trajectory. To satisfy the infinite
frequency assumption, the spatial variation of velocity must be small compared with the
wavelength of the seismic source. The "mathematical ray" resulting from the infinite
frequency assumption of ray theory is a trajectory with zero volume, and the source-to-
receiver traveltime is the line integral of slowness along this trajectory.

Often the high frequency assumption is not valid for a particular experiment. A typical
approach in this situation is to apply a smoothing criterion to solve for only the part of the
velocity field that does satisfy the high frequency assumption. The smoothing can be
applied to the velocity model between iterations (Nemeth et al., 1993), or it can be built into
the solution of the linear set of equations with techniques such as "convolutional quelling"
(Meyerholtz et al., 1989) and damped least squares (Menke, 1984). A different approach is
to apply the smoothing in the parameterization of the inverse problem. In this case the
model is parameterized in terms of smooth basis functions (Michelena and Harris, 1991).

Woodward (1989) and Harlan (1990) have followed the idea of wavepaths based on
Fresnel regions. Woodward, following work done by Hagedoorn (1954), replaces raypaths
used in tomography with wavepaths calculated using the Rytov approximation. The
calculation of these wavepaths is not always straightforward since it requires solutions for
Green's functions in a 2-dimensional medium. Harlan estimates wavepaths by solving for
all paths within a model for a given source-receiver geometry which do not exceed the
minimum Fermat time by more than half a temporal wavelength. This technique has the
advantage that it is easy to conceptualize and implement.

In this paper I describe a technique similar to Harlan's for determining wavepaths. The
advantage of this technique is that it uses a finite-differences eikonal solver designed to
calculate the traveltimes of energetic arrivals (Mo, 1994). Calculating only the energetic
arrivals avoids problems which can result when the traveltimes of critical refractions, or head
waves, are used. To illustrate one potential application, I use of the wavepaths as a

smoothing function in a crosswell traveltime tomographic inversion.
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DEFINING FRESNEL WAVEPATHS

The principle of Huygens-Fresnel states that any path, from source to receiver, that has a
traveltime within half the period of the source wavelet of the minimum path time, contributes
to the first arrival. This principle is just another way of expressing the idea that a wave
traveling along the trajectory of a raypath is influenced not only by the velocities along that
path, but also by the velocities in the near vicinity. I will use this idea as a basis to define
wavepaths for use in backprojection in the crosswell tomographic inversion.

I introduce one difference into the wavepath definition: the minimum path time used is
for the energetic travel path. Typically the minimum, or Fermat, traveltime is used in
tomography. This is done because it is much easier to uniformly identify first arrivals in a
crosswell data set than direct arrivals. Unfortunately, this philosophy can lead to several
problems when high velocity contrasts lead to first arrival traveltimes from critical
refractions.

Critical refractions typically result from raypaths which are at some point defined by an
interface of fast and slow media. Crosswell transmission traveltime tomography, in general,
lacks the resolution required to define these interfaces. For this reason the forward-
modeled raypath will seldom be correct. Another related problem results from the inherent
non-linearity of the traveltime inversion problem. The raypath is required to estimate the
traveltime through the model and to define the path of backprojection. Unfortunately, this
raypath is a function of the velocity model that is being calculated. As with many non-linear
problems, the system is linearized by using an estimate of the velocity model to determine
the raypaths and calculated traveltimes. This estimated model is improved and used in the
next iteration as the new velocity estimate. Hopefully, the velocity model eventually
converges to an accurate solution. However, until this velocity structure is found with a fair
degree of accuracy, the conditions required to trace the refracted path will not be present.
Another ambiguity lies in whether any particular critically refracted event comes from above
or below the receiver.

For all these reasons I focus on using only the direct arrival traveltimes. One drawback
of this philosophy is that it requires interpreting the data while picking traveltimes to avoid
picking the traveltimes of critically refracted events. With the aid of local geologic
knowledge, model based pick estimates, and personal expertise (acquired through practice),
this is not an impossible problem. In my implementation, the Fresnel wavepath is the region
defined by a set of point meeting the following criterion: a point falls within the Fresnel

wavepath if the traveltime of a wave traveling from the source to that point, plus the
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traveltime from that point to the receiver, is less than or equal to the minimum direct arrival

traveltime plus one half the period of the source wavelet.
CALCULATING FRESNEL WAVEPATHS

The key to efficiently computing the Fresnel wavepaths is the energetic-arrival finite-
differences eikonal solver (Mo, 1994). This solver is similar to the one developed by Vidale
(1988) except that it computes the arrival times of the direct arriving energy and ignores
critically refracted waves. Details of how this algorithm works can be found in Paper K,
this volume.

Operationally, the eikonal solver runs using a 2-D gridded slowness model and a
starting location, or source point. The solver then produces a traveltime map with the same
dimensions as the original slowness map except that each node of the map represents the

traveltime from the starting point to that node instead of the local slowness.

Fresnel Wavepath Calculation

t =direct arrival traveltime

min
find t </=t;, + T/2
src
t(x,z)
src &
v(X,z) t(rec)
X,Z
rec
t(x,2)

Figure 1: A schematic of the Fresnel wavepath calculation. Traveltime maps are
calculated for the source and receiver positions from an input velocity model. The
traveltime maps are calculated with a energetic-arrival finite-differences eikonal solver.
These velocity maps are then added. A filter is applied to the combined map
identifying all traveitimes falling within the direct arrival time and that time plus T/2,
1/2 the period of the source signal. The result of this filter is the Fresnel volume
wavepath.
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The procedure used to calculate the Fresnel wavepath is shown in Figure 1. To better
illustrate this procedure I will go through the steps using the velocity model shown in
Figure 2. The source location is at zero offset and at adepth of 175 ft. The receiver is
located at an offset of 150 ft and a depth of 375 ft. The first step in calculating the Fresnel

Depth (ft)
0 =

100 =

Velocity (ft/s)

200 = 21,000

300 —

400 =

500 = %14,000

0 150
Offset (ft)

Figure 2: A simple 3 layer velocity model used to illustrate the technique used to
calculate the Fresnel wavepath.

wavepath is to run the eikonal solver to create two traveltime maps, one where the source
location is the starting point and another where the receiver location is the starting point.
The results of these calculations are shown in Figure 3. The images in Figure 3 are
displayed with a "random" colortable to accentuate the isochrons. Notice in the near vicinity
of the starting point in each traveltime map that the isochrons are essentially circular in
shape. This is expected where the velocity is constant. The isochrons deform at the
interfaces due to the refraction of the transmitted energy.

The next step is to add the traveltime images of Figure 3. The result of this step is
shown in Figure 4. This figure is also plotted using a "random" colortable. This combined

traveltime map exhibits several interesting features. First, the isochrons represent
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trajectories where the traveltime from the source, to the isochron, to the receiver is constant.
These isochrons are equivalent to Kirchoff migration ellipses. Second, the central dark-gray
area, which includes the source and receiver locations, is representative of the Fresnel
wavepath. Although it is not within the resolution of this colortable, the central path,
connecting the source to the receiver, is the "mathematical” raypath. All points falling on

this path will have the same value, equivalent to the source-to-receiver traveltime.

Source Traveltime Map Receiver Traveltime Map
Depth (ft) Depth (ft)
0 - 0 —

100 = 100 —

200 — 200 —

300 — 300 =

400 — 400 —

500 — 500 =
—r 11 T 11
0 150 0 150

Offset (ft) Offset (ft)

Figure 3: The above illustrations are eikonal traveltime maps for the source (left) and
receiver (right). The traveltime maps are displayed with a "random” colortable to
accentuate the isochrons of the traveltime maps.

Another potential application of this map is the determination of reflection points. The
point at which the minimum traveltime is found along a line (e.g. reflector) drawn arbitrarily
through this map, is the reflection point for that line. That minimum traveltime is also the
reflection traveltime. If there is no possible reflection point along the line, the minimum

time will be found at one of the two points where the line goes off the traveltime map.
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These reflection points and times are useful in the calculation of XSP-CDP mapping

trajectories.

Combined Traveltime Maps

Depth (ft)
0 -

100 -

200 -

300 ~

400 =

0 150
Offset (ft)

Figure 4: The above figure is the result of adding the source and receiver traveltime maps
shown in Figure 3. A "random" colortable is used to highlight the traveltime
contours. Notice the equi-colored contours are essentially equivalent to Kirchoff
migration ellipses. Although the central "wavepath" is representative of the shape of
the Fresnel wavepath the actual wavepath is determined by traveltime values falling
between the direct arrival time, and the direct time + 1/2T. (one half the period of the
source wavelet).

Finally, to determine the Fresnel wavepath, all times in Figure 4 are found which fall
between the direct arrival traveltime, to this time plus one half the period of the source
wavelet (inclusive). These points constitute the Fresnel wavepath. For this example I
assume a source wavelet with a period of 1 ms which corresponds to a center frequency of
1000 Hertz. Therefore, the window used in determining the Fresnel wavepath is from 14.7
ms (the direct arrival traveltime) to 15.2 ms (14.7 ms + 1.0/2.0 ms). The Fresnel wavepath
for this example is shown in Figure 5. The Fresnel wavepath in a homogeneous medium is
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defined by an ellipse. The wavepath shown in Figure 5 is deformed due to the velocity

contrasts in the model and is clipped where the wavepath extends outside the model.

Fresnel Volume Wavepath

Depth (ft)
0 =

100 —

200 =

300 —

400 —

500 —

150
Offset (ft)

Figure 5: The Fresnel wavepath for the example shown in Figure 2. This wavepath
includes all paths which have traveltimes within 0.5 ms of the direct arrival
traveltime . The 0.5 ms window represents the appropriate value for a source wavelet
with a period of 1 ms.

USING FRESNEL WAVEPATHS IN TRAVELTIME TOMOGRAPHY
Backprojection using volumeless rays

Using the high frequency ray approximation, the traveltime along path [, in a medium

where the slowness is defined by S(x,z), can be written as

t=[,S(x,2)dl €))
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Typically, the raypath is a function of the slowness field, S(x,z), and a traveltime inversion
must be performed in a sequence of linearized steps. Linearization is accomplished by
using a slowness estimate, S'(x,z), as the starting point of the inversion. This estimate
defines the raypath, /', and is updated in the inversion to minimize the difference between ¢,
the measured traveltime, and ¢, the traveltime calculated through the estimate S'(x,z). One of
the approximations made in the linearization is that the /' equals /. Equation (1) in terms of

these new parameters is

t=,8 (x,2)dl' +R 2

where R, the traveltime residual, is defined by
R=t-t¢ 3)
and ¢' is the traveltime measured through slowness field S'(x,z):

t'= [, S(x,z)dl 4)

To include the residual term inside the integral, multiply and divide R by [, dl' and rewrite

the equation,

t=[(S (x,2)+ léj)dl' 5)

Equation (5) shows a method to use the traveltime residual to modify the continuous
slowness field S’ along the raypath so that the calculated traveltime matches the measured
traveltime. This process is referred to as "backprojection”. A single linear step in a
tomographic inversion is called an "iteration". In an iteration the raypaths are defined by the
estimated velocity model S'(x,z) and do not change. The backprojection step is performed
for all the raypaths and the final correction to S'(x,z) is the average of the residual
corrections. This process is the simultaneous iterative reconstruction technique (SIRT)
(Dines and Lytle, 1979).
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Backproijection using Fresnel wavepaths

Backprojection across Fresnel wavepaths is similar to backprojection along raypaths. In
the case of wavepaths, the backprojection is done over an area instead of along a line. In
this application I will use the Fresnel wavepaths to define an area to be used for
backprojection. This formulation is still ray-theoretic in nature since the calculated
traveltime used to calculate the residual is the energetic arrival eikonal time. To fully utilize
the wavepath in a wave-theoretic traveltime inversion a formulation must be developed which
uses all the information within the wavepath. In this formulation all the velocities within the
wavepath contribute to the final calculated traveltime and perturbing any of these velocities
would result in perturbing the calculated traveltime. Although a wave-based formulation
would be superior to a ray-based formulation, the research on calculating wave-based
traveltimes is still in progress.

The simple technique I describe utilizes the wavepath as a smoother. In this case the
residual calculated using the ray-theoretic traveltime is backprojected over the entire
wavepath. The advantage offered by this simple application is that the smoothing typically
required in any ray-based inversion is defined honoring the wave nature of the data rather

than in an ad hoc manner.

The wavepath backprojection formulation
Similar to equation (1) above, the Fresnel volume traveltime can be written as

t = Gf[ ,w(x,2)S(x,2)da (6)

In this equation w(x,z) is a weighting factor and G is a geometric factor used to scale the
contributions to obtain a traveltime measurement. I determine G empirically by forward-
modeling. The first step in computing G is to rewrite the equation replacing the weighted

slowness terms by the average of the weighted slowness terms. Equation (6) becomes

t = Gl[,Spypda )

where Sgyg is defined as



Van Schaack, M. — Fresnel Wavepaths C-11

¢ _JweaS(x2)da
@8 Jf,w(x,2)da

(®)

These equations are now used to define G. This is done using the direct arrival eikonal
time through the estimated slowness field S'(x,z). This traveltime, ¢, was calculated when
the wavepath was defined. Rewriting equation (7) using the estimated slowness field and
the calculated traveltime,

f = G.”a‘sn avg da (9)
In equation (9), G is the only unknown. Solving for G

G=—— (10)

Now a backprojection formulation can be written starting with equation (7) using the
same philosophy as applied in equations (2)—(5). First, rewrite equation (7) in terms of the
observed traveltime, the geometric factor, the estimated slowness model, and the traveltime

residual:

t=GJ[,S yeda+R (11)

The residual term, R, is defined by equation (3). Now include R inside the integral. To do
this expand Sgy, and multiply and divide R by an integral form to provide a common

denominator. This expression is

Gl ,da
[J,w(x,2)S (x,2)dd [, w(x,2)da
fI,w(x,2)da datR G|, da
[J,w(x,2)da

t=Gl[, (12)

Rearranging terms and putting R inside the integral,

G

= [J,w(x,2)da

-Ua(J.Jaw(x’z)s| (x’z)'*'R_J%%deda (13)
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Implementation

Although equation (13) appears complicated it is fundamentally the same as equation
(5). To implement equation (13) in an inversion algorithm the slowness model is dicretized
as a finely meshed grid. In this parameterization the areas of integration become a

summation over the nodes. Equation (13) can now be written in its discretized form,

t= Wy 28 o +—21 14
S L[Sty (14

i,j

If the weighting function is assumed to be unitary within the Fresnel volume then the
summation of the weighting function is equal to the number of grid points within the

Fresnel volume, N. This further simplifies the equation,

G R
t=— S o +— 15
NZ,( H G) (1

FRESNEL VOLUME BACKPROJECTION EXAMPLE

I have run a traveltime inversion using the Fresnel volume backprojection formulation
on a synthetic data set. The simple model used is seen in Figure 2. The data set includes
101 sources by 101 receivers evenly spaced along the sides of the model every 5 ft. In my
inversion I implemented equation (14) to utilize the weighting function. I designed a simple
function that linearly ramps the wavepath's weight from a value of one on the axis of the
Fresnel volume to zero at the edge. Starting with a homogeneous model, four iterations
were run using a SIRT-type algorithm. Each iteration was run for 20 backprojections.

The results of the inversion are shown in Figure 6. The inversion has converged
reasonably well towards the solution. Some artifacts are seen near the interfaces and at the
top and bottom of the image. Although the Fresnel wavepaths might provide additional
stability, the inversion still contains artifacts typical of inversions which use the high
frequency ray assumption. The forward modeled traveltime used in my inversion is
calculated using the eikonal solver with its ray-theoretic assumptions. The wavepath is used
simply to provide a smoothing criterion. The results of the wavepath inversion suggest that
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developing a formulation where the traveltime is calculated from the wavepath might provide

improved results.
Synthetic Model Inversion Results
Depth (ft) Depth (ft)
0 = 0 -

100 = 100 -

Velocity (ft/s)

21,000

200 — 200 —

300 — 300 =

400 — 400 =

500 = 500 = 14,000

150 0 150
Offset (ft) Offset (ft)

Figure 6: The results of the Fresnel wavepath inversion. In this inversion the Fresnel
wavepaths were used to provide a basis for smoothing the inversion. This smoothing
is accomplished during backprojection. This inversion consisted of 4 iterations of 20
backprojections each. The starting model was homogeneous.

DISCUSSION

I have described a technique by which energetic arrival Fresnel volumes can be
easily calculated. A simple application was designed to use these wavepaths as a smoothing
criterion in a crosswell traveltime inversion. The results of this inversion do not show much
improvement in speed or accuracy compared with more standard smoothing techniques.

The ease with which these wavepaths are calculated might be more fully utilized if the
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wavepaths are applied in a fullwave inversion formulation. They might also be used as a
basis set in a "fat ray" formulation such as that described by Michelena and Harris (1991).
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AN APPROACH TO ADAPTIVE GRIDDING FOR
TRAVELTIME TOMOGRAPHY

Jerry M. Harris

ABSTRACT

This short paper summarizes the recent development and application of a node-based
tomography inversion algorithm. The node model provides adaptive gridding to address
the problems of non-uniform ray coverage and inhomogeneous resolution. The spacing or
density of nodes are adaptively selected to provide more uniform ray density per node or to
match the geometrical pattern of the geological structure being imaged. In this way,
reconstruction artifacts associated with non-uniform coverage may be reduced while
velocity estimates are made more reliably. Also, "unknowns' are not wasted on
homogeneous zones but may be concentrated in heterogeneous regions of the image. If no
information is available to adapt the grid, the node model may be run as a regular spaced

lattice.
THE MODEL

The motivation for this model was introduced last year (Harris, 1993). Consider
velocity inversion from traveltime data. For the forward problem, the velocity is specified
at irregularly spaced nodes. See Figure 1. The forward model traveltime is obtained from

the discrete summation:

X

h =2 A (1)

3
Il

where S jm are "interpolated" slowness values for points along the jth ray path and M; is the
number of equi-spaced steps of length A/ along the ray. The slowness values §jm are

interpolated from the nodes using an N-term interpolation scheme:
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R N
S_]m = zdljm Si » (2)
i=1
where the Si's are the values of slowness at the N nodes of the model and the djjr,'s are the
interpolation coefficients. In practice, I use bi-linear interpolation from the four nearest
nodes, i.e, N=4. The interpolation coefficients are determined in closed form following

identification of the locations of the four surrounding nodes. See Figure 2.

Boreholes
zZ, ~-Q--~"-- Oo------- - -
Zy ---Q------ o - -
Zy ---Q------ O--=--=-- - -
______ O N - - -

0 6 9
° 00

Figure 1. The density and pattern of nodes are adapted by the user to fit the geological
structure or other criteria such as ray density. The location of the nodes is given
by its depth and offset coordinates. For many geological situations, its is
appropriate to begin with nodes only along the profile of the wellbores.
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Figure 2. Slowness along the ray path is calculated by interpolating values from the four
neighboring nodes. When node spacing is small and uniform, i.e., a lattice, a
nearest neighbor approximation can be used and the node model reduces to the
string model.

Because the nodes are irregularly spaced, computer time is spent finding the four nodes
surrounding the interpolation point. This effort can be reduced when the nodes are
regularly spaced and can be indexed for a fast search. During forward modeling, the
slowness is known and the bi-linear coefficients are used to calculate the slowness at the
interpolation point. During inversion, for example using SIRT, the bi-linear coefficients

are used to weight the distribution of traveltime residual to the four contributing nodes.
EXAMPLES

The first example is the synthetic model shown in Fig. 3a. This model is mostly 1-D
with a dipping feature near the bottom of the survey. The result of a SIRT inversion using
straight rays is shown in Fig. 3b. Fig. 3b was then used as the background for the curved
ray result shown in Fig. 3c. These results were obtained for two nodes per depth level.
The two nodes are located along the right and left boundaries of the model at uniform
depth intervals.

The second example, Figs. 4a through 4c, uses real field data taken from a Gulf
Coast site. This result illustrates how complex interwell variations are handled by only two

lateral nodes.
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CROSSWELL COMMON LATERAL POINT
REFLECTION IMAGING

Nicholas Smalley

ABSTRACT

A new method of crosswell reflection imaging is introduced in this paper. It uses
previously described gathers (Smalley, 1992) and crosswell reflection velocity analysis
(Smalley, 1993), (Smalley, 1994) along with a point to point imaging procedure

described in this paper. A high resolution real data reflection image result is shown.
INTRODUCTION

Crosswell reflection imaging is a relatively new field in the crosswell seismology
experiment. Some excellent results have already been obtained in crosswell reflection
imaging (Lazaratos, et. al, 1992). The objective in this paper is to improve on the XSP-
CDP mapping procedure by developing an algorithm that uses the reflection data itself to
obtain the velocity model that is used to image the reflection data and therefore takes into
account 2-D variation in the medium. The algorithm described in this paper is the
Common Lateral Point (CLP) imaging method (Smalley, 1992). The benefits of using
this method is that we take into account 2-D variation in the velocity structure which is
particularly important as we go to wider well separations, and avoid use of tomogram
velocities which may not be the best velocities for reflection imaging. However, the CLP
reflection imaging method does keep the point to point mapping procedure of the XSP -
CDP imaging algorithm (i.e. the same impulse response). This is important to enable
signal to noise separation, particularly in dealing with the shear wave and converted
arrivals.
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WAVEFIELD SEPARATION

Before full wave form data can be imaged for reflections, it first has to be
optimized for reflections. Crosswell data contain many different modes. While the data
itself is very complicated, we can go through a fairly simple procedure to separate other
wave modes from the reflections. The raw data is sorted into source and receiver gathers.
Even though the imaging procedure used to image the reflections will involve sorting the
data into different sorts of gathers, the source and receiver gathers provide a good domain
in which to enhance the reflections. We aim to do three things to separate the reflections
from the raw data:

1) Remove the direct arrival

2) Enhance all upgoing or downgoing events

3) Remove noise such as converted arrivals and tube wave noise.
Removal of the direct arrival requires:

1) Picking the direct arrival travel time from the raw data

2) Alignment of the direct arrival

3) Subtracting off the direct arrival through a trace mix.
Enhancement of the reflections requires:

1) f-k filter to separate upgoing and downgoing reflections.

2) f-k filter to filter addition noise.
While the f-k filter is a powerful tool it should always be used cautiously. The pass of the
filter should be made as wide as possible while still filtering out the undesired noise. A
pass that is too narrow can artificially mix the data. Converted arrivals are the biggest

source of noise in reflection data, and should be the primary objective of the second f-k

filter after upgoing and downgoing wavefield separation.
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INPUT TO THE CLP REFLECTION IMAGING ALGORITHM
The input to the CLP reflection imaging algorithm consists of
1) Wavefield separated data optimized for reflections

2) A set of imaging HNMO and VLMO stacking velocities at
control points in space.

® o ®

Ve

® o o

/r
® ® ® Rl |HNMOI|VLMO1
R2 |HNMO2|VLMO2
° R3 |HNMO3|VLMO3
R4 |HNMO4|VLMO4
® R5 |HNMOS5|VLMOS5
® R6 |HNMO6| VLMO6
R7 |HNMO7|VLMO7
o(Zr)

Figure 1. A grid of control points obtained from depth conversion and velocity
analysis. At each control point is a 3 by N set of radial distances, HNMO
and VLMO stacking velocities.
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The procedure for wavefield separation was discussed previously. The control
point locations and their corresponding HNMO and VLMO velocities (Smalley, 1992),

(Smalley, 1993) are from the depth conversion and velocity analysis procedure in another
paper in this volume. The set of control points make up a grid in [a(Zr),Zr] space

(Smalley, 1992) (Figure 1). At each one of these control points is a 3 by N matrix of
radial distances, HNMO and VLMO stacking velocities (Figure 1). In order to obtain a
stacking velocity for all input traces that will be included in the final stack, interpolation
between the control points is necessary.
CLP IMAGING PROCEDURE
The CLP imaging algorithm is shown below:
Reflection Depth Zr {
Input traces {

calculate polar coordinates [ 0l(Zr), r(Zr) ]

interpolate radial distance bounds[ r(Zr) ] {input from velocity analysis }

if r(Zr) > min r(Zr) and r(Zr) < max r(Zr) {

calculate incidence angle 6(Zr)

Interpolate appropriate HNMO and VLMO stacking velocities

{input from velocity analysis}

HNMO correction

VLMO correction

Extract sample at t=0
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convert 0.(Zr) to x(Zr)

stack over r(Zr)

This is similar to the procedure described in a previous paper (Smalley, 1992). The
differences are

1) the determination of the radial distance bounds for a trace and testing

to see if the input trace has a radial distances within the given bounds.

2) interpolation of HNMO and VLMO stacking velocities between control

points.

The velocity analysis procedure will indicate over which radial distances we can get a
coherent summation of signal over a CLP point. The interpolation of HNMO and VLMO

stacking velocities is a linear interpolation in the order of:

1) radial distance r(Zr)

2) assumed reflection depth Zr

3) the angular coordinate 0i(Zr) in the polar coordinate system -

representing the lateral location.

As stated previously, the CLP imaging procedure has the same impulse response
as the XSP-CDP imaging algorithm (point to point mapping), but has a different way of
sorting the data and obtainment of velocities for imaging. The comparison between the
CLP and XSP-CDP algorithms are:
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CLP imaging
Reflection depth parameterization of input traces
polar coordinates sorting of input traces

[ 0u(Zr), 1(Zr) ]

2 - D reflection source of velocities for imaging

velocity analysis

HNMO and VLMO velocities used for imaging

stacking velocities

2 - D interpolation accounting for velocity variation
between velocity analysis of imaging region

control points

Common ratio or lateral CDP stacking
point gathers (Common o.(Zr))

Point to point mapping imaging operator or
impulse response

The differences can be highlighted as:

1) sorting of the data as it is processed through the algorithm

E-6

XSP - CDP

Source or receiver

gather

Receiver or source
number

1 - D travel time

tomography

Tomogram interval

velocities

1 - D raytracing based
on tomogram interval
velocities

1 - D raytracing based
on tomogram interval

velocities

Point to point mapping

2) use of stacking velocities that have 2-D variation for CLP imaging
as opposed to a set of 1-D interval velocities for XSP-CDP imaging.
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ACCOUNTING FOR 2-D VELOCITY VARIATION: VELOCITY ANALYSIS
VERSUS RAYTRACING

In order to do cross-reflection imaging we need algorithms that take into account
that there will be variation in the velocity of the medium within the survey; both 1-D and
2-D. The XSP-CDP algorithm takes into account velocity variation by 1-D raytracing.
The CLP imaging algorithm takes into account velocity variation by 2-D velocity
analysis. Fermat's principle of minimum travel time and stationary ray paths says that a
change in the velocity will have a greater effect on the travel time of the ray path than on
the actual location of the ray path. Raytracing takes into account the deviation in the ray
path due to velocity variation by use of a 1-D tomogram. The CLP imaging algorithm
takes into account velocity variation by correcting the traveltime misfit by use of 2-D

velocity analysis.

REAL DATA RESULTS

The preceding theory was applied to West Texas data site. In order to attenuate
noise primarily due to converted arrivals, we can do an additional sort of the gathers
according to incidence angle (Lazaratos, 1992). This is also shown previously in the CLP
algorithm description. The angle domain has many properties for signal and noise
separation (Lazaratos, 1992). We f-k filter in this domain to eliminate steeply dipping
noise. We also needed to choose the appropriate spatial bandpass to optimize the signal.
The choice for the appropriate f-k filtering is determined globally while the bandpass
filtering is done on a more localized scale. The final results are shown in figure 2. We
see excellent detail of the reservoir region (depths 2850 - 2950 ft.) as well as an

unconformity at the bottom of the image.

CONCLUSIONS AND FUTURE WORK

We have described a new method for doing crosswell reflection imaging and have
shown its potential on a real data set. In the future we want to standardize the velocity
analysis so that we can get immediate feedback on the choice of velocities for imaging.
Essentially we want to make the velocity analysis procedure automated on the same level

as surface seismic imaging.
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CROSSWELL REFLECTION DEPTH AND
VELOCITY ANALYSIS

Nicholas Smalley

ABSTRACT

A method is described for estimating depths of reflections in crosswell data. The
depth determination allows for accurate velocity analysis to find the HNMO and VLMO
stacking velocities. These velocities are used in the CLP reflection imaging algorithm
described in another paper in this volume (Smalley, 1994). It is use of these velocities
that allow us to maximize the coherency in the stacking of reflection data and to take into

account 2 - D variation in the velocity of the medium.
INTRODUCTION

Recently a method was introduced to obtain stacking velocities from crosswell
reflection data (Smalley, 1993). It was shown that these stacking velocities could
improve the coherency of individual reflections. This paper shows how the CLP-VLMO
domain (Common Lateral Point gather after the VLMO correction (Smalley, 1993)) is
used to estimate the depth of the reflection, which allows for subsequent velocity
analysis. By allowing for variation in the lateral location of the reflection point as well
as reflection depth when we do velocity analysis we can obtain a 2-D sampling of the
medium (Figure 1). This 2-D sampling allows us to account for 2-D variation in velocity
when doing cross-well reflection imaging. This is particularly important as we go

towards wider well offsets.
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Figure 1. By doing velocity analysis for different reflection points on
for a given reflection depth we obtain a 2-D sampling of the
medium.
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REFLECTION DEPTH AND VELOCITY DETERMINATION

Estimation of Reflection Depth

Before we can determine the HNMO and VLMO stacking velocities for
reflections we have to accurately estimate the reflection depth. In a previous paper
(Smalley, 1993) we showed that we could use the CLP-HNMO gather to estimate the
depth of the reflection upon which we want to do velocity analysis. The disadvantage of
this domain is that we were looking for a residual hyperbolic moveout at small radial
distances or large angles of incidence. Also, while we were looking for non-linear
moveout, the slope of the linear moveout that we needed to see was unknown since it
depended on the velocity. By using the CLP - VLMO gather (Smalley, 1993) we can
more easily separate the depth - velocity ambiguity. In this domain the desired moveout
is zero or a perfectly flat event. Before we estimate the HNMO and VLMO stacking
velocity vectors we can apply constant velocity HNMO and VLMO corrections for a set
of assumed reflection depths. The velocities and reflection depth pair that yield the least
deviation from zero moveout gives us the depth of the reflection. Therefore we choose a
lateral location of the reflection point and determine the reflector's depth. This gives us a

2-D location of a control points at which to do reflection velocity analysis.

Velocity Analysis - Determination of HNMO and VI.MO stacking velocities

Once we have determined the depth of the reflections we can then align it to zero
moveout by use of the HNMO and VLMO corrections. A previous paper described how
to align reflections with combinations of HNMO and VLMO stacking velocities in the
CLP-VLMO gather (Smalley, 1993). A real data example after depth conversion and
velocity analysis is shown in figure 2. The reflector depth was determined to be 2950 ft,
and the lateral points are 4, 6, and 8 feet from the source well where the total well offset
is 187 ft. A set of the HNMO and VLMO stacking velocities as a function of the radial
distance r(Zr) is shown in figure 3 for the lateral point 6 feet from the well. We allowed
the HNMO and VLMO stacking velocities to be the same which is a very good

approximation except when there is very large changes in velocity (> 50%).
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Figure 2. CLP - VLMO after depth estimation and velocity analysis for three reflection
lateral points at locations 4, 6, and 8 feet from the source well. The depth

of the event at t = 0 was determined to be 2950 ft.
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Figure 3. HNMO and VLMO stacking velocites for
a lateral point near the source - well

CONCLUSIONS AND FUTURE WORK

We have presented an improved method for depth estimation of reflection data
which allows for accurate velocity analysis. Future work involves automating the
velocity analysis to the level of surface seismic work so that we can more closely tie it

with the reflection imaging procedure.
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ANALYSIS AND ATTENUATION OF TUBE WAVES:
IN CROSSWELL SEISMIC SURVEYS

Le-Wei Mo

ABSTRACT

Seismic data collected in a crosswell survey often contain strong tube waves that have
parts of their travel paths along wells where the sources and receivers are positioned. Tube
waves can be excited by the source and propagate along the source well, and then radiate as
body waves propagating to the receiver well to be recorded. This is called the source well
tube wave. Tube waves can also be excited by passing body waves and propagate along the
receiver well, and are recorded. This is called the receiver well tube wave. By the principle
of reciprocity, source and receiver well tube waves have similar characteristics and can be
analyzed by the same method. Owing to the slow propagation velocity of the tube waves,
they are usually spatially aliased in practical records in either common shot gathers (CSG)
or common receiver gathers (CRG). While receiver well tube waves are aliased in CSG,
they are well sampled and predictable in CRG, and vice versa for source well tube waves.
Tube waves that have travel paths in both the source and receiver wells are also predictable.
I predict and attenuate source well tube waves in CSG, and predict and attenuate receiver
well tube waves in CRG.

INTRODUCTION

Seismic data recorded in a crosswell survey often contain strong tube waves. These
tube waves can be stronger than any body waves being recorded. Most explorationists view
the tube waves as undesirable coherent noise because they are superimposed on reflection
signals and prevent optimum imaging of stratigraphic and structural conditions in the
subsurface. Thus, attenuation of tube waves has been the topic of extensive current
research. One method to attenuate tube waves is to apply special equipment in field data
recording (Pham et al., 1993). Even though tube waves are attenuated in field data
recording, tube waves are still recorded, and then one has to resort to numerical processing
techniques. Cai and Schuster (1993) aligned tube waves along their traveltime picks in
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common shot gathers and common receiver gathers and applied a median filter to predict
tube waves. Finally, the predicted tube waves are subtracted from the field data. In this
method, tube wave traveltimes must be picked precisely and upgoing and downgoing tube
waves are processed separately. A serious problem with this method is to deal with the data
within a polygonal shape after the tube waves are aligned. These are the factors that limit
the effectiveness of this method.

In this paper, I first analyze the generation and propagation of tube waves in a crosswell
experiment. Then I predict and attenuate source well tube waves in CSG, and predict and
attenuate receiver well tube waves in CRG. My method is shown to be effective in

attenuating tube waves in a field dataset.
ANALYSIS OF CROSSWELL TUBE WAVES

In crosswell seismic surveying using a downhole source, the source excites body waves,
and it also excites a tube wave propagating along the borehole fluid called the source well
tube wave. When the tube wave passes through an impedance contrast in the source well, it
excites body waves that propagate to the receiver well to be recorded. Common impedance
contrasts in a borehole are radius changes, junction points between casing and noncasing,
perforation, and the top and bottom of the borehole. And according to numerical
calculations and field data, body waves excited by tube waves at these impedance contrasts
can often be stronger than the body waves directly excited by the source (Balch and Lee,
1984).

When body waves from the source well impinge the receiver well, they are recorded by
the receivers. At the same time, strong tube waves are excited at impedance contrasts to
propagate along the receiver well. The excitation and propagation of various waves in a
crosswell experiment is schematically illustrated in Figure 1 for the recording of a common
shot gather. Figure 2 is a synthetic CSG obtained by ray tracing with the experimental
geometry of Figure 1(a).

Figure 3 schematically illustrates the wave propagation and the traveltime trajectories
within a common receiver gather. By the principle of reciprocity, a common receiver gather
can be considered as a common shot gather. And this can be realized by reversing the wave
propagation directions (the directions the arrows point) in Figure 3(a). Thus, source and
receiver well tube waves have similar characteristics and can be analyzed by the same
method. Figure 4 is a synthetic CSG with the experimental geometry of Figure 3(a).
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Owing to the slow propagation velocity of the tube waves, the receiver (source) well tube
waves have steep slopes in the common shot (receiver) gathers. In discretely sampled field
data, these steep events are usually spatially aliased. However, in the other domain, they are
well sampled and predictable. For the source (receiver) well tube waves in a CSG (CRG),
they are well sampled and predictable. For those tube waves that have propagation paths in
both the source and receiver wells, even though they are aliased, they are also predictable.

In neighboring CSG's, the source well tube waves 2 and 22 in Figure 1 and Figure 2
vary by a time delay, the time that the source well tube wave propagates between
neighboring source positions. Likewise, in neighboring CRGs, the receiver well tube waves
12 and 22 in Figure 3 and Figure 4 vary by a time delay, the time that the receiver well tube

wave propagates between neighboring receiver positions.
ATTENUATION OF CROSSWELL TUBE WAVES

When the source is at a location that excites source well tube waves, the source direct
arrival and source well tube waves are time coincident. For a source located away from the
location that excites source well tube waves, there is a time delay that the tube wave takes to
propagate from the source location to the source well tube wave excitation point. Since one
can predict the time trajectory of source well tube waves in CSG's, one can use the
relationship between neighboring CSG's to estimate the arrivals of source well tube waves.
When the estimated source well tube waves are subtracted from the original CSG's data,

source well tube waves are then attenuated.

A CSG data can be modeled as

D, =S, +T(t—t) (D

where I is the index of the CSG, D;j are the whole CSG data, T is source well tube wave
(events 2 and 22 in Figure 1 and Figure 2), ¢ is recording time, #( is the first break time
trajectory by this analysis, S; is the portion of the data other than 7. A neighboring CSG

can be modeled as

D;=S8;+T(t—1y+ 1) )
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where T is the same as in equation (1) except a time shift §t. Cross-correlation D; with Dj
around #¢ and picking the maximum correlation value can determine the time shift §t.
Cross-correlation can be carried out for the whole CSG, or for individual traces.When the
source well is straight and vertical, the tube wave time delay Ot is trivial to predict
geometrically, but when the well deviates or curves,one has to resort to a cross-correlation

procedure to estimate it.

Then neighboring CSG's are shifted to place the source well tube waves in phase and

are stacked to estimate the source well tube waves.
N 1 I
T=—— D.(t-6t 3
2n+1 l.:z_;l i ) ®)

where 7 is the number of chosen CSG's on each side of the designated CSG. In the
following field data example, I choose 7 to be 5 so that the events other than the tube waves
to be estimated are attenuated by an order of magnitude in the stacking. The estimated
source well tube wave 7 is then subtracted from the CSG data.

In practice, source well tube waves are excited at an identifiable finite number of points
of impedance contrasts. Source well tube waves excited at these points are each estimated
and attenuated. Finally, the data are sorted into CRG's, and estimation and attenuation of
receiver well tube waves (events 12 and 22 in Figure 3 and Figure 4) are carried out by the

same method as outlined above, invoking the principle of reciprocity.
EXAMPLES

I apply the above method to a field crosswell dataset, which has 201 CSG's and 203
CRG's. Figure 5 is an unprocessed CSG, Figure 6 an unprocessed CRG (Depth O in the
following Figures refers to the top of the survey, instead of the Earth surface). The
borehole source excites both compressional (P-) and shear (S-) waves, as does the source
well tube wave. In this dataset, both the source and receiver well tube waves are much
stronger than the body waves. Figure 7 is the estimated source well tube wave on the CSG
data in Figure 5. Figure 8 is the result after subtracting the source well tube wave in Figure
7 from Figure 5. After all the CSG's are processed, the data are sorted into CRG's.

Figure 9 is the new CRG of the CRG in Figure 6. Figure 10 is the estimated receiver
tube wave on the CRG data in Figure 9. Figure 11 is the result after subtracting the receiver



Mo -Tube wave attenuation G-5

well tube wave in Figure 10 from Figure 9. After all the CRG's have been processed, Figure
12 is the new CSG of the CSG in Figure 8. Comparing data in Figure 5 and 6 to the
processed data in Figure 11 and 12, it is obvious that after attenuation of crosswell tube

waves, the direct arrival and reflection of body waves stand out clearly.

CONCLUSIONS

The linear time delay relationship of tube wave excited body waves in neighboring data
gathers has been used to estimate and attenuate tube waves. I predict and attenuate source
well tube waves in common shot gathers, and then predict and attenuate receiver well tube
waves in common receiver gathers. Application of the method has shown that it is effective
in attenuating tube waves in a crosswell seismic experiment. After attenuation of tube

waves, body waves stand out clear, otherwise difficult to identify.
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Figure 1 (a) is the crosswell experimentsetup. (b) is the traveltime trajectory of a
common shot gather. In (b), 1 is the direct arrival, 2 is the body wave excited by the
source well tube wave, 12 (22) is the receiver well tube wave excited by 1 (2).
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Figure 2 A synthetic common shot gather. Events 1, 2, 12, and 22 have the same
descriptions as in Figure 1(b).
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Figure 3 (a) is the crosswell experimentsetup. (b) is the traveltime trajectory of a
common receiver gather. In (b), 1 is the direct arrival, 2 is the body wave excited by
the source well tube wave, 12 (22) is the receiver well tube wave of 1 (2), as in
Figure 1.By the principle of reciprocity, 1 can be considered as the first arrival
excited by the receiver, 12 is the body wave excited by tube wave in the receiver
well, 2 (22) is the source well tube wave excited by 1 (12).
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Figure 4 A synthetic common receiver gather. Events 1, 2, 12, and 22 have the same
descriptions as in Figure 3. Polarities help to identify the corresponding events
between Figure 2 and Figure 4.
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Figure 5 An unprocessedcommon-shot gather. Events 1, 2, 12, and 22 have the same
descriptions as in Figure 1 and Figure 2. P (S) stands for P-wave (S-wave). Strong
source well tube waves (events 2 and 22) are excited at the depth of 800 ft.
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Figure 6 An unprocessedcommon-receiver gather. Events 1, 2, 12, and 22 have the same
descriptionsas in Figure 3 and Figure 4. P (S) stands for P-wave (S-wave).Strong
receiver well tube waves (events 12 and 22)are excited at the depth of 730 ft.
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Figure 7 Estimated source well tube wave on the CSG data of Figure 5.
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Figure 8 Common-shot gather of Figure 5. Source well tube waves have been
attenuated.
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Figure 9 Common-receiver gather of Figure 6. Source well tube waves have been
attenuated.
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Figure 10  Estimated receiver well tube wave on the CRG data of Figure 9.
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Figure 11  Common-receiver gather of Figure 9. Receiver well tube waves have been
attenuated.
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Figure 12 Common-shot gather of Figure 8. Receiver well tube waves have been
attenuated.
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RELATIONSHIPS BETWEEN MATERIAL
PROPERTIES AND ANGLE-DEPENDENT
REFLECTIVITY

Steven R. Bacharach

ABSTRACT

An elastic wave incident on an interface between two solid half-spaces produces
reflected and transmitted waves with amplitudes dependent upon the solids' properties
and the angle of incidence and amplitude of the incident wave. Reflectivity is defined as
the ratio of the amplitude of a reflected wave to that of the incident wave. P-wave to P-
wave reflectivities (PP) obtained from high incident angles are often used to estimate
lower half-space compressional velocity by a process known as CDP trace stacking. For
this process, it is assumed that using reflectivity values averaged from large incidence
angles in the place of the reflectivity value at normal incidence will result in little error in
the velocity estimation. Because several variables simultaneously determine reflectivity,
analyzing the effect on reflectivity of changing a single one is difficult. However,
assuming that the density and the ratio of S-wave velocity to P-wave velocity are the
same in both media, I plot the change of two different ratios of velocity against each
other to outline regions corresponding to material properties in which this CDP velocity
inversion will be successful to within 5%. If the average reflectivity is approximately
equal to the value for normal incidence or near to zero itself, then one can invert for
velocity in the lower half-space with little error if densities and upper half-space P-wave
velocity are known. Assuming constant density across the interface leads, in some cases,
to a better velocity inversion; in others inversion is less accurate. So, the accuracy of

accounting for density differences is ambiguous.

A compressional wave incident on a solid from a liquid yields, in general, a reflected
P-wave, a transmitted P-wave, and a transmitted S-wave. While discrete PP values
provide little information toward inferring solid properties, an examination of the
relationship between the solid's shear velocity and that pre-critical incident angle that
yields the maximum PP is useful and has possible applications in the field of non-
destructive testing. The ratio of the solid density to the liquid density, appears to have
little bearing on the relationship between the ratio of shear velocity in the solid and
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An elastic wave striking the interface between a solid half-space and a vacuum is a
much easier problem to model than the two previous cases. The vacuum has no density
and cannot propagate any waves. Therefore, wave reflectivity at the boundary depends
only on the ratio of elastic velocities within the solid and the angle which the incident
wave makes with the interface. This simplification yields a functional relationship
between the velocity ratio in the solid and the angle of incidence, if non-converted wave
reflectivity equals zero. This relationship might be useful as a check on sonic log

measurements or as a qualitative measurement of isotropy, homogeneity, or elasticity.

For the three previous cases, solid-solid, liquid/solid, and vacuum/solid, I make
several assumptions. I calculate reflectivity from equations describing elastic wave
propagation and boundary conditions at elastic interfaces and only examine pre-critical
incident angles. Also, amplitudes, and therefore reflectivity coefficients, are measured in
the direction of wave propagation. So, a geophone, situated above the reflector and
measuring a single component of displacement, would have to be corrected according to
which component of displacement, horizontal or vertical, it is measuring. Below the
reflector, the geophone measurement, after the geometric correction, would be the
negative of the value calculated from the equations I use. Another assumption is that all
incident and scattered waves are in a plane perpendicular to the interface and are time-
harmonic dependent. I also examine only homogeneous waves, such that the phase and
energy velocities are equal in direction and magnitude. By relaxing the restrictions on
the wave and interface types by looking at inhomogeneous waves interacting with
viscoelastic interfaces, several differences from elastic theory appear. Seismic velocities
and the quality factor, Q, depend on frequency; phase velocity travels in a different

direction than energy velocity, dependent on incident angle

SOLID-SOLID INTERFACE

At the boundary between two solid half-spaces, a P-wave, in general, yields a
reflected P-wave, a transmitted P-wave, a reflected SV-wave, and a transmitted SV-wave
[Aki and Richards 1980] (Figure 1). This simple two-layer model is analogous to surface
seismic and crosswell survey geometries. Waves are generated at the surface with
receivers placed at different offsets (angles) in the former case; in the latter situation,
shots and receivers are both downhole, and incidence angle changes according to their
vertical locations within the well and the depth of the reflector. These waves'
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shots and receivers are both downhole, and incidence angle changes according to their
vertical locations within the well and the depth of the reflector. These waves'
propagation directions are described by Snell's Law and amplitudes by the Zoeppritz
equations. The reflectivity of this interface is the amplitude of a reflected wave divided
by that of the incident wave. The reflectivity varies according to the angle of incidence
of the wave and the densities and elastic wave velocities of the half-spaces (See
Appendix A). The reflectivity from an incident P-wave reflecting a P-wave is known as
PP.

Incident P | Reflected S Reflected P

a1, B1, P

ap, B2, p2

Transmitted S Transmitted P

Figure 1: Reflection, transmission, and conversion of a P-wave incident on a solid-solid
interface. @, B3, and p are compressional velocity, shear velocity and density,
respectively (c¢; > a9) [Tooley et al. 1965].

Velocity Inversion from PP Reflectivity and CDP Stacking

Much of the velocity inversion performed today is based on common depth point
(CDP) stacking. Shots and receivers are placed at successive intervals along the surface
to record the traces of several waves' bouncing off a single reflector point (Figure 2).
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incidence angle offset

\ 4/\

surface

reflectof - —— — — — — — W ____ . _
CDP point

Figure 2: A surface seismic CDP survey - rays emanate from shots on the surface on the
left and are reflected to receivers at the surface on the right.

Using an NMO correction, individual traces are moved up to equalize the different
pathlengths the waves took to generate them (Figure 3). Traces are then collapsed
horizontally to a point on the surface directly above the CDP in a process known as trace

stacking.

NMO
corrected

asuodsar 1oArsoar

offset

Figure 3: A normal moveout correction adjusts the traces from far offsets according to
the distance the ray traveled that created that trace. In this way, traces from
nonnormal angles of incidence are used to image a reflector point.
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Reflectivity values from nonnormal incident angles are averaged in the stacking
process and used as an approximation for PP at zero incidence. To study the validity of
this approximation, I try to develop relationships between average reflectivity and
‘material properties. Later, I will show that PP reflectivities averaged in this way from
high angles of incidence will not invert correctly for lower layer compressional velocity,
except under certain conditions. Therefore, some of the simple velocity inversion work
practiced today, which does not treat reflectivity at nonnormal incidence in a rigorous

fashion, is imprecise.

Effect on Reflectivity of Varying a Single Variable

In figures to follow I use velocity and density ratios from a synthetic shale/sandstone
contact [Turcotte and Schubert 1982] and from McElroy well logs (West Texas
carbonate) at approximately 2845 ft. depth. These ratios are derived from the following

velocities and densities:

Synthetic (control): shale - density = 2.60 g/cm3 o=4.08 kim/s f=2.45km/s
sand - density =2.42 g/cm3 o=4.12km/s [=2.54 km/s

MCcElroy well logs: upper - density = 2.85 g/cm3 0e=620km/s f=3.55km/s
lower - density = 2.71 g/cm3 =584 km/s F=3.27km/s

0.8

0.6

0.4 e COMET O]
02 McElroy example
PP 0.0 4= ;
o
"\ 3
-0.2 \
N\

-0.4 \

-0.6

-0.8

0 10 20 30 40 50 60 70 80 90

Incidence Angle

Figure 4: PP reflectivity versus angle from the shale overlying sandstone contact and
from an interface within the McElroy field. The control curve does not reach
90 degrees, because a critical angle exists at about 81 degrees for this case.
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In field seismic surveys, reflectivity is often measured as an average over a range of
angles. For surface seismic geometries this range is approximately O to 50 degrees, while
for crosswell it is approximately 20 to 70 degrees. If the average PP does not change
appreciably over a wide range of angles, then one can use the value at higher incidence as
an estimate for PP at normal incidence. Now, at normal incidence the equation for PP is
much less complicated than the general Zoeppritz equation, because there are no
converted waves [Levin 1986]. Assuming constant density, this simplification leads to
an inversion scheme for velocity in the lower half-space, given the velocity in the upper

half-space and the reflectivity at the interface.

Average Reflectivity

Because reflectivity equations are ratios of a scattered ray property to an incident ray
property, they are unitless. Therefore, absolute values for material densities or velocities
are meaningless, while using ratios of these values as inputs to the equations is simpler

and easier to interpret. I name these input ratios as follows:

% p=Br B _P2 )
0y o %1 b1

Using the properties from the synthetic shale/sandstone contact, I vary the separate
velocity and density ratios to examine the individual effect each one has on the PP
reflectivity averaged over a 50 degree window (Figures 5-8). I also examine the average

reflectivity data calculated from the McElroy field logs (Figure 9).
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Figure 5: PP averaged over a 50 degree window, varying only the a ratio. Normal
incidence values are dependent on g and so are shown to the left of the
majority of data points. (shale/sandstone contact: b =.600; ¢ =.623; r = .931)
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Figure 6: PP averaged over a 50 degree window, varying only the r ratio. Normal

incidence values are dependent on r and are shown to the left of the majority
of data points. (shale/sandstone contact: a = 1.010; b = .600; ¢ = .623)

In Figure 5, as the range of angles over which PP is averaged increases, that average
diverges for the different values of a, o9. At the surface seismic end, central incident

angle of 25 degrees, only four values of a, 0.94, 0.97, 1.00, and 1.03, are close enough to
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their respective normal incidence values to be considered candidates for velocity
inversion. At the crosswell end, central incident angle of 45 degrees, only the values
1.00 and 1.03 are near enough.

The opposite effect is seen in Figure 6 as central incident angle increases. Now, the
average PP converges for different density ratios. This effect makes sense since velocity

and density have reciprocal effects in the reflectivity equations.

Both Figures 5 and 6 show that normal incidence reflectivity can change sign even if
the compressional velocity ratio, a, and the density ratio, r , do not cross unity. This
makes sense because the important quantity determining reflectivity is not either of these
values alone, but the impedance, the product of velocity and density. Normal incidence

reflectivity in terms of impedance is:

_La—7a
Zo+7Z1

PP )

If the impedances are replaced by the corresponding velocity and density ratios, then

ar—1

PP = .
ar+1

3

Figures 7 and 8 illustrate changes in average PP due to changing the & and c ratios,
the shear velocity values. In these cases, both graphs diverge toward higher angles, so

velocity inversion for crosswell geometries would be less likely than for surface seismic
ones. However, as b, or By, increases, reflectivity goes up, whereas a similar increase in

B2 causes reflectivity to drop.
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Figure 7: PP averaged over a 50 degree window, varying only the b ratio. Normal

incidence is flat because it is independent of b. (shale/sandstone contact: a =
1.010; ¢ =.623; r=.931)
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Figure 8: PP averaged over a 50 degree window, varying only the ¢ ratio. Normal
incidence is flat because it is independent of ¢ . (shale/sandstone contact: g =

1.010; b =.600; r=.931)

Figure 9 indicates that differences between the McElroy angular average and the
McElroy normal incidence seem much too great (> 50%) for velocity inversion to be
feasible according to this single ratio analysis. However, as will be shown later, McElroy
log numbers do invert very accurately for lower compressional velocity. Accounting for
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density and P-wave velocity differences simultaneously leads to better velocity estimates.
Also, because the absolute values of normal incidence and averaged PP are both near
zero, reflectivity is "damped" in the formula for o).

0020 T T Prp—— L o T —r—
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& -0035
£
3
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g 0040
@
£
~ 0045
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-0.055
0060 2 L L P A PR
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Central Incident Angle

Figure 9: PP averaged over a 50 degree window using ratios from a McElroy log. McE
zero inc. is the McElroy reflectivity at normal incidence.

The individual velocity and density ratios are too coupled within the Zoeppritz
equations, making the interpretation of changing a single ratio meaningless. In fact, the
equation for the calculation of PP involves so many factors that the only meaningful
assumption resulting in a significant simplification is normal incidence. Other
assumptions, such as constant density and Poisson solids, o/ = (3)1/2, are not sufficient

to obtain a simple relationship for velocity ratios as a function of incidence angle.

Using smaller angular windows does not help to constrain the variability of average
PP with respect to angle. In fact, smaller windows yield average PP values that vary
more, because they are smoothed from fewer angles. Larger windows could make
average PP curves slightly flatter, but windows much larger than 50 degrees in the field

are rare, and would not flatten average PP curves significantly anyway.

I also examine PP averages using my control numbers and the McElroy numbers
over different angular ranges from zero degrees (Figure 10). Unfortunately, the
following figure does not indicate that either case exhibits behavior in a regular pattern

that could lead to an inversion scheme.
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Figure 10: PP reflectivity averaged over increasing angular ranges beginning at normal
incidence and ending at the angle indicated on the horizontal axis.

Range from zero

A single variable study of the effect on reflectivity, averaged over a moving 50

degree window or a lengthening window starting at normal incidence, is not very

enlightening. A two or three ratio model is more appropriate to delineate the range of

velocity ratios such that the average angular PP remains within a certain tolerance level

compared to normal incidence reflectivity PP (Figure 11).
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Figure 11: Shaded areas show values of f8;/0;; and o/c; such that the average angular
PP and normal incidence PP differ by less than 5% (crosswell is averaged
from 20 to 70 degrees; surface seismic is averaged from O to 50 degrees).
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Velocity Inversion

Inputting the PP value averaged from higher angles into the formula for reflectivity
perpendicular to the boundary, I can solve for compressional velocity in the lower

medium analytically:

PP(i=00)=p2a2_plal , (4)
P20 + P10y

where i is angle of incidence, can be solved for ¢ if we assume that p;=pj. This

assumption yields:

PP+1
o =-on( 2222 5)

I use two different methods to make envelopes of error in the estimation of or.
First, I directly compare ¢, using the average angular PP in Eqn. (5) to the original
value. The second method is a mathematical construction in which I introduce a small
error into the estimate of PP and deduce the size of the resulting error in & (Appendix
B). The following two error envelopes are designed using two constraints. I assume, as
in Eqn. (5), that r = 1. Also, to simplify the problem to two variables from three, I
assume that (Bj/a]) = (f2/0Q), orc=axb.

0.7

0.6
o  surface seismic

crosswell

05

0.4

0.3

0.2 0.3 04 0.5 0.6 0.7 08 09 1

ofa,

Figure 12: Shaded areas denote values of 8;/c;; and oz/0¢; such that o estimated from
average angular PP and actual og differ by less than 5%.
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Figure 13: Shaded areas denote values of 8;/0; and orp/0y such that error of average
angular PP from normal incidence PP yields a less than 5% error in ag from
the actual value (Appendix B).

Figures 12 and 13 are shaded mostly on the right. This region corresponds to near
equal P-wave velocities. With a7 near 2, acoustic impedance is small for all incident
angles and so reflectivity is as well. Therefore, even if the averaged PP differs from the
normal incidence PP by a large percentage, velocity inversion will still be accurate since
PP is added to and subtracted from unity in Eqn. (5). This obsérvation makes sense
because if compressional velocities are nearly equal, then mathematical interpolation that
relates one P-wave velocity to the other should be more stable than if the velocities were
very different.

The crosswell region on the figures is smaller than the surface seismic region,

because the latter is averaged from angles closer to normal incidence, therefore the

corresponding reflectivities and estimated velocities are more accurate.

Other Reflectivity Types

I focus on PP average reflectivities not only because of their wider use in the field,
but also because other average reflectivities and reflectivity zeroes do not provide a
useful inversion. Although the equation for SH-wave reflectivity,
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g = PP cos 1:2 — P cos J:1 o ©6)
P23 cos jp + 1By cos jy

is much like Eqn. (4), one can not invert for lower half-space shear velocity using
reflectivities from higher angles in the equation for normal incidence. The residuals
between the normal incidence SH and the angular averages of SH are too high to provide

a plausible inversion, and SH is only near zero at normal incidence, which is trivial.

Attempts at linking PP and S V-wave reflectivity zeroes with rock properties were
also fruitless. The number of velocity and density ratios involved in their calculation is
too great to define discrete, meaningful relationships between their values and the

behavior of zeroes.

Simple zero incidence reflectivity/velocity équations, like Eqn. (4), do not exist for
converted waves and SV- to SV-wave reflections. Converted wave reflectivities, PS and
SP, can not be used for inversion in the above manner, because they are always zero
perpendicular to the interface. Little can be learned from the behavior of PS and SP
zeroes, because they depend upon too many variables simultaneously.

DISCUSSION

Because of the interdependency of the input ratios in the Zoeppritz equations,
studying the effect on reflectivity of changing a single ratio is a wasted effort. However,
a multi-variable examination provides some insight toward devising an inversion scheme
from average reflectivity. I can use the two variable velocity inversion method as a self-
consistency check, by solving for o2 and f8; from PP, o7, and f37, and by comparing with

other velocity estimation techniques such as sonic logs or traveltimes.

If T know upper half-space velocities, I can read off a corresponding range of a values
from the error envelope and estimate a range for a2 = @ x ;. I can then solve for o
directly from the PP velocity inversion formula and compare the two methods to see if

the method works for that particular layering scheme.
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A possible application of this method is as an estimate of degree of inhomogeneity,
‘anisotropy, and viscoelasticity. If I have upper half-space velocities that fall within a
small error envelope, I can then make confident estimates of lower half-space velocities,
under the same assumptions from which the original Zoeppritz equations were derived.
The difference between my estimates of o, and 2 and those calculated from a sonic log,
traveltime, or some other means might be able to give me an idea of how much these

assumptions of isotropy, homogeneity, and elasticity are violated in the media.

Figure 12, which shows the velocity ratio regions that yield an inversion within 5% of
the true velocity, demonstrates the importance of shear wave velocity information for
making an inversion at a common depth point. Estimates of o will be often be incorrect

if large offset reflectivity (averaged or discrete angles) is substituted for normal incidence
reflectivity.

Check of Velocity Inversion Error

I use the synthetic layering numbers and McElroy log numbers to check the error in
velocity estimation associated with them. For the synthetic case the estimated PP
averaged from typical crosswell incidence angles results in an o value that is about 5

percent too low, while for the McElroy simulation, the estimated velocity is within 1% of
the original value. These two layering models do not demonstrate serious problems
associated with the use of large offset PP, possibly because o¢; and ¢z are about the
same. From Figure 10, one éan see that for o/ ratios near unity, velocity error is

minimal.

The assumption I make to arrive at Eqn. (5), namely pr=p2, is not normally

appropriate. If density is not constant, then Eqn. (5) becomes
PP+1 '
o, =—ay| 2L (—) %)
Py NPP—1

The density ratio sometimes acts as a correctional factor, as in the synthetic case.
Using the density factor, estimated o2 is only 1% above its true value. Using density,
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though, can lead to problems in other situations. Another two layer model,

approximating a carbonate over a sand, with properties,

upper layer (1) - density =2.80 g/cm3 o=6.20km/s S=3.50 km/s
lower layer (2) - density =2.20 g/cm3 o =4.10km/s S =2.50 km/s

actually works better if densities are assumed to be equal. Using Eqn. (5) to solve for a»

from PP averaged from typic‘al crosswell angles yields a value of 4.09 km/s, an excellent
result. Conversely, if Eqn. (7) is used, the value is 5.21 km/s." Therefore, contrary to
intuition, accounting for the density differential across the interface is not always more

accurate.

There are three cases to consider when trying to-calculate lower compressional
velocity in a system of two flat, elastic layers. If ¢ is approximately equal to as, then,
as I have shown, inversion using P P reflectivity averages is reliable, because
reflectivities are small. If o is less than o, then oz can be solved using the travel times
from head waves through the lower medium. Finally, if ¢  is appreciably greater than
0t2, head waves do not exist so reflectivity analysis would be an option. However, if the
average reflectivity is not near zero or the normal reflectivity value, then caution must be
used to avoid errors when analytically solving for oz.

LIQUID-SOLID INTERFACE

A P-wave incident on a liquid-solid boundary from the liquid will, except at normal
or grazing incidence, yield a reflected P-wave, a transmitted P-wave, and a transmitted S-
wave [Boﬁrbie 1982] (Figure 14). This seismic wave geometry corresponds to marine
surveys in which shots emanate from the water and reflect off the sea floor, or to the non-
destructive testing of a material immersed in a liquid using scanning beams. The
reflectivity varies according to the angle of incidence of the Wavel, the elastic wave

velocities of the materials, and their relative densities (Appendix C).
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Incident P Reflected P

Liquid: a1, p1

Solid: ap, B, p2 Transmitted P

Transmitted S

Figure 14: Reflection, transmission, and conversion of a P-wave incident on a liquid-
solid interface (0 > f2 > ).

Use of Maximum PP

Reflectivity values can indicate, in a non-intrusive manner, some properties of the
solid. Although an examination of individual PP values does not provide much help in
developing a relationship between reflectivity and material properties, maximum PP
values do show promise. Because there are no S-waves in the liquid, the b value, /¢,
is not relevant for this type of interface. Remaining are the ratios that concern density,
02, and B2. Given the o/ values of 2, 4, and 6, the following three figures depict

those points where PP reflectivity is a maximum for pre-critical incident angles.
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Figure 15: Points indicate the P-wave incident angle (on the solid from the liquid) and
the ratio B/arj that yield the highest PP reflectivity. For this case, a/or = 2.
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Figure 16: Points indicate the P-wave incident angle and the ratio By/¢; that yield the
highest PP reflectivity. For this case, o/o; = 4.
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Figure 17: Points indicate the P-wave incident angle and the ratio By/«; that yield the
highest PP reflectivity. For this case, ory/oj = 6.

DISCUSSION

Points corresponding to different densities lie either on top of each other or so
close together that distinguishing them individually is very difficult. Therefore, Figures
15-17 clearly show that r, the ratio of the solid density to the liquid density, has little
bearing on the relationship between fy/cr; and the incident angle which yields the largest
amplitude reflected P-wave. The vertical axis of Bx/0y increases as op/oy increases,
because if o is higher, then 8, which must be less than the product of (.5)1/ 2 and oy for
elastic waves, can be higher. The range of pre-critical angles yielding the maximum
reflection coefficient decreases with increasing op/cy, because the critical angle

decreases sharply.

The relationships illustrated in Figures 15-17 could be useful in determining elastic
properties of solids. From preliminary lab measurements one can find values for liquid
and solid densities and «;. Then, measuring reflected amplitudes from the solid-liquid
interface, that angle which produces maximum reflectivity can be recorded. The critical
angle can be found as well. These angles provide values for By/c;; and o/,
respectively, which, in turn, give values for elastic velocities within the solid. Once these

are known, calculation of elastic constants such as bulk or shear modulus is elementary.
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FREE-SOLID INTERFACE

At the interface between a solid half-space and a vacuum, a P-wave yields, except at
normal incidence, a reflected P-wave and a reflected SV-wave [Aki and Richards 1982]
(Figure 18). This seismic wave geometry usually describes earthquake waves that travel
from the hypocenter to the surface and reflect off it. The free-solid interface is also
applicable to crosswell though. Waves originating in one well bounce at different angles
off the free surface and are detected by receivers in the other well. The reflectivity of the
two scattered waves is their amplitude divided by that of the incident wave. The
reflectivity varies according to the angle of incidence of the wave and the elastic wave
velocities of the solid (Appendix D).

vacuum

o, B, p

Incident P Reflected S Reflected P

Figure 18: Reflection and conversion of a P-wave incident on a free-solid interface
[Ewing ef al. 1957].

Examining the relationship between incidence angle and elastic velocity ratios can
provide more than just the solution to a mathematical curiosity. This relationship could
be used in materials studies and sonde calibration. In particular, those angles where
reflectivity is zero yield information on velocity properties of the solid.

Zero Reflectivity

Because waves cannot transmit through the interface, PP reflectivity is only a
function of the angle i and the quantity B/cc. If PP is equal to zero, which can be
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recognized on seismograms by changes in polarity, then a given incidence angle

determines a solid velocity ratio (Appendix D).
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Figure 19: If PP = 0, then for a known angle of incidence, a corresponding velocity ratio
of the solid can be found. The minimum of the scatter plot is at about 69
degrees, (J/0)=.565.

DISCUSSION

Figure 19 also describes the relationship between i and S/« for incident/reflected SV-
waves [Aki and Richards 1982]. Reflectivities for converted waves, PS and SP, equal
zero only at normal incidence and grazing incidence (i = 90 degrees). SH-wave
reflectivity is also not a useful quantity; no wave conversions or transmissions take place
so reflectivity should be independent of solid properties. Previously, I did not examine
reflectivity zeroes for the solid/solid or liquid/solid cases as I did here, because the
number of interdependent velocity and density ratios made finding a relationship such as
Eqn. (D3) prohibitive.

A few applications of the i to /o relationship might exist. Although this section
concerns waves incident on the interface from within the solid, if a conjugate relationship
exists for those impinging from the other side, then that function could provide a means
of non-destructive testing using transducers at the interface. Figure 19 might also have
applicability as a check on sonic log measurements. Finally, since the reflectivity

equations used in this study assume isotropy, homogeneity, and a flat, elastic interface,
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measured residuals from predicted /o values indicate qualitatively the degree to which

those assumptions have failed.

ANELASTICITY

If the materials through which the incident and scattered waves propagate are
modeled as anelastic instead of elastic, much of the physics is altered, which affects
calculations of reflectivity. Borcherdt (1982) examined the interactions of waves in
linear viscoelastic media, at anelastic interfaces. There are a few similarities with the
elastic cases, and several differences. As in the elastic case, P-waves only convert to SV-
waves and vice versa as long as the waves are all in the same plane perpendicular to the
interface; also, homogeneous waves incident at pre-critical angles will reflect
homogeneous waves at the same angle [Borcherdt 1986]. However, Borcherdt (1986)
found that transmitted waves will be inhomogeneous for all incident angles, pre- and
post-critical, except normal incidence (Figure 20). Intrinsic absorption at a viscoelastic

interface causes several other effects not predicted by elasticity theory:

i) phase velocity, indicated by the propagation vector, and energy velocity,
indicated by the attenuation vector, propagate with different speeds and
directions (Figure 20);

ii) o, B, and the quality factor, Q, which is a measure of attenuation, are all
frequency dependent;

iii) phase velocity is dependent on travel path and therefore on incident
angle;

1v) energy is transmitted to the lower half-space at post-critical angles due to
the interaction of the incident and reflected wavefields and the decrease in
the amount of energy transmission is not as abrupt as for the elastic case
[Borcherdt 1982,1986].
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Incident Homogeneous Wave Reflected Homogeneous Wave

Q

Q2 <Q1

———P  Propagation Vector | Transmitted Inhomogeneous Wave
——> Attenuation Vector |

Figure 20: Reflection and transmission of a homogeneous plane wave on an interface
between two viscoelastic solids. The propagation vector is perpendicular to
planes of constant phase. The attenuation vector is perpendicular to planes
of constant amplitude. (Bourbie 1982).

Another effect of anelasticity is particular to a wave within a viscoelastic solid
striking a free-surface. Borcherdt (1982) shows that unless Qg = Qp. an incident P-wave
will never have a zero reflection coefficient, making the use of Fig.19 problematical.
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APPENDIX A
PP Reflectivity from an Elastic Solid/Solid Interface (Aki and Richards 1982)

The reflection coefficients I use are in terms of displacement amplitudes rather than
energy. Displacement amplitude is measured positive in the direction of wave
propagation. Seismic receivers generally measure signal only in one direction, vertical or
horizontal, but the measured amplitudes can easily be corrected by multiplying by a sine

or cosine depending on which component is desired.

Assuming the four possible incident waves, P and S from above and below, and the
four scattered waves, the waves' displacement amplitudes are combined with the interface
boundary conditions giving a set of four coupled equations. Incident wave displacement
amplitudes are °R, ', P, and ;. Scattered wave displacement amplitudes are Py, S/,
"By, and 5. The boundary conditions are continuity of displacement and traction in both

the parallel and perpendicular directions. The coupled equations are
siniy (B + P[)+cos jy (§ + 87) =siniy (B, + P§ ) +cos j, ('S +53),

cosiy (‘R — P{)—sin jy (\§ — Sf) = cosi, (B, — P} ) —sin (S, - S3),
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21t peosis (R — Pf)+pifBy(1- 27 p*)(S - 57)
=2p,Bipcosiy(By - P3)+pafs(1- 28507 )(S - 53).

P1051(1 - 2,312172)(\131 + P{) = 2p, i peos i (S + ;)
= P20y (1-2B3 0% (B + P3) - 2poB3peosjp (S +55),  (AD)

siniy _ sini, _sinj;

sin j . .
2 , the ray parameter. This is also a mathematical
| 0 B 2

equation describing Snell's Law.

where p=

Putting scattered waves on the left and incident waves on the right, we obtain

P R
S/ y
M T=N S . (A2)
L) )
S A

PP’ 'SP’ PP S'P’
, . 4 PS” SST P'ST S8
The complete scattering matrix becomes M~ N =| _ . ~. | (A3)
PP 'SP PP S'P
PS SS PSS S°S

We are only concerned with the top left term:

(BCOSII _CCOS12 )F_(A_'_DCOSll COS]szpz
PP’ o &7} )

> (A4)
EF+GHp

where

A= po1-2B:"p%) - pi(1-2B:%p?),
B =po(1-262"p% )+ 20",
C=p(1-28p* )+ 2027,

D =2(p2f2” - pif’),

cosi1 COosi2
E=B +C ,
o o2

cos j1 CoS j2

F=B—J 4

B B>
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G=A_Dcosn cosp,
on ,32
H=A_DCOSIZ COSJI,
o2 B
APPENDIX B

Solving for Error Limitation of ¢ from Error of PP

If the two solid half-spaces have equal density, then for normal incidence,

a2=—a1(PP+1j. B1)

PP-1

With error in angularly averaged PP from normal incidence PP, this becomes

PP+A+1
Oy =—0y| ———— |. B2
2 1(PP+A—1) (2

Rearranging,

1
E|—~PP
A _ (PP )

PP E(PP+1)+2 ®3)

equals the percentage error of PP, where E is the percent allowable error of ot.

Now if E << ,
PP+1

A _ E(1-pP) -
PP 2PP B9

which is the expression I used to construct Figure 11.

APPENDIX C

PP Reflectivity from an Elastic Liquid/Solid Interface (Bourbie. 1982)

Starting with P- and S-wave potentials for incident and scattered waves,
@; = A, exp|iky, (xsing +zcosi )~ ia)t]
@, = A, exp|ikg, (xsiniy — zcosi;) - ia|

D, = A, exp-ika2 (xsini, +zcosi, ) — ia)t]

W, = B,exp -ikﬂz (xsin j, +zcos j; ) — ia)z‘], (C1

k =

Vv

(0]
1%

b

H-26
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and combining with boundary conditions of displacement,

W, =, (C2)
and stress,

O, =

O-IZZ = O-ZZZ' (C3)

yields the expression for PP reflectivity from an incident P-wave on a liquid-solid
interface:

3

. . 2.\2 4B L o, . . .

o, cosii< (1—2sin —2 in% i, cOSiy COS j, + — P10t COSE

P20 cosiy|1—28in" j, | +—5 1 COS 1) COS Jp ¢ — P10 COSTy
PP ato,

T . (C4)
P06, COS il{(l —2sin? i2) + azozc sin’ I] COSiy cosjz} + P10 cosiy
12

APPENDIX D
Derivation of Incidence Angle/Velocity Ratio Relationship for a Vacuum/Solid Interface

The boundary conditions for the free surface/solid interface are discontinuity of both
displacement and traction. Also, no waves can propagate in the vacuum, and, of course,
the vacuum has no density. Combining these conditions with the wave potentials,

Wy 9V _,
ox oz

Wy, _dy,

X __TZ (), D1
0z ox (DD

reflectivity can be solved for in terms of the amplitude of the reflected wave divided by
the amplitude of the incident wave.

2 . .
_(L B 2p2] + 4p2 COSi COS j
o
PP =

B B i oo
3 ,(Aki & Richards p.140) (D2)
1 2 2 COSI COS J
H—-2 +4p°——m—=
(ﬁz ”] * o B
sini sinj '
where p=——=——, D3
p Vo Vs (D3)
If PP is set to zero then the following relationship results:
b8+( ,‘1,—1)b6+(%)b4+( __'f )b2+( ! 6,):o, (D4)
sin” i sin” i sin” i 16sin” i

where b = ﬁ
o
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THE MOMENT METHOD UTILIZING
GREEN'S FUNCTIONS OF STRATIFIED MEDIA:
- SCATTERING SIMULATIONS

Guan Y. Wang
ABSTRACT

An efficient numerical solution to the two-dimensional scattering problem is
achieved by decomposing the original 2-D problem into a layered medium and relatively
small scatterers embedded in it. The moment method is applied to solve the scattering
from the small scatterers with the Green's function of a layered medium. The layered
Green's function is calculated with Fourier transforms. The computational examples
show that the proposed method is more efficient than that of directly applying the

moment method, especially when large scale problems are involved.
INTRODUCTION

Many imaging problems are carried out in the frequency domain and often require
intensive forward modeling computation. Thus, there is a need to be able to efficiently
calculate the wave field directly in the frequency domain. Furthermore, for large spatial
scale problems, the costs of the finite difference methods increase dramatically, so that it
is limited in many real applications. Two-dimensional scattering from inhomogeneous
bodies in an unbound uniform medium has been studied extensively with the moment
method (Richmod, 1965). However, the method is effective only for small scatters and
uniform host medium. The objective of this paper is to develop an efficient numerical
solution to the 2-D scattering problem for the scatters embedded in a layered background
medium. We calculate layered Green's function first and then apply it to the moment
method. The efficiency is achieved by only discretizing the scatters embedded in the
layered background.

The paper is organized into three sections. In the first section, the approach of the
analysis is outlined in terms of the supposition principle. Section two is a brief review of

the moment method. Section three is an analysis of the computation of the Green's
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function for layered medium. Finally, we employ the layered Green's function in the
moment method to show the effectiveness of the proposed method. In the end of each of
the sections, we show some numerical examples to ensure that the implementation of the
algorithm is valid.

THE APPROACH OF THE ANALYSIS

For reservoir imaging problems, the low spatial frequency components can often
be obtained via prior geological information, or traveltime tomography or other means as

indicated in Figure 1.

D oo D o
\
(a) (b) (c)

Fig. 1 For a common reservoir imaging problem, the velocity structure illustrated
in (), can be decomposed into low components (b) and high spatial frequency
components (c).

In order to image high frequency components, it is necessary to be able to
efficiently calculate the wave field of the slowly varying background. Since the
background variation is relatively simple, in many practical situations, it can be described
by stratified structure with some additional local features, as shown in Figure 2.
Therefore, the problem can be analyzed separately as a layered medium with small

scatterers embedded in it.

\ I

(a) (b) (c)

Fig. 2 A 2-D structure (a) can be separate as a 1-D
background and a relatively small and isolated 2-D body.
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For a two-dimensional scalar Homholtz equation

2 2

{—+%+k2(x,z)}u=—5(x—x' V6(z—172'), (D

the corresponding integral equation can be written as

u(s,g) =u'(s,8) - | w(r . f(r)G (g1 )d’r', @

where G°(g,r') is the Green's function for a uniform background, and f(r') is the

scattering potential relative to that background. The same problem can also written as
u(s,g)=u'(s,8)~ [ u(r ,5)e(r)G' (g, )d’r', 3)

where G'(g,r') is the Green's function for layered background medium. The function
e(r') is the scattering potential relative to the layered background. For most realistic
situations, the distribution of the function e(r’) is more isolated and weaker than that of
f(r'). Consequently, solving equation (3) with the moment method is much easier than
solving equation (2), since a relatively small area needs to be discretized. However, we
have to solve following differential equation in order to obtain the Green's function for

the layered background:

2 2

{—+—+k2( NG =-8(x—x)8(z—72). 4)

Fortunately, we can almost solve the above equations analytically with the Fourier

transform. We will discuss this in more detail in the following sections.
THE MOMENT METHOD

The moment method is often applied in the calculation of the scattered field from
a two dimensional inhomogeneity (Bath, 1982, Chew, 1990). The scattered field is

described by following equation:

u(ry= u — j u(r Ye(r' YG(r,r )dzr‘ . ®))
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The method is straightforward and efficient when the size of the scatterer is small. The
relatively small and isolated region we separated from the layered background is divided
into N square cells. Then, the scattering potential and wave field are represented as a

summation of basis functions over the N cells, i.e.,

e(r)= e(r)b,(r)
j.k

u(r) = z aub,(r)

Fig. 3. Scattering potential is divided
up into N square cells

where b, (r) is the basis function, e(r; ) and a, represent the coefficients describing the

scattering potential and wave field over the basis function. We choose the same pulse

basis function bji(r) to discretize equation (5), where

b 1 resy
(=10 res; .

Applying the point-matching procedure, equation (5) can be written as a linear algebraic

system

s+, 8UJn ki) f(ry ity = G(ry), 6)

where g(j,k,i,m)= j G(r;)d’r.

We implemented the above algorithm for the homogeneous background. With the
model shown in Figure 4, the scattered and total field both in the time and frequency
domains are calculated. Similar to finite difference method, the dimension of the cell is
chosen approximately as one tenth wavelength at the lowest velocity in the calculations.
The results are displayed in Figure 5 and 6 and it is obvious that the forward scattering is

stronger in the forward direction, as expected.
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Fig. 4. (a) Forward scattering model for computation with moment method.
(b) The amplitude of the calculated scattered field (Frequency= 400Hz).
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Fig. 5 Forward scattering modeling with moment method.
Total field time signal with a source at the depth of 250m.
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Fig. 6 Forward scattering modeling with moment method.
Time domain scattered field which is stronger in forward direction.

GREEN'S FUNCTIONS FOR THE LAYERED MEDIUM
We calculate the Green's function of the stratified medium through the Fourier

transform (Brekhovskikh, 1982). Since the medium is 1-D, we take the Fourier transform

of the Holmbholtz equation (4) along the horizontal direction and obtain
(N

2

oz
where & is horizontal wave number. The solution of this equation G(&,z,7') is the one-
dimensional Green's function and satisfies appropriate boundary conditions. Recall that

G(¢,z,7) is continuous everywhere in the interval of definition and dG/dz is

~+k%(2) - EX1G(€,2,2 ) =-8(z— 2 )™,

continuous everywhere in the interval except at z=z'. At the source depth z',

7'+e

}al_r)réz'_[f(z—z Ydz =1,

7'+

and lim j Y2 ()U(,2,2 )dz =0,
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which is true, if ¥(z) and G(&,z,7') are continuous. Here, ¥(z) is vertical wave number.
From the above analysis, we can see that the delta function creates an artificial layer or

interface for our problem. The eigen-equation of equation (7) is
82
[57+ Y (@)ly=0. ®)
<

The solution to equation (7) can be constructed with two linearly independent solutions of

the eigen equation (8), i.e.,

a <z \
G={ v, Z z'
by, z21

Fig. 7 at the source depth the derivative
of the Green's function is discontinuous

With the constrains of the conditions discussed above, we have
ay,(z ) =by,(z)
and at//‘l(z')—bl,u'z(z')=—eik*x'.

Therefore, the unknown coefficients a and b can be solved. Notice that the solutions
and sy are for arbitrary stratified medium. For a layered medium, Y1 and 7 are plane

waves in each layer, i.e.,

Ae-i71(z—11)

iy2(z—21) —iy, (z-7')
Be + Fe
Eet'Yz(z—z‘) + Ce-l’}’z(z—Zz)

De—iyz (z—z3)

(8)

The conditions at interface are:
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i. The wave field is continuous.
ii. The derivative of the wave field is continuous (for constant density).
iii. The wave field at the source depth is continuous.

iv. The derivative of the wave field across the source depth is discontinuous.
* A
F
—_ = - — — 7' (source)

s Vo
v 2

4\

Fig. 8, In each layer the solution to the eigen-equation
is a plane wave. Source depths are treated as artificial interfaces.

With these conditions we can solve for the unknown coefficients of the plane waves in
each layer. The Green's function of the layered medium is obtained by taking the inverse
Fourier transform of G(&,z,7').

The computation of the Sommerfeld-type integral encountered in the spectral
representation of Green's function has a well-known difficulty of their numerical
evaluation, namely the oscillatory behavior of the integrand due to the function et
and the presence of singularities contributed by G(&,z,z'). These include poles and

branch points that result from the dispersion relation
2
2 _ O 2
v =—F-¢.
12

It is possible to leave the pole out and take the Cauchy principle value, a common
procedure for dealing with improper integrals. However, there is no need to proceed in
this way, because all propagating wave systems are naturally dampened and any amount
of dampening takes the poles and moves it off the real axis. The integral then becomes
proper and can be evaluated without ambiguity. After including a small amount of

attenuation, the dispersion relation becomes

» (o+ig)

(G HiE) ©)
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From Im 7y =0 we have
vy, =285 + 23‘)22 =0.
Therefore, the curves on which the branch points lie are
§,§i=sv—“j>0, (10)

as shown in Figure (10). Since z is positive, we can not have Im7y <0 on the physical
sheet of the complex function e, since that would lead to an exponential solution which

is unnatural.

0]
—(—+ie)

Fig. 9, Branch cut and branch points

We implemented the above algorithm of Green's function for layered medium.
The results are shown in Figures 10, and 11. In figure 10 (b) the pattern of the frequency
response agrees with those results calculated using the finite difference method. The
reflection and transmission events in the figure 11 are consistent with those of events
from theoretical analysis. With the verification of Green's function for layered
background we are ready to apply the solution obtained using the Green’s function, to the

moment method to compute the scattering form 2-D structures.
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320
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Fig. 10. (a) Three layer model. (b) The amplitude of the frequency response of the
calculated Green's function (Frequency=400 Hz).
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Fig. 11. The time domain Green's function of three layer model.
The reflection and transmission are consistent with theoretical analysis.
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SAMPLE RESULTS OF SCATTERING FROM 2-D STRUCTURE

On inserting the proper representation for G{(r,r') into equation (6), which is
rewritten here as

Uik +Z g Uik, i,m) f(r,, ), = Gl(rjk)a

where g'(j,k,i,m)= j G'(ry)d’r, and G'(r,) is Green's function for layered
background, we can calculate the scattering field from a 2d model as indicated in Figure
12 (a). The amplitude of the frequency response with the sample model is shown in

Figure 12 (b) and the corresponding scattered field in the time domain is shown in Figure
13.

0 receiver (m) 390
) °
o °
. . 1 E
Q
° ° ‘E’
(@]
) ° , 2
[ ® 2
o 3 ° 320
(@) (b)

Fig. 12 (a) 2-D model forward scattering model, v1=4000, v2=3000
v3=3500 and v=3600 (m/s). (b) The amplitude of the frequency
response at frequency=500 Hz
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I-12
Moment method with layered Green's function
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Fig. 13 Scattered field from the model in figure 12 using the
moment method with layered Green's function.

CONCLUSIONS

With the layered Green's function, the calculations using the moment of method
become much more efficient in some situations, because only relatively small scatterers
needed to be discretized. The layered Green's function can be calculated with a Fourier

transform technique. This forward scattering calculation provides a useful tool for
migration or inversion in the frequency domain.
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REFLECTION IMAGING USING
RICCATI EQUATIONS

Guan Y. Wang
ABSTRACT

In investigating wave propagation in a stratified medium, the concept of reflection
and transmission play important roles and often lead to a simplified and intuitive picture of
wave propagation in inhomogeneous media. When we image properties of the medium,
rather than calculating the wave field, using equations governing reflection function instead
of the wave equation may have certain computational advantages. We derive the Riccati
equations of an arbitrary incident angle directly from physical equations. By applying the
single reflection approximation to the integral representation of the Riccati equations, we
are able to reconstruct reflection coefficient profiles with Fourier transform techniques. We
also derived a recursive relation with which we can map the reconstructed reflection

coefficient profile onto a velocity profile.
INTRODUCTION

For the scalar field produced by a time harmonic point source in a stratified

inhomogeneous medium, the reduced wave equation can be written as

Ap+k*(2)p=—8(z—12,)8(r) | 2mr (1)

If we consider a finite volume of the medium, we shall obtain the exact solution by three
well known methods, which lead to three different representations of p. These are the
method of normal modes, the method of Hankel transform, and the method of multiple
scatterihg. These representations can be transformed into one another by using contour
integration and residual evaluation, the binomial expansion and Poisson summation formula
(Keller, 1977, Brekhovskikh, 1982). However, these representation are very complicated
and are inconvenient for inverse problems. We know that when a plane wave falls on a

boundary between two media of different properties, it is split into a transmitted wave
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proceeding into second medium and a reflected wave propagated back into the first medium.
Very often we do not seek the field itself in the medium but some other characteristic
quantity, such as the reflection coefficient. Therefore, instead of using the reduced wave
equation, it may have some computational advantages to directly use original physical
equations. These coupled first order differential equations can be combined to Riccati
equations which are first order but often nonlinear differential equations. In the following
sections we first derive the Riccati equations for an arbitrary incident angle and their integral
representations, and then apply single reflection approximation to the integral representation
to reconstruct the reflection coefficient profile with Fourier transform techniques. We also
discussed upgoing and downgoing waves separation and the mapping from the reflection

coefficient profile to the velocity profile.

RICCATI EQUATIONS OF ARBITRARY INCIDENT ANGLE

Consider that waves propagate in the region zg < z < L characterized by a wave
number which is positive and varying continuously with z. Let this region extend from z to
- oo with a constant value kp , and from L to « with another constant value k; for the wave

number as shown in Figure 1.

Fig.1. Wave number profile of inhomogeneous layer

Starting from the continuity equation and Euler equation:

§£+c2V-v=O, 2)
ot
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o
and Z+c*Vp=0, 3
ot cvp )

the following wave equations in the different regions can be derived as

(A+k*(2))p=0, 79<z<L
(A+k3)p=0, z< 20
and (A+k)p=0. z>L

We know the solution to these wave equations corresponding to reflected and transmitted
waves. However, instead of the wave equation, we like to arrive at the differential equations
governing reflection function or transmission function directly from equation (2) and (3).
We will see later this may result in certain computational advantages.

Assume the solution to above wave equation consists of upgoing and downgoing

waves, then the pressure field and velocity field can be written as

p(x,2) = [u(z) +d(2)le”, ()
and v,(x,2)= E(wz—)[—u(z) +d(2)]e”, (5)

where u(z) and d(z) represent upgoing and downgoing waves. The factor e " is omitted.
Notice that the expression (5) is true only under the condition of (k(z))' << 1 which implies

the weak reflection of the medium (Harris, 1994). Let % =—i®, then equations (2) and

(3) become

2
w2 _B@ 2"
oz 0]
and P _ iov,(x,2). (3%)
0z

From equation (2’) and (3’) we arrive at
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—u'+d' = iﬁ(u+d)—%(—u+d), (6)

and
U +d =if(-u+d). (7

Add equation (6) to equation (7) we obtain

g B
d =ifd 2[3( u+d). (8)

Subtracting equation (6) from equation (7) results in

gy B
U= zﬁu+2ﬁ( u+d). 9)

By multiplying u to equation (8) and d to equation (9), we obtain

du' = —ifud + f—[;(—ud +d%), (10)
and  wud =ifud - ﬂ(—u2 +ud). (11)
2B

Subtracting equation (10) from (11) we have

av —ud _ . B a2, n
Fo 21ﬁu/d+2ﬂ(1 u*1d%),
or
R (2) = 2iB(2)R(2) + (2)(1 - R*(2)), (12)

where R(z)=u(z)/d(z) is defined as reflection function, the vertical wave number

B =k(z)cosO(z) and the reflection coefficient over a fine layer or an effective interface
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Y= ﬂ Equation (12) is called Riccati equation governing reflection function which is a

2p

first order but nonlinear differential equation.

INTEGRAL REPRESENTATION OF REFLECTION FUNCTION

By noticeing that exp(2i j B(z')d7') is an integrating factor for Riccati equation (12),

Zo

the Riccati equation can be solved as the following:

diz[R(z)exp(zi | Bz ydz 1= 7(1- R*)exp(2i [ B(2 )dz) (12

2y 20

where zgis a arbitrary reference point. With boundary condition R(z) - 0 as z — o, and
integrating equation (12') from z to infinity, we obtain the integral representation of the

reflection function

—~R(z)exp(2i [ B(z)dz) = [ y(1- k*(2))exp(2i | B(2 )z Mz

Let ¢(z) = 2_[ B(z')dz . The above representation is simplified as

2o

oo

R@)e®? =~ 1(2)1- R (2))e*Vdz. (13)

Z

From the integral representation (13) we can see the physical significance of
reflection function R(z)e”®. It represents the ratio between complex amplitude of up and

down waves and the phase variation due to propagation. At an effective interface, or over a
fine layer, the reflection function degenerates to the form of the conventional reflection

coefficient for a single interface, that is

_e_i‘P(Z) | y(Z)e"p(Z)dZ — _e"iq’(l) n+l —ﬁn . (14)
;[ ﬁn+1 + ﬂn
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Note that the equation (13) is for the half space problem by which we mean that the
incident field is illuminated at the top of the inhomogeneous layer as shown in figure 1. For
the incident wave inside the layer, i.e. "the whole space problem", we can denote the

reflection function results from contributions above and below the receiver depth as

R+(Zg )ei(P(Z:ng) = __J. ,y(zl )(1 _ RZ’(ZI ))ei(/J(Z',Z:)dz (15)
_R_ (Zg )ei‘P(Zng) —_ J. ,}/(Zl )(1 _ RZ(Zl ))eiqa(z‘,z,.)dz (16)

X 1,

Fig. 2. Incident depth and receiver depth

For a given incident depth zg and receiver depth zg, see figure 2, equation (15) and (16) can

be combined into one equation which is

R(Zg)eiq?(zs,zg) - I '}/(Zl )(1 _ RZ(Z))eiip(z',z,)dZ ) (17)

where we have used the same notation of "half space " for that of "whole space" without

confusion.
UP AND DOWN WAVE SEPARATION

In order to get separated upgoing and downgoing waves from recorded data, we
assume that all sources lies in the region x < 0 and that the medium is homogeneous for
x>0 (Devaney, 1986), the wave field can be expressed as a superposition of up and down

plane waves
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p(x,z,t) = Zyl.r_z Idw jdkz [U(kz, a))ei(k-r—wt) + D(kz, a))e—i(k-rﬂot)], (18)

receiver array

source

Z

Fig. 3. Geometry of upgoing and downgoing wave separation.

The receiver array lies along the z-axis

where the wave vector k =k X +kZ=+/(®/ v): — kz2 x+kZ. Equation (18) expressed the
wave field as a spectrum of up and down plane waves in the right half space. Amplitudes of
U and D components in equation (13) can be determined from the total field recorded by

the array p(x=0,z,t). To show this we take the Fourier transform of p in z and t at x=0

U(k,,»)+ D(k,,0) = sz ]:dtp(x =0,2,1) (19)

Similarly, we take the Fourier transform of derivative of p in z direction:

ik, [U(k,, @)~ D(k,.@)] = [de | g Px=0.20
e Jz

—oca

(20)

From equation (19) and (20) we can solve for the spectrum U and D. The reflection

function is then expressed as the ratio between the upgoing wave and downgoing wave:

ik-r—ior
Ue _ geZikzz

ip(z) _
R@)e™" = =

21)
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REFLECTION IMAGING WITH
SINGLE REFLECTION APPROXIMATION

Considering the phase factor in equation (17) consists of two parts, one is linear and

the other is nonlinear, i.e.
o7 ,z,) =B +B"(2)lz

where [3' is the constant vertical wave number and 3"(z') is space variant local vertical wave

number which can be considered as the cause of phase modulation in wave propagating in
the medium. By neglecting R%(z) in the integrand of equation (17), i.e. only single

reflection is taken into account, we have
R(,B' ) - _ J. Y(Z' )ei[ﬁ' +ﬂ"(Z')]Z'dZ| , (22)

where R(B') = R(z, )e? % Since the wave number in equation (22) is spatially variant we
call R(ﬁ' ) the modified spectrum of y(z'). In order to evaluate the function ¥(z') by the

Fourier transform we look at the d.c. component of the spectrum
RO)==[y(z)e" " dz . (23)

If we multiply the complex conjugate of equation (23) to (22) we have
R(BHR(0) = [ y(x)e ™ dx [ y(y)e™* P dy. (24)

Under the condition that the y(z') is localized, i.e. the autocorrelation length of the 7y

function is small. Therefore equation (24) is reduced to

R(B)R(0)=—L TN(x)eip"‘dx, | (25)

—o00
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where N(x)= y(x)y(x), and L is the length of integration. From equation (25) we can see
that R(k;)ii*(O) is proportional to spectrum of N(x). N(x) can be found by taking the

inverse Fourier transform of R(')R"(0).

VELOCITY RECOVERY FROM REFLECTION COEFFICIENTS

In the above section, we found the reflection coefficient y which is a function both

velocity and propagation angle, i.e.

_B®@ 26
v(2) 2B)’ (26)

where f(z) = k(z)cos6(z). The velocity can be found by using equation (26) together with

Snell's law. Integrating equation (26) over a layer, we have

B(z+Az) dﬁ _ 2+A7

— = | 27(2)dz,
B(z) ﬁ ‘!.
or
ﬂ(Z +A7) = ﬁ(z)eZ[y(HAz)—r(z)].
Therefore
Dz + Ag) = =8 0(z + Az) p(g)e? =T, @
cos0(z)
Apply Snell's law
Wz +ag) = SOCTED ) (28)
sin 6(z)

to equation (27) we obtain the following recursive relation to recovery velocity

W(z+ Az) = v(z) [ /747 cos? G(z7) + sin’ 6(z) . (29)
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CONCLUSIONS

Directly from physical equations such as the continuity equation and Euler's
equation we derived Riccati equation governing the reflection function and its integral
representation for an arbitrary incident angle. With the reflection function and its integral
representation to perform imaging has advantages over with wave equation. Because by
using reflection function we can avoid to use the scattered field, as we did when we used the

wave equation, which is difficult to obtain in practice.
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CALCULATION OF DIRECT ARRIVAL
TRAVELTIMES BY THE EIKONAL EQUATION

Le-Wei Mo

ABSTRACT

We present a traveltime calculation scheme based on the eikonal equation that calculates
the traveltimes of direct arrivals from a point source. In typical earth models, critical
refractions, diffractions and reflections are weak. Most of the energy radiated by the source
is contained in the direct arrivals. Direct arrivals are thus generally the most energetic events
in a time evolving wavefield. Our scheme successfully computes the traveltimes of direct

arrivals and is computationally efficient. The method is presented in two dimensions.
INTRODUCTION

Wave propagation in medium, in high frequency asymptotics, can be described by the
WKBIJ Green function, which consists of traveltimes and amplitudes. The traveltimes
satisfy the eikonal equation that relates the gradient of the traveltimes to slowness of the
model. The amplitudes satisfy the transport equations. In this paper, we will address the
problem of solving the eikonal equation for direct arrival traveltimes. One method of
solving the eikonal equation is the method of characteristics (Cerveny et al., 1977; Zauderer,
1989). The ray equations are derived from the eikonal equation, whose solutions are
raypaths or the characteristic curves of the eikonal equation. Because the raypaths are local,
wave propagation along rays is thus intuitive and easy to understand. This explains why the
application of ray tracing is so popular and well published. However, ray tracing has its
limitations and disadvantages as pointed out by some authors (Vidale, 1988). Seismic depth
migration, and many other applications require traveltimes on a uniform grid. If these
traveltimes are computed by ray tracing, computation cost is immense (Zhang, 1993). We
would rather solve the eikonal equation directly for traveltimes on a uniform grid.

Reshef and Kosloff (1986) first formulated finite-difference scheme to solve the eikonal
equation for traveltimes on a uniform grid by extrapolating the depth gradient of traveltimes.
Vidale (1988, 1990) formulated a finite-difference scheme in Cartesian coordinates that
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solves the eikonal equation progressing outward from an "expanding square" for
traveltimes of first arriving waves from a point source. His scheme can quickly fill in
traveltimes in a uniform grid, and is by far the fastest method of computing traveltime.
However, Vidale's scheme encounters stability problems, e.g., calculating the square root of
a negative number. Qin et al. (1992) propose an alternate of Vidale's scheme, i.e.,
progressing outward from an "expanding wavefront." Qin et al.'s scheme solves some of the
stability problems of Vidale's algorithm. But searching for the global minimum to start
computation at each step makes their scheme very computation costly. Podvin and Lecomte
(1991) dissect wave propagation in a cell into all possible modes of transmission, diffraction
and head waves, resulting in a stable scheme of traveltime calculation. In their parallel
implementation of traveltime calculation, each grid point of a velocity model is associated
with a processor. All the processors simultaneously update the traveltimes at the associated
grid point. However, traveltime calculation is a bad candidate for parallel computation. The
parallel implementation does not effectively use computational power because, during the
computation, most of the processors away from the wavefront perform useless operations.
Van Trier and Symes (1991) and Zhang (1993) formulated traveltime calculation in polar
coordinates by extrapolating the gradients of traveltimes. In their schemes, traveltime
computation has the contradiction of dense sampling near the source and coarse sampling
far away from the source. And mapping the slowness and traveltime fields to and from
polar coordinates gives additional cost to their schemes. As a matter of fact, efficiency of a
traveltime computation scheme also depends on the computer architecture. But Vidale's
scheme requires the least number of algebraic operations.

The common shortcoming of the above finite-difference traveltime calculation schemes
is that they all explicitly or implicitly calculate traveltime of first arriving waves, which may
carry little energy and are quite weak, e.g., head waves and diffractions. In this paper, we
propose a traveltime calculation scheme that aims at calculating the traveltimes of direct
arrivals from a point source. In typical earth models, diffraction and reflection effects are
weak. Most of the energy radiated by the source is contained in the direct arrivals. Direct
arrivals are thus generally the most energetic events in a time evolving wavefield. First, we
analyze why we prefer direct arrival traveltimes to first arriving traveltimes in tomography
and migration imaging. Then we present our scheme of calculating direct arrival traveltimes.
Finally, we show several numerical examples of calculating direct arrival traveltimes. Our
scheme successfully computes the traveltimes of direct arrivals and is computationally

efficient. The method is presented in two dimensions.
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WHY DIRECT ARRIVAL TRAVELTIMES

Figure 1(b) shows the snapshot wavefield at 0.16 seconds of a two layer velocity model
of Figure 1(a). The wavefield is simulated by the finite-difference solution to the scalar
wave equation. The source is at the upper left corner. The source wavelet is the first
derivative of the Gaussian function. For this model, head wave is generated and part of its
travel path is the boundary separating the slow and the fast medium. The head wave is a
boundary wave, and carries very little energy. Figure 1(c) is the common shot gather or
history wavefield of receivers at the right edge of Figure 1(b). From Figure 1(b) and (c), we
see that the first arrival - head wave, travels ahead of the direct arrival and is much weaker
than the direct arrival. If the traveltimes of the head wave in the slow medium were used for
transmission traveltime tomography, the slow velocity medium would be inverted as an
erroneous high velocity medium. And reflections that are used by migration to image
velocity discontinuities are not generated by the first arrival head wave. Thus traveltimes of
the first arrival - head wave, are not suited for transmission traveltime tomography and
migration imaging. Instead, traveltimes of direct arrivals should be used. Overlay on Figure
1(b) and (c) are the direct arrival traveltimes computed by our finite-difference scheme of
solving the eikonal equation. The direct arrival traveltimes closely match the first breaks of
the direct arrivals computed by finite-difference wave equation modeling.

RAY TRACING

Figure 2 is a two layer velocity model. The lower medium has higher velocity. By ray
tracing, the incidence ray at point C is in critical incidence and generates a creeping ray
along the boundary. The incidence rays to the left of point C, e.g., at point A, are in pre-
critical incidence and generate refracted waves in the lower medium. The incidence rays to
the right of point C, e.g., at point B, are in post-critical incidence, and total reflection occurs.
For post-critical incidence rays, the symptoms are the sine of the refraction angle is greater
than I and the incidence wavefront in the slow medium and the creeping wavefront in the
fast medium are discontinuous across the interface. Transmission ray tracing can be
performed for pre-critical incidence rays to the left of point C. However, transmission ray
tracing can not be performed for post-critical incidence rays to the right of point C. That is,
transmission ray tracing is performed only until total reflection occurs, or until the sine of

the refraction angle is greater than /.
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Figure 1: (a) is the velocity. In (b), source is at the upper left corner. (c) is the common
shot gather with receivers at the right edge (b).
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Figure 2: Incidence ray at point C is in critical incidence. Incidence ray at A (B) is in
pre-critical (post-critical) incidence.

SOLVING THE EIKONAL EQUATION

In a two dimensional medium, the traveltime of wave propagation is governed by the
eikonal equation, which relates the gradient of traveltimes to the slowness of the medium,

2 2
(%) +(§£) = 5%(x,2) (1)

where (x,z) is spatial coordinate, ¢ is traveltime, s(x,z) is slowness. We parameterize the
medium by square cells, with mesh spacing 4, Figure 3. In a localized cell of Figure 3,
when traveltimes at three corners a, b and ¢ are known, the traveltime at the fourth corner ---
d can be found by finite-difference method based on the assumption of local plane wave.
We use the centered finite-difference (Vidale, 1988) to approximate the two differential
terms in equation (1)

gt 1

g=ﬁ(tb+td—ta—-tc) (2)
and

J 1

a—;=ﬁ(tc+td—ta—tb) (3)

Substituting equations (2) and (3) into equation (1) gives
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by = 1, +~2(hs)? = (t, —1.)> @)

where 4 is mesh spacing, s is the slowness inside the cell with the grid indexes of corner d,
ta, b, tc and t4 are the traveltimes at the corners a, b, ¢ and d. Finite-differences in

equations (2) and (3) have second order of numerical accuracy.

Equation (4) can only be used for traveltime calculation at pre-critical incidence. At
post-critical incidence, the problem is to compute the square root of a negative number. But
setting the negative number inside the square root to zero (Vidale, 1988, 1990) does not
conform to physics. When geometrical ray theory is valid and the wavefronts are
continuous across an interface, the time difference between diagonal nodes of a square cell
is at most /2hs, where & is the mesh spacing of the cell and s is the slowness inside the
cell. Thus there are three equivalent symptoms of post-critical incidence, the sine of the
refraction angle being greater than I, wavefronts being discontinuous across an interface
and the time difference between diagonal nodes of a square cell being greater than \2hs.
Thus in solving the eikonal equation, the term inside the square root of equation (4) is
negative at post-critical incidence. If corners a and b lie in a horizontal direction and wave
travels from a to b, then corners a and b are in the slow velocity medium, and corners ¢ and
d are in the high velocity medium. In geometric ray theory, the direct arrival to corner d is a
creeping ray from corner ¢ to corner d. The traveltime at corner d is then computed as

ty=t,+hs (5)

If corners a and b lie in a vertical direction and wave travels from a to b, the direct arrival to
corner d is a creeping ray from corner b to corner d. The traveltime at corner d is then

computed as

ty=t,+hs (6)

We have described the traveltime computation at a localized cell. Next, we describe the

arrangement of computation patterns.
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a b

Figure 3: In a square cell with constant slowness s, wave propagates from corner a to
corner d through corners b and c. Traveltime is larger at corner b than at corner a.

K-7

3 ®

Figu;e 4: Sdis the source grid point. Traveltime computations proceed sequentially on the
our sides.
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Computation pattern

Traveltime computation is initialized by assuming straight ray paths in a constant
velocity square surrounding the source point. We found the radius of 54 to be a generally
good choice for the initialization square. Traveltime computations are then carried out by
expanding squares around the source point, as the computation layout in Figure 4. The
filled circles indicate grid points that have had their traveltimes calculated. We are to use the
traveltimes at the boundary ring of grid points, large filled circles, to compute traveltimes of
grid points at an outer ring, the hollow circles. The inductive scheme for calculating a new
ring of traveltimes is now described. Computations proceed sequentially on the four sides,
as shown in Figure 4. To initialize computation at a side, the points in the inner side are
examined in a loop from one end to the other to locate the point with local minimum
traveltime. Using one-sided finite-difference stencil, the traveltime of the point outside the

point with local minimum traveltime is computed as

£ =t, +1)(hs)® = (ty — 1,)° %

where f. is the time to be found, # is the local minimum traveltime in the inside row, #p is
the traveltime of the neighboring grid point at the source side, s is the slowness at point c.
However, if the term inside the square root of equation (7) is negative, the traveltime at point

c is computed as

t,=t,+hs (8)

At the next stage, equation (4) is applied to compute traveltimes.

In application of equation (4), the propagation direction of local plane wave does not
come in play. The traveltimes at the three corners a, b and d can also be used to compute
the traveltime at corner ¢ because of the assumption of local plane wave. Equations (5) and
(6) are then changed by computing the right hand side unknown traveltime from the left
hand side known traveltime. However, it is easy to program calculation from small

traveltimes to large traveltimes, i.e., in a upwind format.

Consider calculating traveltimes at side I (top) of Figure 4. Application of equation (4)
is carried out in three loops. The first loop progresses from the left end to the lateral
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location of the source. Then the second loop progresses from the right end to the left end.
Finally the third loop progresses from the lateral location of the source to the right end.
During each loop, calculation starts at each local minimum traveltime point and progresses
until a local maximum traveltime point is reached. Similar traveltime calculations are carried
out sequentially for the other three sides.

EXAMPLE

Figure 5(a) is a more complicated 1-D velocity model. Figure 5(b) shows the traveltime
contours of direct arrivals with the source at the upper left corner. All the possible direct
arrivals in 1-D medium are correctly modeled. It has transmission from high velocity
medium to low velocity medium, transmission and creeping boundary wave from low
velocity medium to high velocity medium, and overturning waves in medium with linear

increasing velocities.

A POSTERIORI RAY TRACING

After traveltimes are found for all the grid points, raypath from any receiver grid point
back to the source can be traced by following the steepest descent direction through the
traveltime field. The raypath is guaranteed to end at the source point as the source point has
the smallest traveltime. Figure 6 shows the ray paths traced from the right edge of the

model back to the source using the traveltime map of Figure 5(b).

DISCUSSIONS

In this traveltime calculation scheme, the velocity model is parameterized as constant
velocity cells. For one-dimensional velocity medium, it is perfect. For two-dimensional
velocity medium, dipping interfaces are represented by stairways.

As seen in Figure 1, the calculated direct arrival traveltimes closely overlay the
waveforms of wave equation modeling. We are confident that the direct arrival traveltimes
calculated by our scheme are accurate up to the spatial and temporal sampling requirements.

The computational cost of this scheme at each grid point is to evaluate equation (7). For
a model of realistic size, say 250,000 grid points, computational time is just a few seconds at
a present workstation with computation speed of Mflops/s. Also traveltime computations
are carried out in a few well defined loops as explained in the section of computation

pattern, this traveltime computation scheme can easily put into a vector computer.
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Figure 5: (a) is velocity model. (b) is the contours of direct arrival traveltimes.
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Figure 6: Raypaths from the right edge back to the source using the traveltime map of
Figure 5(b).
CONCLUSIONS

Our new scheme of finite-difference solving the eikonal equation successfully computes
the traveltimes of direct arriving waves. The accuracy in computed traveltimes is good up to
the spatial and temporal sampling requirements. Direct arrivals are usually the most
energetic event in a time evolving wavefield. Traveltimes of direct arrivals will be very useful

in both transmission traveltime tomography and migration imaging,
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SEISMOGRAM SYNTHESIS FOR RADIALLY
MULTI-LAYERED MEDIA USING THE
GENERALIZED R/T COEFFICIENTS METHOD

Youli Quan

ABSTRACT

A new method based on generalized reflection and transmission coefficients is
proposed to calculate the waves in radially multi-layered media. The method is used to
simulate full waveform sonic logs in cemented and cased boreholes and crosswell seismic
profiles in situations where we need to consider borehole effects. Our formulations are
renormalized; therefore, they are more stable and efficient than previous methods for
numerical computation. The new formulations are tested by comparing our numerical

results with available previous work, showing excellent agreement.
INTRODUCTION

Sonic logging in cased boreholes is useful for evaluating the quality of the cement job.

Also, effort is being made to measure the formation properties from full waveform sonic

logs run in cased boreholes. A cased borehole and any near borehole alteration can be
modeled as a radially layered medium. Study of waves in a radially layered medium is
useful for understanding and interpreting full waveform sonic logs. Tubman et al. (1984)
used the Thomson-Haskell method for modeling the cased borehole. We propose a new
approach using generalized reflection and transmission (R/T) coefficients to solve this
problem. The generalized R/T coefficients method is widely used in modeling the elastic
waves in vertically layered media because of its computational stability and efficiency over
the Thomson-Haskell method, especially for high frequency problems (see, e.g., Luco &
Apsel, 1983; Kennett, 1983; Chen, 1993). Yao & Zheng (1985) derived a set of formulas
for computing synthetic seismograms in radially layered borehole environments using the
generalized R/T coefficient method, but they did not conduct numerical tests to check their

This paper is a joint work with Xiaofei Chen of Department of Earth Sciences, USC
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formulation. We derive a set of alternative formulations which are more stable and efficient
than the previous methods for numerical computation. First, We introduce the concepts of
modified and generalized reflection and transmission (R/T) matrices for the radially layered
media and derive a recursive scheme to calculate them. Then, we determine the wave fields
using the R/T matrices. To check the formulation, we compare our calculated results with
those of Cheng and Toksoz (1981) for a two-layer open borehole model, of Tubman (1984)
for a four-layer cased hole model. The comparison shows a good agreement. Quan et al.
(1994) used this method to investigate acoustic attenuation logging and geometrical

spreading of the P head wave in boreholes with mudcake and invaded zone.

GOVERNING EQUATIONS AND THEIR GENERAL SOLUTIONS

The radially multi-layered model considered in this study is shown in Figure 1. The
first layer (r < #) is fluid. For this axially symmetrical problem, there only exist P and SV

waves, i.e., the displacement can be written as

u=Vo+Vx(e,y). D

Rock: o4 B4 ps

Cement: o3 B3 p3

Fluid; o1 P

Steel: (0} Bz P2

Figure 1. A radially multi-layered model.

Substituting Eqn (1) into the elastodynamic equation in the frequency domain we obtain

K0 = p0) 200 5 2a)

82¢(j) 10 ¢(f) 82¢(j)
ar? +r or * a7
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2. () W 6 2.0,.(7)
Py? 1oy? y? Iy Ky =0, (2b)

or? r or r? 97*

.,N, (define r® =0). k9 = /o,

k$” = w/BY, F(w) is the source spectrum, o and B are P-wave and S-wave velocities,

for rVV<r<r?,j=1,2,. In Equation (1),

respectively. In the k — @ domain, the solutions of Eqns (2a) and (2b) are

~ G _ D ¢y U-Dy — ,
5P (r) = Ve v (Y ')H(z)(v(’)r)+c(’) v (r-rU HO V), 3)
= Dy D VP -NZ@) () O r=rNy =y ()

v (r)=c"e H, (v r)+c H, (v r), @

where V¥ =+k9” = k%, Im{v?’} >0, vy = /(6§ -k, Im{v;”} >0, and j=2,3, ..., N,
o o B

N+1. H®Px)=e*H"(x) and H®(x)=e"H”(x) are the first and second kind

6] c(]) )

(J)
5 sCph sC and Lo

renormalized Hankel functions of nth order, respectively. ¢ are

unknowns, where "+" refers to outgoing waves and "-" refers to incoming waves. Instead
of the usual Hankel functions, we used the renormalized Hankel functions whose
asymptotic behavior for large argument is very gentle for expressing our solutions. For j=
1, in the fluid-filled borehole, we have

oL (r)=cl,(vPr) - F(a))H(l)(v(”r)

5)
D 0y — O, —
=W ”H,fz)(vf,})r) +(c +5,)e" " HO(Vr)
where
D (D) i
D =cPe"" and 5, =-—F(). (6)
+ + 871'

Using above potential solutions we obtain the displacements and stresses in the cylindrical

layers (j > 1) as

where

i) [ D) el (r) e(j)(rﬂ_cgw
W || ) ) )]l ;
()| | ) ) )| e o
T ] [P () () )] P
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e =—VPHO (VPr)e" 7, e = ikﬁl(z)(vl(sj)r)eivg)('(j)_’),
e =—vPHO (VIR N, ) = ik HO (P T,
e = ikBP (VPr)e"d ", &) = vPED (Ve 7,
e = kHO(vOr)ed & = VPO (Ve ),

D e ) _
(J) — Zu(’)[Q(’)H(Z)(V(’)r)+ V(J)H(Z)(V(J)r)/r] vy (r r)

v (,.(j) -r)

) — ik,u(’)v(’)[H(z)( (J)r) H(Z)( (J)r)]e B ,

€y =
. N — . N— . D G-
e =2u P [QVHP (V) + VPHP (VP r) 171,
— . iv&) (-1
. 1 1 vy (r—r )
eéi) lk[.t(j)V(j)[H( )( (})r)_Hz( )(Vl(ij)r)]e B ,

D — 9ty D yD TR (D)), v =)
ey =2tk v H 7 (v;]'r)e ,

G (D _r)

eié) - Zu(J)Q(J)H(Z)(V(j) Ye ivg ,
e = 2ikpu VP }—11(1)(vg)r)eiv.‘{’(r—r"'“’),
e =2uPQVEP (VP r)e vyl (r-r D,
and, QY =k* - lkf{  and 19 < r <9, For the first layer, i.e., the liquid layer, we have

)| _[e ) ] e’ q
o ) 1 ON ®)
SO CHGEEHG)

where
—_ iy, D _
6’1(}) Vs) Hl(z)(vfx”r)e"'“ (r r)’ 31(;) — v(l) H(”(v(l)r)e”' r,
R s (D (D _
eéll) =_/1<1)k((11) Ir][(§2>(‘,¢(x1),,)emz r r), eélz) l‘l)k(” H(”(v(”r)e”' r

PROJPN ORI B
=c’, ¢y =Cp +s,.

andp s
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R/T MATRICES AND SOLUTION SYNTHESIS

In the preceding section, we obtained the general solutions with unknowns,

¥ ),c;_{ )¢t and cﬁi dforj=2,3,..,N+1, and c¢. These unknowns can be determined by

imposing boundary conditions at each interface. For the first interface (liquid-solid

boundary), the boundary conditions are

~(1) (1) ~(2) ¢ _.(1)
l:lfk(l)(r (1)) :| = |:Lik(2)(r (1)) :l (9)
o (r’)] o)
and
0=720M). (10)

For the jth interface (j = 2, 3,..., N) which is solid-solid boundary, we have

_ft,ij)(r(j)) T 'ﬁéjﬂ)(r(j)) ]

5Oy B FUD (D) i
6-I(cj)(r(j)) 5.£j+1)(r<j)) ’

_%I(cj)(r(j))_ _%l(cjﬂ)(r(j))J

To effectively determine the unknowns for each layer, we introduce the generalized
reflection and transmission (R/T) matrices and derive their explicit expressions by using the

above boundary conditions.

Modified R/T matrices

The modified R/T matrices for solid-solid interfaces are defined in the relations

D _RWald) () (1)
¢’ =R7(c] +61js+)+T_’ c

U 2T (D 5,5, 4 R’ O I Th BT (2

where ¢’ =[c\?,c]" and RY, RY), T} and TY are the modified R/T matrices for the

—+?

Jj-th interface. Substituting Eqn (7) into Eqn (11), then comparing with Eqn (12) we obtain
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, . ) . . . . — |
1 1
(J)(r(J)) el(é)(r(j)) _el(;+ )(r(J)) _ (J+ )(r(J))

{Rf_) T(_f)} DDy D)y —edV Py - <;+1>(r<1))
TS RY D) D) —edV(rP) —ed ()
eD(rP) D) —eU(D) —eU (D)
D) =Dy IVED) YD)
. e%3>(r(n) _eg%)(r({)) I GDY (D) 13
—eDy =Dy IEY YD) [

A . . . 1 ’
—ef,g)(r(”) _e‘(é)(r(J)) e41+)(r(1)) e‘(é+)(r(1))

forj=2,3,..., N. Similarly, from Eqns (8), (9) and (10), we find

g qo] [0 =0 -0 B
[Tg) RO }_ eV (r V) eg)(r(l)) — @)
- 0 — Py —e@ (V)
—e0 (™) 6,1(12)(,,(1)) el(f)(r(”)
x| e (V) 2 (D) 2 (rV) |. (14)
0 P (rV) e2(r®)
Generalized R/T matrices

The generalized R/T matrices, RY and T4, are defined via following relations:

(J+1) T(J)(c(1)+5ls )

o for j=1,2,......,N. (15)
D =RP(cY +8,s,)

Substituting Eqn (16) into Eqns (12) and (13) and rearranging them, we obtain a recursive
relation

T(]) _[I R(J)R(J+1)] ITS_j) .
for j=N,N-1, ..., 2,1, (16)

(O 10)] (IR UADTU)
R Y =R+ TVRYVTY
where I is the unit matrix. Eqn (16) provides an efficient recursive scheme to calculate the

generalized R/T matrices from the modified R/T matrices. Our formulations are numerically
more stable than the previous methods (e.g., Tubman et al, 1984 and Yao & Zheng, 1985)
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because of the use of the renormalized Hankel functions and the renormalization factors
PO iy U
“»  and e **

Solution synthesis

Having the generalized R/T matrices, we can compute the unknowns C(J ) for any

layer. Thus, we can compute the displacements and stresses for any layer. In a sonic
logging problem, we are interested in the stress waves in the fluid-filled borehole where the

normal stress is

G0(r) = e (e + e (N)(c” +5,)

; (1) [¢)]
2| 20 (V& )e'=T R(”
—_ 1) M),
= A0k oie:) e ~HPWOr) s (17)
e -
o

Taking inverse Fourier transforms over k and ®, we obtain the solution in spatial and time

domains as
1 p(l) +oo , J, (V(Dr)ezv” ()R(”
o )(r Z,t)_ J(O F(w)e_m{j R(l) PYORED) = ™ dk
1 ik OR )
+—e¢* Jdw. 18
R } (18)

where, R=+r*+7>.

NUMERICAL IMPLEMENTATION

The discrete wave-number technique (Bouchon & Aki, 1977) and FFT are used to
numerically evaluate the k — @ integral in Eqn (18). A complete program package is written
to implement our new algorithm. To check the validity of our formulation and program, we
test a two-layer open hole model chosen from Cheng and Toksoz (1981) and a four-layer
cased borehole model chosen from Tubman et al. (1984). The spectrum of source function

is described by

8ow (a—iw)
w* [(a io) + o'’

Flw)=

and attenuation is introduced through complex velocity defined by



Quan, Y. — Waves in Radially Layered Media

0]
wref

i
)_E]’

1
V(@) = V(@ 1+ n_—Qlog(

where Q is the quality factor for either P-wave or S-wave, and v is either P-wave velocity or

S-wave velocity.

The seismograms computed by the generalized R/T matrix method are shown in
Figures 2 and 3. Figures 4 and 5 are taken from the papers mentioned above, respectively.
Comparisons of our result with theirs show very good agreement. The model parameters
used in Figures 2 and 4 are shown in Table 1. The parameters of the source function are:
®e=27 x15000Hz and o= 0.5, /. The source-receiver separation is 2.44 m. For Figures
3 and 5, the model is referred to Figure 1 whose parameters are given in Table 2. The
source-receiver separation is 3.048m. The parameters of the source function are: ®,=27 x
13000Hz and 0=0.50/T.

Layer r o § p (glemd) |  0,/0
(cm) (km/s) (km/s)

Fluid 10.2 1.83 - 1.2 oo

formation 0o 5.94 3.05 2.3 oo
Table 1. Model parameters used for Figures 2 and 4.
Layer o
r P P 0r 0s
(cm) (km/s) (km/s) (g/cm3)

Fluid 4.7 1.68 - 1.2 20 -
Casing 5.72 6.1 3.35 7.5 1000 1000
Cement 10.2 2.82 1.73 1.92 40 30

Formation o 4.88 2.6 2.16 60 60

Table 2. Model parameters used for Figures 3 and 5.
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Figure 2. Seismogram calculated by the generalized R/T coefficients
method using a two-layer open hole model.
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Figure 3. Seismogram calculated by the generalized R/T coefficients
method using a four-layer open hole model.
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Figure 4. Seismogram taken from Page 1047 in Cheng & Toksoz
(1981) for comparison with Figure 2.
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Tl

TIHE Casecd

Figure 4. Seismogram taken from Page 1055 in Tubman (1984)
for comparison with Figure 3.

CONCLUSIONS

An approach based on generalized reflection and transmission coefficients is
developed to calculate waves in radially layered media. The renormalized Hankel functions
and the renormalization factors are introduced to make the numerical procedure more stable.
Aside from the examples presented in the previous section, we have also successfully

simulated crosswell seismic profiles and the open hole with invaded zone using this method.
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ACOUSTIC ATTENUATION LOGGING USING THE
CENTROID FREQUENCY SHIFT AND AMPLITUDE
RATIO METHODS: A NUMERICAL STUDY

Youli Quan

ABSTRACT

The centroid frequency shift method is proposed to estimate seismic attenuation
from full waveform acoustic logs. This approach along with the amplitude ratio method is
applied to investigate the attenuation properties of the P head wave in fluid-filled
boreholes. The generalized reflection and transmission coefficients method is used to
perform forward modeling. We suggest an empirical formula to describe the frequency-
dependent geometrical spreading of the P-wave in a borehole. We simulate a more
realistic borehole by including a mudcake and an invaded zone which are modeled by a
large number of radially symmetric thin layers. The numerical tests show that the invaded
zone exhibits a very strong influence on the attenuation measurement.

INTRODUCTION

— Manyecfforts have been made to estimate the seismic attenuation from sonic togs. -
Existing methods include amplitude ratio, spectral ratio, partition coefficients and full
waveform inversion (Paillet and Cheng 1991). We propose another method which is
based on centroid frequency shift. The centroid frequency shift method has been applied
to crosswell seismic attenuation (Quan & Harris, 1993). In crosswell profiling this
method measures the spectral centroid difference between incident and transmitted waves
and uses this difference to estimate the attenuation (1/Q). For the full waveform logging
we take the advantage of multiple receivers and measure the spectral centroid difference
of P-waves between two or more receivers for attenuation estimation. In acoustic logs the
first arrival is a P head wave refracted from the borehole wall. In order to understand the

* This paper is a joint work with Xiaofei Chen of Department of Earth Sciences, USC



Quan, Y. - Attenuation Logging M-2

attenuation property of the head wave in boreholes and provide a guide to in situ
measurement, we use the generalized reflection and transmission coefficients method
(Chen, et al., 1994) to model waves in boreholes, We then apply the centroid frequency
shift method along with the amplitude ratio method for inversion. This approach is tested

with numerical simulations.
FORWARD MODELING

In the sonic logging problem, we measure stress waves in a fluid-filled borehole
where the normal stress p() is given by calculating a k- integral (Chen et al., 1994):

(1) +o0 ] (V(I)r)ew(l) FO R(l) 1
1) _ 2 —iwt - tkz
p(r.zt)= Iw F(o)e {J R(l)ew(n 0 dk +— R

+—

& Rdo. (1)

where, R= r? +z2, z = source-receiver offset, r = the distance of receiver from
borehole center, p(1) = fluid density, R® = the generalized reflection coefficient
calculated from Eqn (16) in (Chen et al., 1994), F(w) = source spectrum, and
VS) = \/ (@/ aDy? —k? with a(l) = P-wave velocity in the fluid. The superscript is the

layer number, and the first layer is fluid-filled borehole. The discrete wave-number
technique and FFT are used to evaluate Eqn (1). In our simulation the spectrum of source
function F(w) corresponding to displacement is described by (Tsang and Rader, 1979)

E(e)= 1 8aw, (0, —im)

F 3

a)2 [(og — ia))2 + co(%]2

with ®, = 21 x14000 Hz and o5 = 0.5 ®, /x. The attenuation is introduced through
complex velocity defined by (Aki and Richards, 1980)

1
V(@) = v(@,)[1+ ﬂ_QlOg(a)_o) - E], ()

where Q is the quality factor for either P-wave or S-wave, and v is either P-wave velocity

or S-wave velocity.
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ATTENUATION ESTIMATION FORM SONIC LOGGING

The first arrival in full waveform sonic logs is a P head wave. We separate it
from later arrivals using a time window. We use this first arrival to estimate P-wave
attenuation (1/Q). The magnitude of recorded wave spectrum R;,(f) at =0 and z=z;4;

is written as (see Figure 1)

R:
Rt () =L Gy explcto o - 20, ©

[1

where G represents geometrical spreading, and
aoi = 7r/(v,-Q,-) (4)

is the intrinsic seismic attenuation coefficient. In general, the velocity v; and attenuation
coefficient of,; vary with depth z;. In our model, we consider radial variation but no

llill

vertical variation. The subscript indicates the ith receiver in a receiver array. As
noticed by some authors (e.g., Page 144 in Paillet and Cheng, 1991), the geometrical
spreading of this refracted head wave is highly frequency dependent. But how the
geometrical spreading depends on frequency is not clear. In this study we assume that
exp(_angHl)

Giy1=G(f>zi41) ~ (5)

Zin

where ¢, is an attenuation coefficient related to frequency-dependent geometrical

spreading, and p is the power of "true" geometric spreading factor. Combining Eqns (3)
and (5) we have

Z:
Rin(f)= (Z—l)‘” Ri(f)expl—f(org + 0p;)(2i11 — 2)] (6)
i+1
We will empirically determine «, and p from numerical simulation for a given borehole
structure. We use two techniques to estimate the intrinsic attenuation coefficient ot. The
first one is frequency shift method (Quan and Harris, 1993). In this method we define the
spectral centroid of R;(f) to be
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| mipar
=, (7)
[R(prar
and its variance to be
, [P RO
o; = . (8)

[Ri(ar

R, zis1, firl ?t
R(), z, fi Q
o]
AN

Receiver array

Zp=0 x/ Source

Figure 1. Sonic log geometry. R;(f} is the signal spectrum at the ith
reciver, z; is the receiver depth and f; is the centroid frequency of R;(f)
defined in Eqn (7).

Then, the intrinsic attenuation coefficient ¢,; at depth z; can be obtained from following

equation

1 A
Oy =—=Tl—q,. ©)
oi O'iZAZi g

where Af; = f;— f;;1 is the frequency down-shifting between two receivers, and

Az; = z;,1 —z;. Another method is based on the amplitude ratio. Rearranging Eqn (6)
and taking the logarithm we obtain

1 R,(f)zf
0i = log[ -
A% P R (el

a

1- 0. (10)
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In the next section we use Eqns (9) and (10) to estimate the attenuation coefficient Cp;

from synthetic seismograms obtained for the sonic log geometry.

NUMERICAL SIMULATIONS

Simple boreholes

Let us first consider a simple open borehole whose model parameters are shown
in Figure 2. Using Eqn (1) we obtain the seismograms in Figure 3. Then we perform a
Fourier transform to the first arrival (P-wave) that is just covered by a short time window
and use Eqn (7) to calculate the spectral centroid (Curve A in Figure 4). Changing the
Qp value in Figure 2 to Op = 80 and Qp =120 we obtain Curves B and C, respectively.
We then use Eqn (9) (frequency shift method) and Eqn (10) (amplitude ratio method) to

estimate @, values. The slope of the centroid frequency curves carries information about

6000, , i SO——r—T—T— 1251711
Vp Qp Density
> 50001 — 40+
& 2
s L _
= 4000 -1 30 Q
b
b= Vs
2 3000 = 20 -
E 1.5 —
2000 - 10 _
1000 L1 | olL_1 1 |
0 01 02 03 04 001020304 0 01020304
Radius (m) Radius (m) Radius (m)

Figure 2. A simple fluid-filled open borehole.
The radius of the borehole is 0.1 m.

If we ignore the effect of frequency-dependent spreading (o = 0), then from Eqns
(9) (frequency shift method only) we estimate QP= 37, 69, and 95 which correspond to
the given values Q, = 40, 80, and 120, respectively. Here, Eqn (4) is used to convert o,
into Q. Obviously, the estimated QP' s are systematically smaller than the given Q,'s. If
we do not ignore the effect of frequency-dependent spreading and find o, from a
measurement then use it as correction for all the measurements, we obtain the corrected
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Qp= 40, 32, and 120. The correction o = m/(vQ,) with Qg = 450 is found by solving

Eqn (9) from a single measurement.

5.44 - W
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Figure 3. Synthetic seismograms in a simple borehole shown in Figure 1.
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Figure 4. Centroid frequency picks corresponding to Q=40 (Curve A),
Qp=80 (Curve B) and Qp=120 (Curve é;)
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Let us now consider the same synthetic data using the amplitude ratio method.
Choosing the same value of o, obtained above and setting power p in Eqn (10) to be
0.87, we obtain the estimated Qp= 40, 80 and 119, respectively. If we set og =0 and p =

1, equivalent to the conventional amplitude ratio method (e.g., Cheng et al, 1982), we
obtain Q)= 43, 93, and 148, respectively.

Boreholes with Mudcake and Invaded Zone

The borehole model shown in Figure 2 is idealized. We design a more realistic
model which consists of a fluid-filled borehole, a mudcake and an invaded zone. Since
the modeling algorithm can efficiently handle an arbitrary number of radial layers, we use
ten thin layers to model the invaded zone (Figure 5). The Q) of the invaded zone varies
from 35 to 40. Figure 6 shows the seismograms calculated using this model. For a closer
comparison we pick out the first traces (nearest source-receiver offset) from Figures 3
and 6 and plot them together in Figure 7. The mudcake and invaded zone exhibit a
significant effect on the wave trains. The amplitude of the first arrival (P-wave) becomes
relatively higher when the invaded zone is present. The attenuation study in the

following paragraph shows more detailed effects of the invaded zone.

We also change the Q) of the invaded zone in Figure 6 to be 75-80 and calculate
another data set. Using Eqn (9) (frequency shift method) with ¢z = 0, we obtain the
estimated Qp= 16.5 and 16.7, which correspond to the given values of Q, = 35-40 and
75-80, respectively. If we use Eqn (10) (amplitude ratio method) with @, =0 and p = 1,

then the estimated QP= 78 and 747, which again correspond to the given values of 35-40
and 75-80, respectively. However, if we choose oz = 0 and p = 0.6 in Eqn (10), we
obtain the estimated QP= 41 and 78 which are very close to the predicted values. These
experiments show that the geometrical spreading in a borehole with an invaded zone is
more complex than in a simple borehole. We can not simply use p = 1 in Eqn (5) to
describe the geometrical spreading effects in a complex borehole. The frequency-
dependent term exp(—.,fz;,;) in Eqn (5) may be too simple, since we could not find a

single correction o, to recover all the estimated Qp's to the predicted values.
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Figure 7. Comparison of seismograms calculated from simple and
complicated boreholes.

DISCUSSIONS

The examples in the previous section indicate the attenuation property of P-

waves. The estimated results, more or less, are affected by window length and window

types used to calculate attenuation. For the purpose of reducing the effect of window
length and the contamination of later wave trains we only use the seismograms for source

to receiver separation greater than 3.5 m in Figures (3) and (6).

The frequency shift method is strongly affected by o, the attenuation coefficient

related to the frequency-dependent geometrical spreading (see Eqn (5) for definition). It
is independent of the "true' geometrical spreading factor 1/ z°.

The test on the borehole with an invaded zone shows that if we set o¢g = 0 and p =
1, the Q) value estimated from centroid frequency shift method (Eqn 9) is too small, and
the Q,, value estimated from amplitude ratio method (Eqn 10) is too large. The amount of
the difference between them may carry information about borehole structures, for

example, the depth of the invaded zone.
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CONCLUSIONS

The generalized reflection/transmission coefficients method is applied to
numerically investigate seismic wave attenuation in simple boreholes and complicated
boreholes with invaded zones. In order to measure the intrinsic attenuation we need to
remove the geometrical spreading effect which is complex and highly frequency-
dependent. If we use the frequency shift method for a simple borehole, we can introduce
a simple geometrical spreading factor to do the correction. For a complicated borehole
we need more work to figure out the correction term. For the amplitude ratio method the
power p in geometrical spreading factor 1/ 7P can be different from 1.
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A TEST ON SEISMIC ANISOTROPY AND SCALE
EFFECTS IN FINELY LAYERED MEDIA

Youli Quan

ABSTRACT

Wave properties in a layered medium depend on the ratio of wavelength to layer
thickness. If this ratio is large enough, the medium behaves as a transversely isotropic
material. If the ratio is small, scattering and dispersion are present. This report gives
numerical simulations using seismogram synthesis for vertically layered media, and
examines the results with the theoretical formula.

INTRODUCTION

A very common rock formation is the finely layered sedimentary deposit, e.g.,
Devine test site. This layered formation exhibits a transversely isotropic feature if the
wave length is long compared with the thicknesses of the layers. When the wave length is

close to the dimensions of the layers, the layering shows a heterogeneous property, and

scattering is present. The terminology scale effect refers to the behavior of waves in
media with different wavelength to layer-thickness ratios (R). A model with a large R is
calculated to study the transverse isotropy, and the averaged elasticity for long
wavelength (Backus, 1962) is used to predict the anisotropic velocities. Then a model
with a small R is simulated to test the scattering and dispersive effects. These two models

have the same average material contents.

TRANSVERSE ISOTROPY AND SCATTERING

VESPA (a software of seismogram synthesis for vertically layered media) is used
to simulate the transverse isotropy in finely layered media (see Figure 1). The model
consists of 300 layers each with thickness of 10 cm. In this example a limestone-

sandstone sediment is simulated. The ratio of wave length to layer thickness is greater
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than 30, which satisfies the long wave approximation. A horizontal line (Survey H) and a

vertical line (Survey V) are placed in the model to study the direction-dependent

properties of waves.

oH Survey V |
g {300 layers}
o
0
300 m o
0 Rt —
0
| Survey H}
X X 0 0000000000 0Q F—
———— Source  |————+ Receivers|
01lm V1=5443 m/s Limestone
) Density1 = 2.659
0.1m V2=5443 m/s Sandstone

Density2 = 2.659

Figure 1. Model used for transversely isotropic simulation. It is made up of periodically

stacked lime;

forward modeling. The frequency band is 100-1000 Hz. The minimum wave length
Amin=Vmin/fmin = 3m. The ratio R = Anpjn/d = 30 meets the long wave approximation.
Survey H and Survey V have the same source-receiver offsets, from 6m to 25 m.

Figure 2 shows the seismograms recorded in the two directions. I pick the travel

times of P waves and show them in Figure 3. From the travel time curves, we find a
horizontal velocity Vp=4514 m/s and a vertical velocity Vy=3521 m/s. The relative
change (Vp-Vy)/Vy=28 %. The average velocity V,=2V1V2/(V1+V3), where V= 5443
m/s is velocity of the limestone and V,=2949 m/s is the velocity of sandstone. Plugging
in Vi and V; we get Vin=3825 m/s. It can be seen that Vy<V,<Vy. That means we can

not use this simply averaged velocity for this medium.



Quan - Waves in Fine Layers N-3

Time (ms)
L

N

M ——

w
e
1
_—
P

Source-receiver offset (m)

(a) Waves propagating in horizontal direction recorded in survey H

Ji
[l

A

Time (ms)

1

I

]
TN

Ly

T TS
.—-\q_/\'/—\_

L))

6 . 25
Source-receiver offset (m)

(b) Waves propagating in vetical direction recorded in survey V

Figure 2. Seismograms caculated by VESPA for the model
with layer thickness of 0.1 meter.



Quan - Waves in Fine Layers N-4

Travel time (ms)

0 6 8 10 12 14 16 18 20 22 24

Source-receiver offset (meter)

Figure 3. Travel times of waves in vertical direction (ty) and horizontal direction (ty), which
correspond to the Survey V and Survey H shown in Figure 1. From these travel times we
obtain the vertical velocity Vy=3521 m/s, and V1=4514 m/s. Here, (V1-Vv)/Vy=28%. Note
that the medium used consists of limestone with V1=5443 m/s and sandstone with V2=2949
m/s.

We can theoretically predict V and Vy, from the averaged elastic modulus for the
long-wave approximation (Backus, 1962; Carcione et al., 1991). Let M be a modulus.
The averaged modulus M in the horizontal direction (see Figure 4) is given by

M=%(MI+M2). (1)

The averaged density is
- 1
P =E(p1+p2)- (2

The averaged velocity can be calculated by

AL 2 2
V= M _ PV P Vs 3)
\'p P +p,
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Figure 4. Waves in horizontal direction

The averaged modulus in the vertical direction (see Figure 5) is given by

= 2MM, @)
M +M,
— 1
P=opi+p). S
and
‘7‘}_:\/@:\/ 2 2p1V12p2V22 (6)
p ptp, pitp,

Figure 5. Waves in vertical direction.
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Applying Eqns (3) and (6) to Survey H and Survey V we can obtain the
theoretical velocities in horizontal and vertical directions. The theoretical prediction and

the numerical result shown in Figure 6 are very close.

Figure 6. Comparison of theoretical and numerical anisotropic velocities in finely

layered medium under the condition of long wave approximation.

For the purpose to examine the scale effects I only change the layer thickness
from 0.1 meter to 1.0 meter and re-calculate the seismograms for Survey H and Survey
V. This does not change the average material contents of the medium. But the
wavelength to layer-thickness ratio R is changed from 30 to 3. The calculated
seismograms for R = 3 are shown in Figure 7. It can be seen that strong dispersion
appears in Figure 7a. The scattering in the form of coda waves is present in Figure 7b.
Comparing Figure 7 with Figure 2 we can see that these waves exhibit very different
features for large R and small R. In the case of small R we can not use Eqns (3) and (6),
since the condition of the long wavelength is not satisfied.
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Figure 7. Seismograms caculated by VESPA for the model
with layer thickness of 1 meter.
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CONCLUSIONS

The scale effects of waves in finely layered media are evident. The wave
behavior is controlled by the ratio of wavelength to layer-thickness (or more generally,
the period of the media). If this ratio (R) is large enough (for instance, R > 20), the
medium behaves as a transversely isotropic material, and the vertical and horizontal
velocity can be found by simple formulas which are based on the long wave average. If
the ratio R is small (for instance, R < 5) strong scattering will be present, and the medium

behaves as a heterogeneous dispersive material.
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ANALYZING DIFFRACTIONS AND REFLECTIONS
BY WAVE EQUATION MODELING

Le-Wei Mo

ABSTRACT

In this paper, we show an example of synthesizing reflection from diffractions. It is
accomplished by solving the velocity-density acoustic wave equation by Fourier transform
method or, as it is often called, the pseudospectral method. It is shown that as discrete
diffractors are lined up, their diffractions collapse to a reflection.

INTRODUCTION

In the simulation carried out in this paper, we concern with the acoustic wave equation,
d(1oP) d(19P)_ 1 3P
ol el R Il b sy st
ox\podx) dy\pdy) c°p dt
where P(x,y,t) represents the pressure, p(x,y) the density, c(x,y) the wave velocity, and
S(x,y,t) the source term which equals the divergence of the body force divided by the

density.

In numerically solving the acoustic wave equation (1), we apply a highly accurate
method -- the pseudospectral method (Kosloff and Baysal, 1982). The spatial derivatives
are calculated by Fourier transforms. The time derivative is calculated by a second order
finite-difference. By this method, the spatial derivatives are calculated exactly, the only
numerical error comes from the temporal finite-differencing. We choose the time sampling
interval to be sufficiently small that the Courant number is less than 0.1, then modeling by

this method is considered to be exact.
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MODELING EXAMPLES

Figure 1 shows the modeling geometry. Source S is at the left well. Receivers are at the
right well. The medium is homogeneous, with a constant velocity of 18,000 ft/s and density
3 g/cm3. The source wavelet is the first derivative of the Gaussian function with a dominant
frequency of 500 Hz (Alford et al., 1974). The two wells are separated by ten wavelengths.
Diffractors are put at the middle between the two wells by changing the velocity of the
nodes to be 9,000 ft/s and density 2 g/cm3. The lengths of the aligned diffractors to
modeled are quarter, half, one, one and half, two, four, eight, and ten wavelengths.

S diffractors
X R

Figure 1 Modeling geometry. Diffractors are created by changing the velocity and
density at the designated nodes.

Figures 2 and 3 show the modeling results of the different diffractor dimensions.

Figure 2 shows that when the dimension of the diffractor is less than or equal to one

wavelength, its modeling responses are in the forms of diffractions. Figure 3 shows that as
the dimension of the diffractors is increasing to be larger than one, its modeling responses
tend to be the reflection, i.e., the diffraction responses of the individual diffractors collapse
to a reflection.

CONCLUSIONS

The relationship between reflection and diffraction has been analyzed by an accurate
numerical wave equation modeling. When the dimension of the diffractor is less than or
equal to one wavelength, its modeling responses are in the form of diffractions. As the
dimension of the diffractors is increasing to be larger than one, its modeling responses tend
to be the reflection, i.e., the diffraction responses of the individual diffractors collapse to a
reflection.
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Figure 2 Modeling results when the lengths of the diffractors are quarter, half, one, one
and half wavelengths.In (a), 1 is the direct arrival, 2 the diffraction. Similar event

identifications apply to (b), (c), and (d).
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Figure 3 Modeling results when thelengths of the diffractors are two, four, eight, and ten
wavelengths. The distance between the two wells is ten wavelengths.As the dimension
of the diffractors is increasing to be larger than one, its modeling responses tend to

be the reflection.
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NONLINEAR MULTI-FREQUENCY
WAVE EQUATION INVERSION

Jerry M. Harris and Feng Yin

ABSTRACT

A method of nonlinear wave equation inversion using multiple frequencies is developed.
The method sequentially inverts low to high signal frequencies of the wave field. First, the
low frequencies are used to reconstruct the low spatial wavenumbers of the heterogeneities.
Then, higher frequencies are used to reconstruct higher spatial wavenumbers. A subspace
method is used to minimize the misfit between the observed fotal wave field and the cor-
responding theoretical synthetic wave field. The gradient of the misfit function, the rate of
change of the gradient, and a regularization factor are used to find the optimum search
direction to the solution of inverse problem. It is not necessary to assume weak scattering,
e.g., Born or Rytov, nor is it necessary to remove the incident field before inversion as
required in linear diffraction tomography. These advantages make this method more
flexible than linear diffraction tomography. Tests on synthetic data show that the method is

effective in reconstructing velocities with up to 15% variation and that the inversion is stable

and more precise than single frequency wave equation methods. These advantages are

available with not much penalty of computation effort or time.
INTRODUCTION

Transmission travel time methods based on ray equation are the most often used
methods in seismic inversion, because they are robust in field data applications (Dines and
Lytle 1979; Wong. Hurley and West, 1983). Yet these methods can only give the low
wavenumber components of the heterogeneous media. In order to derive higher resolution,
some aspects of the full wave field, e.g., reflections, must be used.

In wave equation tomography, there are two types of methods: one is analytic inversion
method, another is non-linear iterative method. In the analytic method, the Born or Rytov

weak scattering approximationis made in order to derive the analytic inversion formula.
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The perturbation of velocity to be inverted cannot be very large (Devaney, 1984, Harris,
1987, Wu, et al, 1987). Non-linear iterative wave equation tomography methods are better
for large contract velocity (Torantola, 1987, Pratt, 1990, Yin, et al, 1993). Nonlinear
methods have three main parts: (1) the forward calculation, (2) calculation of the Frechét
derivative, and (3) the method of updating the model. In addition, we can implement the
inversion in time domain or in frequency domain. In time domain, Torantola (1984, 1987,
Mora, 1987) applied a back-propagation method to the difference field computed between
the observed waveform and calculated waveform to invert for the media elastic parameters.
Since the full waveform is used in this method, reconstruction is improved, but it requires
a large amount of memory and computer time to implement

Inversions using the full waveform can also be implemented in frequency domain also.
We can select different frequencies according to the resolution requirement. We expect the
low frequencies to provide the low spatial wavenumber components of the media, and the
high frequencies to provide the high wavenumbers. We can invert for a broad range of
velocity scales from multi-frequency wave fields, thereby creating an inversion that is
stable over the entire range while raising the resolution of the reconstruction step by step
with frequency. In addition, scattering is strongest for heterogeneities comparable in size
to the wavelength; therefore, each frequency of the multi-frequency decomposition is
maximally sensitive to different scales of the heterogeneity spectrum.

In this paper, we describe a nonlinear, multi-frequency, and multi-grid wave equation
inversion method based on the 2-D acoustical wave equation. In our method, the low

frequency components in the waveform are first used to invert for the low wavenumber

components of the media. A bi-linear interpolation method is used to interpolate the low
frequency reconstruction to smaller cells or a finer grid. Then, higher frequency
components of the waveform are used to invert the velocity on the finer grid, and so on
until the velocities at the smallest grid are reconstructed.

When solving the nonlinear inverse problem, our goal is to reduce the value of the misfit
function which describes the mismatch between the observed total wave field data and the
corresponding synthetically calculated data below a threshold determined by the errors in
the observations. We use the moment method to calculate the synthetic fields. In this way,
our method does not require the removal of the incident wave field before inversion. This is
important in field applications for empirically we do not know the incident field. The
objective function for inversion is quadratic, thus its first and second derivatives are
required to minimize it. In this work, we use the subspace method (Skilling, 1984;

Kennet and Williamson, 1987) to minimize the quadratic misfit function involving
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second derivatives to the model and to avoid the inversion of large matrices. At each step
in the iteration we use a local quadratic approximation to the misfit function and three
directions are used to find a path towards the minimum. These three directions are the
gradient of the misfit function, a regularization term, and the direction of the rate of change
of the gradient. To prevent unreasonable behavior of the model parameters, some form of
regularization condition on the model is imposed. We applied our method to the crosswell
geometry to conduct a forward and inverse simulation. The results show that our multi-
frequency and multi-grid method gives a better reconstruction for velocity than the single

frequency method without much penalty in computation time.
THE ACOUSTICAL SCATTERING SOLUTION

In order to implement the nonlinear wave equation inversion, we should have a good
and robust method of forward modeling for waves in inhomogeneous media. Starting from

the wave equation in the frequency domain,
2 o’
\% U(r,a))+FU(r,a))=—S(a))6(r—rs) (1

where r=(x, z) is a spatial position in the imaging region, r, =(x,,z,) is the source
position, @ is an angular frequency and U(r,®) is the pressure field in the imaging
region, and V is the velocity field. Taking U(r,w)= U™(r,w)+U*(r,m),
V2(r) = Vg2(r) - m(r)VO”2 (r), where V,(r) is the velocity of the background, we derive

an integral equation corresponding to Eqn. (1) as follows:

U(r,0) =U" - [k (¢'YU(r, ©)m(r)G(r,r")dr’ 2)
Q

where € is the image area, r, =(x,.y,) and k; = w/V,(r). We divide the image region

into N pixels, then, Q=Q, N"Q, N---NQ(Q,UQ, =0,i=j). Assuming m; is the

value of m(r) at pixel Q,. By the moment method, Eqn. (2) can be discretized to give
F-a=b (3)

where

F, =8, + [ Gr —xl,n,)m(x")dr’ @
Q;
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and a is the unknown column vector whose elements are the discretized total field U,, b is

a vector whose elements are the discretized value of the incident field U in the imaging

region. The solution of this equation solves the forward modeling problem. By the same
method, we can also obtain the Green's function G(r,,r) by putting a point source at the

receiver position r, and applying the reciprocity principle. Because U(r) is dependent on
m(r), Eqn. (2) is a non-linear system in m(r). In order to derive an analytic inversion

solution, various linearized methods based on the Born approximation have been derived
(Wu and Toksoz, 1987, Harris, 1987, and Harris and Wang, 1993). Next, we will solve

the inverse problem by using a non-linear iterative method.

NON-LINEAR ITERATIVE INVERSION

Suppose that the observed wave field is U°(r,,r,,®,) (1<s<S,1<g<G,1<I<L).
We wish to use these observed data to determine a model M=(m,,m,,---,m, ) from which
the corresponding calculated wave field matches the observed wave field. Therefore, we
should have a measure of fit, that is, we should establish a measure for assessing the

degree of mismatch between the observed data and synthetic data. We choose the squared
L2 norm of the observed and calculated data, that is, our goal is to minimize the function

J(M) = %2 Y Z”Uo(rs,rg,(o,)— UC(rg,rg, ®)I2=minimum (5)
s g I

where U° and U° are measured field data and calculated field data, respectively. The wave

equation inverse problem in crosswell geometry is not only nonlinear, but extremely non

unique, that is, ill-posed. In order to derive a stable solution of the inverse problem and
prevent unrealistic behavior of the model parameters, we impose some form of

regularization condition to Eqn. (5) as follows:

N G L
o)=Y Y NNUO(rg.rg.0) = US(rg,rg, @2 + AH(M) = minimum (6)

g !

where H(M) is the regularization term, e.g., a smoothing operator. Then, we use steepest
gradient method, conjugate gradients. Eqn. (6) is quadratic function, therefore, not only
the first derivative, but also the second derivative are required. A subspace method
(Kennet, etc., 1987, Skilling, et al, 1987) in which the Hessian matrix is used will be

utilized to solve equation (6) in our paper.
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In the subspace method, the current model is updated by a small mode! perturbation

which is determined in a small subspace, that is

M@+ =MD+ AM@D (7)

AM(D = xe, + x,e, + x,€, (8)

where e,,e, and e,are the basis of the subspace, and they are

2
J KM ey =y 2L 9 ©

d
(@), = —8—11-17’ (€2), = om, = dm,om, dm,

and x;,x, and x, can be determined by the subspace method (Skilling,1984, Kennet, et al,
1987).

We can see that one of main points of the inversion step is the calculation of the Frechét
derivative and the second derivative of the quadratic function. After the wave fields are
calculated in the current background media, the total wave field at receiver array can be

expressed as

Us(r,r,,0)=U"(x,r,0)+ Y Am (j=LL ,G-5) (10)
J

where

Ay ==[[RU (r,, 1, 0)G(r, v, 0)dr (11)
Q,

Therefore, the Frechét derivative for inversion and the second derivative of the objective

function can be easily expressed as

SGL
gnJT,- = YR [RUD = RUD]+ 10410 = 107)] )
82] SGL

om,om, - EI‘[R(A”) “R(A,) +I(Ay) - R(A)] (13)

4
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where R and I means taking real part and imaginary part. S, G, and L are the total number
of the discrete sources, receivers, and frequencies.

Because analytical formulas for the Frechét derivative can be obtained for our numerical
method, we use them to invert the model by non-linear iterative methods of Eqns. (7) - (8).
In addition, when we reconstruct the velocity, three overlapping grids are used to
implement the reconstruction. The velocities at the largest grid spacing are reconstructed
first, then the velocities at the middle grid, and finally at the smallest grid. Therefore, the
following problem should be solved by subspace method:

s G L
oM) =1 S IU9(rg,rg,®) = UC(rg,rg.®)llp + AH(M,)=minimum  (14)

g 1

WU (rs,rg, ) — U (rs,rg, @2 + AH(M,)=minimum  (15)

oM,)=1Y 3

S

NM,p

WUO(rs,rg,®,) = UC(rs.rg, @)l + AH(M,)=minimum  (16)

NM,}:

S G
oM =13y

N

where M;,M, and M, are the model vectors for the first, the second grid and third grid,

respectively. L,,L, and L; are the numbers of frequencies used in the first, second and

third grids. After the velocities on smallest grid are reconstructed, the inversion stops.
INVERSION WITH SYNTHETIC DATA

Fig. 1 is a model for the crosswell geometry. The velocities in each region is shown. The
minimum velocity is 5000 m/s, the maximum 5750 m/s, and the range of the variation is
15%. In the forward calculation, the image region is divided into 20 x50 pixels, where the
width of each pixel is 2 m. We select six frequencies from 100 Hz to 225 Hz in steps of
Af =25 Hz. The forward wave field is produced by Eqn. (10). In the inversion step, the
image region is divided into three grids. The number of pixels in the first, second and third
grid are 10x25, 14 %35 and 20x50, respectively. Two frequencies of 100 Hz to 125 Hz
were used for the first grid, four frequencies of 100 to 175 Hz for the second grid, and six

frequencies of 100 Hz to 225 Hz for the third grid. Fig. 2 gives the reconstruction results
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using multiple frequencies and the multiple grids with the non-linear wave equation
method. The three frequency bands used 12, 8, and 6 iterations, respectively. Fig. 3 is
the reconstruction result using single frequency of 225 Hz for 20x50 pixels.
Comparing Figs. 2 and 3, we can see that the velocity in each region of Fig. 2 is more
homogeneous than that of Fig. 3, that is the multi-frequency results are more accurate with

fewer artifacts.
CONCLUSIONS

In this paper we have presented a non-linear multi-frequency inversion method of wave
equation tomography. Our goal is to reduce the value of the misfit function which
describes the mismatch between the observed total wave field data and the corresponding
calculated data below a threshold determined by the errors in the observations. This goal is
implemented by a subspace method. This method is a powerful technique which does not
have the limitations of linear diffraction tomography. It does not require the removal of the
incident field before inversion. When multi-frequency wave equation is applied to
crosswell imaging, the precision of reconstruction is better than the single frequency

method and the time for inversion is not significantly increased.
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TOMOGRAPHY AND TOMOGRAPHIC MIGRATION
USING RAY THEORY

Jerry M. Harris and Feng Yin

ABSTRACT

In this paper, we present wavefield tomography methods based on asymptotic ray
theory. We introduce the concept of the wavefield tomography operator and compare it
with traditional tomography methods. When the scattered fields, after being processed by
a correlation procedure, are operated on with the tomography operator, we get an image
of the velocity perturbation relative to a velocity background. If instead we input
separated up-going and down-going reflection data into our tomography operator, we can
get an image of reflectivity. With this general idea, we can develop and use tomographic
reconstruction operators and algorithms not only for velocity inversion, but also for
migration imaging. In the last part of this paper, we present simulation results and an
example using real crosswell reflection field data. The results confirm that the algorithms

are useful for crosswell imaging.

INTRODUCTION

Wave equation tomography is increasingly finding a place in crosswell data
processing. Wave equation tomography methods, based on full wave theory, can be
implemented in the time domain or in the frequency domain. In frequency domain, there
1s a very large matrix that occupies extremely large computer memory to be inverted
(Harris and Yin, 1994). In the time domain, forward and back propagation computations
cost too much CPU time (Tarantola, 1984) and also occupy significant computer
memory. In addition, when the frequency is very high, we must sample the imaging
region into many pixels or nodes and calculate the fields and Green's functions at this fine
scale. To avoid these problems, wave equation inversion methods using asymptotic ray
theory have been introduced (Beylkin, 1985, Miller, et. al., 1987, Yin, 1993).
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The methods described herein are based on the full wave theory. We use a Ly
norm objective function derived for multiple frequencies for the observed wavefield
minus the calculated wavefield. Then, we can use a Frechét derivative of this objective
function to update the velocity relative to a background medium as in the paper by Harris
and Yin (1994). Due to some disadvantages of full wave theory tomography as we
mentioned above, we prefer to use asymptotic ray theory which is not only suitable for
velocity inversion but also for migration imaging. With ray theory, the phase of the
Green's function in the background medium can be calculated accurately and we do not
need to compute the fields many pixel locations or nodes, e.g. as with moment methods
and finite difference methods. This advantage is very important in field data applications.

By applying the geometrical optical approximation and inverse Fourier transform
to the Frechét derivative of our L) norm objective function, we obtain the Frechét
derivative represented by wavefield data in time domain and use this function for velocity
inversion. In order to understand the physical meaning of this function for inversion, we
compare the result with traditional traveltime tomography. We find that the Frechét
derivative corresponds to simple backprojection tomography (BPT) as it is applied to
traveltime data (Herman, 1980). In traveltime BPT, traveltime data are backprojected
into the image region along raypaths, but in this case, the scattering data are
backprojected into the image region along isochronic lines. We call this procedure the
tomographic operator, and accordingly the Frechét derivative is the local linearized BPT
tomographic wavefield operator. In this way, we can develop many wavefield

tomography operators for inversion. In this paper, we consider only the SIRT operator.

In addition, from the Fréchét derivative, we can see that a correlation process on

the wavefield data is required. This is one of the main characteristics in these methods.
If we omit this correlation term, we must separate up-going and down-going wave before
the tomographic operator is applied to the wavefield. Otherwise, the image will be
contain many artifacts because of mispositioning of waveforms at the boundaries of
heterogeneities.

We find that if we input the scattering field data into our tomography operators,
we can get velocity perturbation image; therefore, we call this procedure wavefield
tomography. If we input the separated up-going and down-going reflection data, or
reflection data after being processed by a correlation procedure, we obtain as image
which is similar to that obtained from migration; therefore, we call this image
tomographic migration. We applied our algorithms to synthetic data and field crosswell

data. The results show that these methods are extremely useful.
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WAVEFIELD TOMOGRAPHY AND TOMOGRAPHIC MIGRATION

The goal of the non-linear wave equation tomography is to minimize the Ly norm

objective function:

Q G S
Jmy==Y > D Wu(r,.r,,0)—u(r,.r,, o), (1)

s

N |-

where u®and u® are the observed and calculated wavefield in frequency domain, w and s

and g denote the frequency and source and receiver locations, and

u’(r,o)—u’(r,m)= —a)zS(a))_[ i°(r', @)m(x")G(r,,r’, w)dr’, 2)
14
bc,y(r) : o : L
wherem(r) = (1) ¢,(r) is the velocity in the background media. The wavefield in
c(r

this background medium is u‘(r)=S(w) i° , where S(w) is the spectrum of the source

function. The Frechét derivative can be derived as

aJ ) . .
= = S c )G , S r,
. gga) [S(w)i (r,r,)G(r,r,)]" du(r,,r,, 0) .

where éu=u’-u°, + denotes conjugate. Then, we can use above derivative to update the

,,,hnc](,grnnnd model qe,fn]]n‘xl,ing,,

aJ
9D = o@D 4 o

om. “4)

We have implemented the above method as in the paper (Harris and Yin, 1994).
However, the total field i°(r,r,, ®) must be evaluated for each frequency. Because our
method is derived in the frequency domain, it is non-local in space and thus requires
much computer time and memory to implement. To avoid these computation problems,
we applied geometrical optical and the Born approximation to implement our method in
the time domain. In the time domain, the finite speed of propagation of waves is used to
restrict the domain of influence at an image point.

Using geometrical optics, the Born approximation, and the inverse Fourier

transform, the above expression for Frechét derivative can be written as
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aJ

_=z, Z[a(rs—,rr,rg)]&:t(rs,rg,r(r LT ) - (5)
om & o s e
where
Su = S(—£) * 8(t) * Bu(r,,x, 7(x ,1,r ) (6)
6b_¢(rs,rg,t) = I m(ru’(r,r,,t)* G(r,,1Ir’,0)dr’ €))

\4

where a(r,,r,r,) =A(r,r)ATr,), 7(r,,r,r,)=T(r,r)+T(rr,), and A and T satisfy the

transport and eikonal equations, respectively. Using the geometrical optics

approximation, we have

E(rs,rg,t) = J m(r )a(r,,r ,r)6(t - 7(r,,r ,r,)dr’ (8)

\4
From equations (5)-(6), we can see that a correlation procedure must be applied to
the source function in wavefield tomography in order to obtain a zero phase time function
W(t)=S(—t)*S(t); therefore, the convolution between W(t) and @(rs,rg,t) does not
change the phase of E(rs,rg,t). and it is not necessary to separate the down-going

wavefield from the up-going wavefield in wavefield tomography method. This
separation step is usually required in cross-hole migration. In addition, although the
forward calculation of the wavefield requires accurate computation of »¢ and updating

~—=——the-model-using-equation—(4)-is—done-repeatedly, we-can reach -the-goal of velocity

TITVerSIon—"wie re—ftnction —tends—to—zero—We—ean—also—condy one—iteration

inversion for imaging a velocity perturbation under the linear assumption, using equation
(5).

After we compare equation (5) with simple traveltime backprojection tomography
(BPT), we find that equation (5) is almost the same as traveltime BPT except for the
weight. In traveltime BPT, we backproject the traveltime along the ray path. In

wavefield imaging, we backproject the wavefield & ;(rs,rg,t) along isochronic lines with
the specified weight. So we call the right hand side of equation (5) the BPT wavefield
tomography operator. Whenever it acts on the wavefield 6;(rs,rg,t), we can get the
velocity perturbation. The forward operator corresponding to this tomography operator is
Eu(rs,rg,t) = J %a(rg,r' ,Ig)O(t — T(rg,r' ,Tg)dr’ 9
\4
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In order to improve the image resolution, we can also modify the weight when we

backproject the wavefield & ;(rs,rg,t) along isochronic lines and develop other methods
to invert for function f(r)=aa—J. Next, we will develop SIRT wavefield tomography to
m

invert for function f(r) as follows.
Considering the kth jsochronic plane I(t,), the equation (9) can be discretized as

d=) cp [, (10)

where
Cor =2a(lkm)-pnkm-As (12)

where dk is the kth sampling point of the wavefield 6;(rs,rg,t), a(lxm) is the value of the
amplitude a(rg,r' ,I's) at the point lkm, Ppuim i the pulse basis function, As is the integral

step. Then, we have the following SIRT iterative form for f(r)

Cu

fOD =@ 4By b (d, - Y ) 2, (13)
k kn n

c

n

where, f is a damping factor, z, is the non-zero numbers of ¢, (1<k<L-S-R). We call
the above inversion method the SIRT wavefield tomography operator. To use this
operator, we m know the isochronic lines in the background media for distribution of
f(r) along it.

The BPT and SIRT wavefield tomography operators for velocity perturbation are
obtained next. By comparing the inverse Radon transform(IRT) method(Miller, 1987) with
traditional traveltime tomography, we know that the method corresponds to the convolution
filtered backprojection tomography method for traveltimes. For wavefield data, this would
become IRT tomography wavefield operator. When we input the scattering data into each
tomography operator, we can output the velocity perturbation related to the current
background. All of the above methods are fast and accurate inversions.

But as we know, sometime, we are not only interested in velocity inversion, but also
in geometry in the imaging region. Next we will extend our tomography operators to invert

for geometry in the imaging region.
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If we omit the correlation procedure in above inversion equations, and directly

input the raw reflection data into our BPT wavefield tomography operator, we have

aJ
o Y la(r,.r,r )lref (r,,r,, w(r,rr )l (14)
5,8

Also, if we don't separate down-going and up-going wave and use equation (14) to
backproject the reflection data into model space directly, we will obtain many artifacts for
the reflectivity of a given layer. This is because reflections from opposite directions take
opposite signs when viewed from above or below the layer (Hu, 1988). If we modify

equation (14) as follow

aJ*”

£ =gg‘a(rs,r,rg)ref””(rs,rg,r(rs,r,rg)) (15)
oI —Za(r r,r ref*"(r_,r,, o( (16)
om & e 20 )

then, we can get the migration image which represents reflectivity. This means if we input
up-going or down-going wavefield into our wavefield tomography operator, we can get a
migration image so we call the procedure tomographic migration. The operators are first
developed for velocity inversion, but we apply them to reflection data to get the geometry
image. We use Fig. 1 to show how the wave tomography operators for velocity inversion

compare with migration imaging.

SYNTHETIC AND REAL DATA TESTS

A synthetic model for crosswell imaging is presented in Fig. 2. We placed 40
sources in the left hole and 40 receivers in the right hole. We then use a ray method to
produce the scattering field data and use our BPT operator to get the velocity perturbation
picture as shown in Fig. 3. Next, we place three sources on the surface and locate 40
receivers in left hole and 40 receivers in the right hole. If we don't correlate the scattering
data, using the time function S(—t), and use our BPT and SIRT operators, we get the
results shown in Fig. 4 and Fig. 5, respectively. These represent geometry images of the
scattering region. From Fig. 5, we can see if we also put sources on the bottom and don't
correlate with the time function S(—t), and input the scattering field excited by both the
top and bottom sources, we will get a null picture, i.e., the top and bottom data will

cancel.
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CONCLUSIONS

In order to obtain a high resolution inversion image and save computation time
and computer memory, two wavefield tomography operators using asymptotic ray theory
have been developed. Through demonstration with a synthetic example and the field data
example, we believe that our methods will become very useful tools not only for velocity
inversion but also for migration imaging. Next we will apply our BPT and SIRT
wavefield tomography operators to real scattering field data for velocity perturbation

inversion.
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Figure 2:A scattering model for computer Figure 3: Velocity perturbation image by
simulation. SIRT wave field tomography operator

Figure 4: Geometry image of the scattering Figure 5: Geometry imaging of the scattering
region by BPT wave field Region by SIRT wave field tomography
tomography operator operator
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WAVEFORM TOMOGRAPHY FOR TWO
PARAMETERS IN ELASTIC MEDIA

Feng Yin

ABSTRACT

In this paper, we developed one waveform tomography method for P velocity and
density inversion in elastic media. Starting from the elastic wave equation, we derived
one P wave equation which includes the scattered terms of P-wave to P-wave conversion
and S-wave to P-wave conversion. By discretizing the scattering integral equation
corresponding to this equation directly, we can obtain one equation corresponding to
each point on the waveform. The result of this formulation is a very large system of
algebraic equations that is solved using ART and SIRT. The results of computational
simulation applied to cross-hole geometry show that our method is valid when the
velocity and density perturbation is not very large. Next we will extend this method to

heterogeneous media and apply it to real field data.
INTRODUCTION

Recently, the wave equation tomography methods based on acoustical wave
equation have been applied to the real cross-hole data (Harris and Wang,1993).
Therefore, these methods become more attractive in the inversion field. But, there are
many complicated wave events contained in seismogram data, e.g., S wave, mode
converted wave, Rayleigh waves, etc. , which can not be described by an acoustical
equation. However, each of the different events provides useful information about the
subsurface compressional and shear wave velocities and all these events can be modeled
well by the elastic wave equation. Therefore, we should develop the inversion methods
based on elastic wave equation to obtain more physical parameters of the media. In
elastic wave equation inversion studies, one method is to find the parameters (P- and S-

wave velocities and density) that minimize the square error between the wavefield
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computed using this model and the observed wavefield (Tarantola, 1984; Mora, 1986).
But in this method, the seismogram must be calculated by solving the 2D elastic wave
equation numerically in each iteration, therefore, the computation of this method is very
costly. In order to simplify the inverse problem, some researchers considered a one
dimensional inverse problems (Norton and Testard, 1988) and obtained a better inversion
solution. However, the media of the earth usually are two dimensional, and in this case,
this method is unvalid. Additionally, some only used the SH wave in their inversion
method (Hooshyer and Weglein, 1986). In this case, the equation for inversion can be
reduced to a scalar equation, but the SH wave is independent of P wave and SV wave,
and therefore, the SH wave can only invert shear modulas and density. In order to obtain
Lamé parameters and density in two dimensional elastic media effectively, we should
develop the inversion methods based on the P wave equation.

In this paper, starting from the 2D isotropic inhomogeneous elastic wave equation,
the scattering theory in weak inhomogenous media is studied. We also establish a scalar P
wave equation which includes the scattered terms of P-wave to P-wave conversion and S-
wave to P-wave conversion. From this equation, a scattering integral equation in the
frequency domain is derived. Under the Born and geometrical optical approximation, we
show how the time-domain scattered fields can be related to density and velocity
perturbations through a generalized Radon transform. Therefore, time-domain P-wave
scattered fields can be used as projection data to relate each point in the scattered
waveform to the elastic parameters. The result of this formulation is a very large system
of algebraic equations that is solved using ART and SIRT. The algorithm is tested on
numerically simulated data generated for the cross-hole geometry of sources and
receivers. The test results illustrate the ease of implementation and robustness of the

method.

THEORY OF P WAVE SCATTERING IN WEAK
INHOMOGENEOUS MEDIA

From 2D isotropic inhomogeneous elastic wave equation, we have

d*u _

= c2V(V-u) -2V x(V xu) +%[(V/’L)V -+ (V) -(Vu) +(Va)- (V)] (1)

where u=u(x,t), it is displacement field, C,s €, are velocity of P wave and S wave,

U, A,p are shear modula, Lame parameter and density of elastic media.
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Assuming that the background is homogeneous and its elastic parameters are
cio,cfo,/'to,uo, P, » and corresponding perturbation parameters due to heterogeneities are

8¢, 8¢, 6A, 61,and 6p, we have

c;=c§0+60§ , csz=c520+5cs2 ,
A=A, +0A, u=pu,+éu, )
and p=p, + p.

Putting equation(2) into equation (1), we have

du 5
?‘=CPOV(V'II)—CJOVX(VXU)-FB, 3)
where

B=36c2V(V-u)- 8¢V x(Vxu)+ i[(vm)(vu) +(Véu)-(Vu) +(Vu) - (V)] . (4)

0

By defining
=V u(x,t) (5)

and taking divergence of both sides of equation (3), we have

I’
or?

-, V’®@=V-B (6)

where

V-B=V-[(26¢; + i—pcjo)]Vcb —(6c +%C;O)V2®

0 0
-V [(26c2 + % %B)V x (V xu)] (7)
0

in which the second derivative of dA,d0u and dp with respect to space position are

omitted due to the weak inhomogeneous media assumption.
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By taking the Fourier transform over time t on both sides of equation (7), we derive

the equation in frequency domain,

V'O + k2,0 = —év-f;, (8)

CpO

where @ and B are the Fourier transform of @ and B with respect to time t.

By defining
b (x)=28c; / c5+8p/p, , 9)
by(x)=6c2/cy+8plp,, (10)
b3(x)=25c§/c§0+c30/c§0@, (11)

0

>

therefore, equation (8) can be recast as

V2O + k2@ ==V [ (x)VO]+ b,(x)V2D + V- [b,(x)V x (V x w)] (12)

In the right hand side of above equation, there are three terms, the first two terms belong
to the scattering sources of P to P wave, the third term comes from the S wave to P wave
conversion due to the inhomogeneous perturbation in elastic media.

Let

o=, +P_, (13)
where ®,, is the incident field in the background media, which satisfies

VD, + k@, =s(0)8(x—x,) . (14)

In this equation s(®) is source function, x_ is the position of the source, and the

scattering field ®,, can be expressed as

d_(x,k

p

0)==S(@)- [dx'{V - (b,(x')V®) - b,(x)V?D
Q

-V [5,(x")V x (Vxw)}G(x,x’,k ) (15)

where G(x,x’,kpo) is the Green function, which satisfies
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V2G, + k4G, = 6(x —X') (16)

From equation (15), we know that the scattering fields are produced by three perturbation
parameters. Next we will develop one waveform tomography method to invert for
parameters b;(x) and b,(x). For by(x) inversion, the S wave scattering problem should

be consider, it will be studied in the future.
WAVEFORM TOMOGRAPHY METHOD FOR P VELOCITY AND DENSITY

In our imaging method, the P wave point source is used to illuminate the object
region. Then, applying the Born approximation to equation (15), the total field @ and u

in the integral equation (15) can be replaced by incident field &Dm and w,,, where u,, is

displacement field of incident P wave. Therefore, V x u=0 in equation (15), and the third
term is omitted. Notice that &)m satisfies equation (14),. Therefore, the second term in

equation (15) can be simplified as

—[dx'b,(x)V?®,G(x, X' k) = k2, [ dx'b, (), G(x, X', K2) . (17)
Under the Born approximation, equation (15) can be expressed as

@ (x,k

p

o) =—S(w)- jdx'{v (B, + kb, (X)), }G(x, X, k) (18)
Q

Applying the geometrical optical approximation, we have

&)xc(x,k

p

0) = =S()- [ dx'{V - (B (X' )VA(X', X, )e ™ )
Q

Hpoby (XA, %, )e ™) - A x)e TN L (19)
where the amplitude A and travel time T satisfy the transport equation and eikonal
equation, respectively.

By using Green's theorem in the plane and assuming that b, and b, =0 on the

boundary of the imaging region, we have
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D, (x,k,0) = i0S(®) j dx'a(x, X", x,)(b,(X) - cos(0) + b, (x"))e T (20)
Q
where
a(x,x’",x;) = A(X",x,)A(x,x") / ¢, 20
7(x,x’,x,) =T(x",x,) + T(x,x’) . (22)

and 6 is the angle between VT(x’,x,) and VT(x,x’) .
Taking the inverse Fourier transform of both sides of equation (22), we obtain the

scattering field in time domain as

D _(x,1)=W()* jdx’a(x,x’,xs)(bl (x")-cos(0) + b, (x))6(t — 1(x,X’,X,))
Q

=W(t)* J.I(T)a(x,x’,xx )(B,(X)cos(6) + b, (x))ds (23)

where W(#)=S’(t), convolution is denoted by *. The above equation is called a
generalized Radon transform. I(7) is an isochronic plane with a fixed time 7, from
which the perturbation parameters can be related to the waveform. For each point on the
waveform, we can derive one equation for inversion. For each pair of source and receiver
(x,X,), all the isochronic lines can cover the object region. when the spatial position of

the source or receiver is moved, the direction of set of isochronic lines belonging to the
same pair of source and receiver (X,X,) is changed. Therefore, the projection in different

direction can be derived, and we can use the waveform as a projection to invert for the

elastic parameters.
Considering kth isochronic plane I(z,), equation (23) can be discetized as

d, =W, * Y ally,) (b, (4,)c08(8,,) + b (I,)As  (1SkSKI1<Sm<M) (24)

where d, = ®_(x,X,.t,), W, =W(,), K=LxSXR, L, S and R are the total number of
sampling points on the waveform, source and receiver, [, is the length of kth isochronic
line from the first point to mthpoint , M is the total numbers of the integral step along mth
isochronic line, a(l,,), b/(l,,) and b,(l,,) are the values of a(x,x’,x,), b (x’) and
b,(x’) atl,, 6,, is the value of @ at point [, and As is the integral step. The object

region is divided into IxJ pixels. When the coordinate of [, satisfies,
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iAx < x<(i+1DAx, iAz<z<(i+1)Az, where Ax and Az are the width of pixel in x and
z direction, 1<i<[I,1<j<J.

By defining
1 when n=((-1)XJ+i
pnkm = (25)
0 when n#(j-1)XJ+i
we have
5(l) = D Pt b1 (1<n<IxJ) (26)
5,(1y) =D Prion " b2 (1<n<IxJ), (27)

where b, and b,, are the values of b(x) and b,(x") at nth pixel. Puting equations (25)-
(27) into equation (24), we have

d=W,* z(clkn by, + ¢y, by,) (28)
where
clkn = Za(lkm) ’ pnkm ’ AS (29)
Cotn = 2, A0) Prin - €OS(6,,) - As (30)
Let

Ciin When 1Sn<IXJ
3D

8n
Coy When IXJ<n<2xIXJ

b, when 1<n<IXxJ

S = (32)

b, when IXJ<n<2xIxXJ

n

Then equation (28) can be written as

21

deWk*ngn'fn (33)

Let
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by, = Z W18 (1si<L) (34)

then equation (33) can be written as

21

d,=> h, f, (35)

From equation (35), we can invert for P velocity and density using the waveform as the
projection. In order to solve equation (35) effectively, the algorithms ART and SIRT are
used to solve equation (35) to get the fast execution speed of the inversion. Then we have
the following ART and SIRT iterative form:

f(q+1) = f(q) + ath (d zh f ) (36)
kn

[l = f<q’+/32Z —(d, Zh )z, (37)

where o, 8 are the weight factors, z, is the non-zero numbers of A, (1<k<L-S-R).

By the above methods, the waveform can be used as the projection to invert for the
parameters b,(x) and b,(x), and the P velocity and density can be obtained from them.

COMPUTATION SIMULATION

Now we apply the above method to the cross-well imaging system. At first, three
sources are located on the surface to illuminate the imaging region, and for each source,
20 receivers located in the left well at x=-50m and 20 receivers located in right well at
x=50m are used to receive the signal, respectively, Then 10 sources located in left well
are used to illuminate the imaging region, and 20 receivers located in right well are used
to receive the signal. The depth of the well is 200m. The source function we used is a
ricker wavelet, the center frequency is 200 Hz. The imaging region is divided into 20 by
20 pixels, where he width of each pixel is 3 meters. Figure 1 and figure 2 are the P
velocity and density perturbation models for the reconstruction test. The parameters of
the background are: c,, = 2500 m/s, p,=2.3 g/ cm’ .The perturbation of P velocity and

density are 10% with respect to the background values. Figure 3 and figure 4 are the
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inverted results of P reconstruction and density by SIRT. Figure 5 and figure 6 are the
reconstruction results of P velocity and density by ART. From figure 4 and figure 6, we
can see the vertical resolution is not high in this imaging geometry. This is because there
are not enough projections in the vertical direction. From the reconstruction results, we
can see that the tomography results derived by SIRT are better than that by ART.

2750 m/s

2500 m/s

Figure 1. The synthetic P wave velocity model Figure 2. The synthetic density model

. 2710 m/s 2.49 g/cm3

2500 m/s

2.3 g/cm3

Figure 3. P velocity reconstructed result Figure 4. Density reconstructed result

by SIRT method by SIRT
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2812 m/s 2.46 g/cm3

2500 m/s

Figure 5. P velocity reconstructed result Figure 6. Density reconstructed result
by ART method by ART
CONCLUSIONS

A new waveform tomography for P velocity and density in elastic media is put
forward in this paper. Although the elastic wave equation inversion is a very complicated
mathematics problem; this problem can be simplified immensely. Under the Born and
geometrical optics approximation when starting from P wave equation, the waveform
data can be related to the perturbation of P velocity and density by a generalized Radon
transform. For each point on the waveform, discretizing this Radon transform can lead to
one equation for these two parameters. Then back projection methods ART and SIRT are
used to solve such a huge system. The numerical results show that this method is very
robust to reconstruct P velocity and density. Although the Born approximation in real
data application is limited, the main structure in the media can be estimated by use of it.
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DIFFRACTION TOMOGRAPHY
USING MULTISCALE FOURIER TRANSFORMS

Guan Y. Wang
ABSTRACT

To overcome the difficulty resulting from a strongly non-uniform medium, a
variable background is chosen to maintain a weak contrast between the scatterers and the
background so that the single scattering approximation is still valid. Assuming that the
amplitude variation of the wave field, due to propagation, is less than the phases, the Green's
function of variable background can be treated as the Green's function associated with a
constant reference background modified by a phase distortion function. The spectrum of
the scattering field is expressed as a planar integral of harmonic oscillators. Each oscillator
possesses an amplitude consisting of the scattering potential and a nonlinear phase. The
phase factor is further expanded into Fourier series. The inverse Fourier transform applied
to the filtered spectrum of the measurements is equivalently applied to each harmonic
component in the series which results in multiscale images. The complete image is

obtained, via Mobius transform, with those multiscale images.
INTRODUCTION

The image reconstructed with the ray tomography has the resolution only on the
scale of first Fresnel zone even for full aperture. When a higher resolution result is
required, such as in reservoir imaging, other wave phenomena should also be utilized in
addition to transmission traveltimes. The resolution of the reconstruction with diffraction
tomography is about one wavelength. The existing diffraction tomographic inversions are
mainly based on plane wave expansion and Fourier transform techniques for uniform
background medium (Devaney, 1982, Harris, 1987, Wu and Toksoz, 1987). Such methods
are simple to implement but do not work well when the background medium is strongly
non-uniform. One way to overcome the problem of the strong inhomogeneity of the
medium is to apply the distorted Born approximation (Devaney, et al. 1983). This consists
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of adopting a variable background to maintain a weak contrast between the perturbation and
the background medium. However, under the distorted Born approximation, the difficulty is
not only how to find the Green’s function associated with the variable background but also
the Green’s function generally has little use for utilizing Fourier transform techniques to
reconstruct images. This is why most proposed algorithms dealing with variable
background are restricted to some special case. For example, the case of 1-D medium in
which the problem is greatly simplified (Dickens, 1992, Huan, 1992).

By introducing a reference medium and the WKBIJ Green’s functions, and
assuming the amplitude variations due to the variation of the background is less the phases,
we reformulate the inverse scattering problem of an arbitrary 2-D host medium such that the
spectrum of the scattered field is expressed as a planar integral of harmonic oscillators. The
oscillator possesses an amplitude which consists of the scattering potential and a nonlinear
phase. In order to utilize Fourier transform reconstruction techniques, the phase factor is
expanded into Fourier series. The inverse Fourier transform applied to the spectrum of the
measurements is equivalently applied to each harmonic component in the series which leads
to the construction of the images with different scales. The complete image is combined, via
Mobius inversion, from those components with different scales. The reconstruction
algorithm is essentially the same as that of Fourier diffraction tomography for a constant
host medium, except that we first construct the images with different scales and then

combine them together.

SPECTRUM OF SCATTERED FIELD
FROM A HARMONIC OSCILLATOR MODEL

For a variable background medium, the scattered field generated by an
inhomogeneity perturbed over a variable background can be written as

u(s,8)= [ o(ru(r,s)G(g.r)dr (1)

where G is the Green’s function of the background. With distorted Born approximation,

the equation (1) is liberalized as

u(s,8) = [ o(r)G(r,5)G(g.r)dr @)
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Generally, it is difficult to find the Green's G function associated with the variable
background. By introducing the Green’s functions of a constant reference background, we

can rewrite equation (2) as

G(r,5)G(g,r)

G(r.9)Gle.r) G(r,s)G(g,r)dr, 3)

u*(s,8)= | o(r)

where G(r,s) and G(g,r) are the Green's functions associating with the reference
G(r,s)é(g,r)

with corresponding
G(r,s)G(g,r)

background. By replacing the Green’s functions in

WKBJ forms,

G(r,r )= A(r,r )e*"") and Glrr)=r— ! 'Ie—”‘"'-"',
r—r

and neglecting the variation of the amplitude due to the variation of the background, i.e.,

assuming

A(r,s) ~1, and A(g,r) ~1
Ir—sl fg—rl

2

we have

G(r.9)G(&.r) _ o

G(r,s)G(g.7) @

where ¢(r) is the phase distortion resulting from the “variation” of the background

medium. Substituting (4) into equation (3) leads to

u“(s,8) = [ o(e®*VG(r,5)G(g,r)dr. ©)

We can see that equation (5) is the same as in the case of the uniform background medium,
except that the integrand is modified by a phase distortion function. In a 2-D medium with

a line source, the Green’s function is the Hankel function of first kind and zero order, i.e.,

G(r,r')= iHél)(lzlr—r' D.
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Taking the Fourier transform of equation (5) over s and g , which is decomposing the

cylindrical wave into plane waves, we have

usc (ks,kg )4 yx,}/ge—i(yxd_‘.+'}’gdg) — J. O(r)e—ik(r)-rdr, (6)

where dy, - d, is the separation between source and receiver well, y, =+/k>—k? and

Ve =k>—k . k=(k,k,)=(y, 7.k +k,) is the wave vector in the reference medium.
Av(r)

The resultant wave vector k(r) =k (1— ), where Av(r) is the variation on the top of the

reference medium V. The equation (6) states that the spectrum of the scattered field is

—ik(r)r

generated equivalently by an “harmonic oscillator” o(r)e located at each image point.

The oscillator possesses the amplitude o(r) and the nonlinear phase ¢(r) =k(r)-r.

RECONSTRUCTION WITH MULTISCALE
FOURIER TRANSFORMS

Equation (6) is not a conventional Fourier type integral, since the resultant wave
vector k(r) is spatially variant. We can not directly reconstruct the scattering potential
function o(r) via the inverse Fourier transform. One way to overcome this difficulty is to
expand phase function p(x,z)=e™®?**:®94 intg a Fourier series with k as the
fundamental wave number, and then treat each harmonic separately. Notice that p(x,z) is
defined in the rectangle region 0<x< L, 0<z< H. If we extend p(x,z) into a periodic
odd function with periods of L and H in the horizontal and vertical directions respectively,

ie.,
p(x,2) 0<x<L, 0<z<H
—p(—x,2 —-L<x<0,0<z<H
odd(x,5)=1 P
_P(x,_z) OS.XSL, —H<z<0
p(-x,—z7) ~—-L<x<0, —H<z<0,
and

odd(x+2L,z)=odd(x,z7)
odd(x,z+2H) = odd(x,z), X,2 € (-00,0)

then the finite sine transform of odd(x,z) can be written as
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4 Lo

P(m,n) = —_” p(x,z)sin(k mx)sin(k,nz)dxdz ,
LxH:yy

where L and H are the width and height of the image domain respectively. With the above

definitions, we can expand p(x,z) as

p(x,2) = i P(m,n)sin(k,mx)sin(k_nz). (7)

m,n=1

Substituting expansion (7) into equation (6) and interchanging the order of the summation

and integration we obtain

=iy d;+Ygdy) _
u“(ks,kg)4ysyge 8787 =

> _ _ 8
ZP(m,n)_[ o(x,z)sin(k mx)sin(knz)}dxdz. ®

m,n=1

From equation (8) we can see that the filtered spectrum of the measurement on the left side
of the equation is related to a series of weighted multiresolution potential spectra on the
right side. Taking the inverse Fourier transform to both sides of equation (8) we obtain

FT7 {w (k,. k)47, Y, e " 71Tk ko k) =
- _ _ —x —7 > 9)
O LA Y B 4 Y A S

—4 mn m n m n m n

n=1

where J(k Jkooky) is the Jacobean transformation from (EX,EZ) to (k,,k,). Notice that the

average value of the image is not computed correctly by the finite algorithm, since it will
evaluate the spectrum at the origin as zero. The D.C. component of the image is restored by
computing it directly form the data as 4u*(0,0)e ** / L x H.

In the case of a constant background medium, equation (9) would be the
reconstructed scattering potential function. Now, after the inverse Fourier transform is
applied to equation (9), instead of the potential function itself, a summation of multiscale
components of the potential function is reconstructed. The role of the harmonic indexes m
and n is that of the scale lengths in the Wavelet transforms. Consequently, the component

0(1,_2_) is an image with a specific scale. With large scale length, i.e., small m and n,
m n
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o(i,i) provides a global view, while small scales, i.e., large m and n, 0(_{6_,_Z_) provide
mn mn

increasingly detailed views of smaller subsets of the image. The remaining problem is to

invert equation (9), i.e., to combine those multiscale images into a complete image.
MULTISCALE INVERSION VIA MOBIUS TRANSFORM

We want to invert the scattering potential function o(x,z) using equation (9), which

can be rewritten as

oo

d(x)=— D %o(i,i), (10)

m,n=1

where d(x,z) = FT ' {u*(k, .k )4y,v,e”" """ lJ(K;k,.k,)l}. Losing no generality, we
have assumed o(x,z) = —o(—x,z) = —o(x,—z) = o(—x,—z) in equation (9). According to
Mobius inversion theorem (Hardy, 1979, Chen, N. 1989), if

F@=Y, /) (an
n=1
then
=Y BOIFC), (12)
n=1

where Mobius function

1 n=1
u(n) =41’ n include r distinct prime factors
0 otherwise.

Applying Mobius transform (12) to equation (10) we obtain the complete image of the
scattering potential

_ A pmpm)  x oz
O(x’z)_P(l,l)m,zn;‘l mn d(m’n). (13)
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const.
Note that

. Therefore, the series (13) is absolutely convergent.

d(i,i)/mn <
m n

mn

Equation (13) can be explicitly written as

z plmpn)

m,n=1 mn (14)

J. usc(ks,kg)4,yx,yge-i(7:d;+7gdg)|J(E; k )le e ; dksdkg

o(x2) = P(1 D

X
m

which states that the potential function is reconstructed by summing a series of multiscale
inverse Fourier transforms of the filtered spectra of the measurement.

It is convenient to use u¥(kg,kg, a/n) instead of u*“(nks,nkg, @) in the computation.
It can be show that u5¢( ks,kg, an) = us¢(. nks,nkg, ). Thus,

o(x,2) = P(11 Z ,u(m)u(n)
)mn =1 mn , (15)
n[ w (nk, k)47, 7,e T T IEsnk ke dk d,
_ pmp®)
9= 5 2 mn
and : (16)

n n —i(Pd — ik, Z+k,2)
nJ‘ U ks,kg,2)47’s7’ge (Y:d:+7gdg)|J(k;ks,kg)|e k m k dksdkg
n

CONCLUSIONS

We have presented a formulation of diffraction tomography for variable background
medium which relates the filtered spectrum of the measurement to multiscale spectra of the
scattering potential resulting from the Fourier expansion of the spatially variant phase
function. The potential function is recovered from multiscale components via Mobius
inversion. As well as the applicability to strongly non-uniform medium, the method can be
easily implemented and is computationally efficient, since the algorithm is similar to what is

used in a constant background medium.
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DIFFRACTION TOMOGRAPHIC INVERSION:
FIELD DATA STUDY

Guan Y. Wang

ABSTRACT

The field data from McElroy and King Mountain test sites are studied using
diffraction tomographic inversion techniques. The diffraction tomography methods with
uniform and stratified background media are applied to single frequency wave fields. In the
reconstructed scattering potential and velocity images, the fine scale structures and subtle
dips are apparent but absent in the traveltime tomogram. The results show that diffraction
and scattering inversion techniques have enormous potential in subsurface characterization

and delineation with comparison to the transmission tomography.
INTRODUCTION

Small changes of velocities superimposed on large stratified variations is of interest
to reservoir imaging. The general theory of diffraction indicates that diffraction tomography
has the potential to achieve maximum spatial resolution and minimum image distortion for
crosswell seismic data. In this paper we study the field data from McElroy and King
Mountain test sites in West Texas using diffraction tomographic inversion techniques.
Although powerful, the applications of the diffraction inversion methods are successful only
if the heterogeneity represents small deviations from background, and if the correlation
lengths of these deviations are large compared to a wavelength. With these limitations in
mind, we use diffraction tomography in conjunction with traveltime tomography. Traveltime
tomography does not explicitly depend upon any assumption about the scale, the strength of
the variations in the inhomogeneity, and yields velocities from virtually any starting model.
The resulting images then can be adequately used as reference velocities or the background
model for diffraction tomography. We also account for variable background velocity using
the distorted Born approximation to make the reconstruction more accurate.
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The paper is divided into two sections. In the first section, the methodology used
for the inversion is described briefly. The reconstructed images of McElroy and King
Mountain are presented in section two with the detail discussions and comparison. The
results illustrate the enormous potential of scattering and diffraction inversion techniques to

usefully address reservoir delineation and characterization problems.
METHODOLOGY DESCRIPTIONS

Since diffraction tomography is used to deal with scattered effects, a background or
host medium model is needed to calculate the illuminating field. This is difficult for a real
experiment since the host medium is not known. Our intention is that traveltime and
diffraction tomography should be used in conjunction with each other to provide high
resolution images. Ray tomography does not explicitly depend upon any assumption about
the scale, the strength of the variations in the inhomogeneity, and yields velocities from
virtually any starting model. The resulting images then can be adequately used as reference
velocities or the background model for diffraction tomography. It can be shown that ray
tomography is a special case of diffraction tomography. Therefore, this complementary
nature of two processes is justified. We apply the method of diffraction tomography for a
stratified background medium (Harris and Wang, 1993) to field data from the McElroy
field in West Texas.

In real data, the source functions and coupling factors are unknown. Instead of
directly estimating them, the source function and coupling factors are eliminated by
normalizing the amplitude of the wave field at the nearest offset receiver position according
to the corresponding geometrical spreading. The amplitudes of the wave field at the rest of
receiver positions are normalized relative to the one at the nearest offset. The rationale is
that the diffraction tomography does not necessarily require good amplitude information to
be effective, even though its performance would be enhanced by good amplitude
information. The phase of Fourier transforms carries essential information about the object.
A shift of an object in the space leads to a shift of the phase in Fourier wavenumber domain.

We are aware that multiple frequency reconstruction could enhance the quality of
the image. It would be ideal to stack coherently to enhance desired features, and
incoherently to get rid of unwanted distortions. But a coherent multi-frequency stacking
may involve data stretching and interpolation in the wave number domain and it is difficult
to apply when the background medium is inhomogeneous. In other words, a simply
addition of the images obtained with different frequencies will not necessary improve the
reconstruction. In fact, the strength of the image will change dramatically with change of the
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frequency. Therefore, simple addition of the images would degrade the quality of the
image. In this study we consider single frequency inversion.

In an ideal situation in which the source and receiver lines are extended to infinity,
the maximum vertical wave number is 27t/A and the maximum horizontal wave number is
one wavelength that is approximately 10 ft. If the spatial sampling interval A is 2.5 ft (one
quarter of the wavelength), then the best resolution of the image would be 2.5 in the vertical
direction and 10 ft in horizontal direction. Due to the limited aperture and relatively low
frequency, the wave numbers in both vertical and horizontal directions can not reach these
maximum values and the reconstructed image is blurred. The resolution of the
reconstructed images is reduced. Taking into consideration both of resolution limits and the
distortion effect of limited aperture, the resolution of the image can be estimated as
approximately half the wavelength or 5 ft in vertical direction and one and one half

wavelength, or 15 ft in horizontal direction respectively.
MCcELROY FIELD DATA INVERSION

We apply the algorithm for a layered background medium to the field data from
McElroy test site at West Texas. The measurement geometry is shown in figure 1. For the
185 ft well separation, both the source and receiver spacing were 2.5 ft apart. For the 600 ft
well separation, the sources and receivers' intervals are 5 ft. According to prior known
geological information, the reservoir is located at the depth between 2850 ~ 2950.

A B C
2200

~2850

~2950
— 180 [€— 600 —P

3150

Fig. 1. The well locations of the McElroy field survey
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Time

Depth

(a) (b)

receiver

source

Fig. 2. (a) A typical common receiver gather
from McEroly near offset survey.
(b) The amplitude of the wave field at
the nearest offset is normalized
to a geometrical factor 1/r.
(c) the real part of normalized wave
field at frequency=1250 Hz
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A typical common receiver gather is plotted in figure 2 (a). A traveltime tomogram
(figure 3) of the field data is used to create a 1-D background model for the inversion. In
the field experiment, the data is recorded at 202 receiver and 202 source positions. For
convenience, the source line and receiver line is padded with zeros to form a 256 by 256
matrix and then Fourier transformed to the wave number domain (figure 2c).

The images are reconstructed with the data at frequency 1400 Hz and the results are
shown in figure 4. From the scattering potential image and velocity image one can identify
the internal structure of the reservoir. Notice that although the reservoir zone can be seen,
its internal structure is not resolved by traveltime tomogram. This is not surprising, because
in essence, with the traveltime tomography one reconstructs the low frequency components
of the inhomogeneity. With the diffraction tomography one recovers the higher frequency
components. Most of the structures in the reconstructed images here are comparable to
those with crosswell reflection imaging and migration techniques (Larazators, et al., Mo, et
al., 1992).

The inversion results of the McElroy far offset data are shown in figure 5. From
the scattering potential image and velocity image, we can see the improvement of the
resolution compared to the traveltime tomogram, especially around the reservoir area.
Notice that although the resolution is lower, the far offset images can still be tied to the near
offset images, see figure 6.

KING MOUNTAIN FIELD DATA INVERSION

A well was drilled with the target being a prolific “carbonate mound”. A second
well offset 630 ft from the first missed the target. It is desirable to know the lateral and
vertical extents of this carbonate mount so that a horizontal step-out well could be drilled
(Langan, 1994). The survey geometry is shown in figure 7. Notice that both the receiver
well (M13) and the source well (M35) are deviated wells that may greatly influence the
inversion results. In this study, we account for well deviation in traveltime inversion but not

in diffraction inversion.
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M13 M35

Fig. 6. The well locations of the
King Montain field survey. Both
the receiver and source well are
deviated.

~630 ft

Unlike the situation at McElroy test site, the sonic log and transmission tomography
study indicate that the low frequency component of the velocity field at King Mountain test
site has two dimensional characteristics. A stratified background medium is no longer
applicable. Because of non-uniform background, it is impossible to choose a single velocity
to calculate the background field. On the other hand, if we can treat the diffraction theory of
a constant velocity as an approximation to a general theory, including variable background
velocity in the algorithm is important. In other words, we use the algorithm of the
diffraction for constant background velocity, but replace the velocity with a variable one.
Actually, this procedure is a good approximation to a rigorous diffraction algorithm for a
variable background (Wang, 1994).

The inversion results are show in figure 8. The vertical and lateral extents of the reef
are apparent in the traveltime tomogram. The scattering potential image and the velocity
image not only match the sonic log better but also revel some structure features which are
absent in the traveltime tomogram. However, we believe these results are still primary due to

the nature of an incomplete inversion theory and without accounting for well deviation.

CONCLUSIONS

We have shown how crosswell direct wave traveltime and scattering are combined to
image the internal structure of a West Texas carbonate reservoir. The high resolution
images result from the complement nature of the direct wave field and scattered fields. We
believe our results illustrate the enormous potential of scattering and diffraction
tomographic inversions to usefully address reservoir delineation and characterization

problems.
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