
ABSTRACT
Deep drilling and induced seismicity experiments at several loca-

tions worldwide indicate that, in general, the brittle crust in intraplate
regions is critically stressed, pore pressures are close to hydrostatic, and
in situ bulk permeability is ~10–17 to 10–16m2. This high permeability,
three or four orders of magnitude higher than that measured on core
samples, appears to be maintained by critically stressed faults and
greatly facilitates fluid movement through the brittle crust. We demon-
strate that such high permeabilities can maintain approximately
hydrostatic fluid pressures at depths comparable to the thickness of the
seismogenic crust. This leads to the counterintuitive result that faulting
keeps intraplate crust inherently strong by preventing pore pressures
greater than hydrostatic from persisting at depth.
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INTRODUCTION
Three independent lines of evidence indicate that intraplate continental

crust is in a state of failure equilibrium: (1) the widespread occurrence of seis-
micity induced by either reservoir impoundment (Simpson et al., 1988;
Roeloffs, 1996) or fluid injection (Raleigh et al., 1972; Pine et al., 1983;
Zoback and Harjes, 1997), (2) earthquakes triggered by other earthquakes
(Stein et al., 1992, 1997), and (3) in situ stress measurements in deep wells and
boreholes (Zoback and Healy, 1992; Brudy et al., 1997). The in situ stress
measurements further show that Coulomb frictional-failure theory incor-
porating laboratory-derived frictional coefficients,µ, of 0.6–1.0 (Byerlee,
1978) gives predictions that are consistent with measured stress states in the
upper crust. For instance, at virtually all locations where deep stress levels have
been measured, the ratio of the maximum differential stress,∆S, to the effective
mean stress,S

–
– Pf (where S

–
is the mean stress and Pf is the pore pressure),

agrees well with that predicted using Coulomb frictional-failure theory, namely

(1)

This is illustrated in Figure 1; it can be clearly seen that at each of the six
locations illustrated, the effective stress data are consistent with values of µ

between ~0.6 and 1.0. These data support the hypothesis that the crust con-
tains critically stressed faults that limit its strength.

However, because the frictional strength of a faulted rock mass depends
on pore pressure (Hubbert and Rubey, 1959), estimates of the frictional
strength of the brittle crust depend on the pore pressure at depth (Sibson,
1973; Brace and Kohlstedt, 1980). In particular, utilization of Coulomb
faulting theory with laboratory-derived coefficients of friction leads to the
conclusion that the crust’s brittle strength is quite high (hundreds of mega-
pascals) under conditions of hydrostatic pore pressure.

In this paper we demonstrate that critically stressed faults maintain
high crustal permeability, resulting in near-hydrostatic pore pressures, and
high crustal strength.

CRUSTAL PERMEABILITY AND ITS SCALE DEPENDENCE
The high permeability of upper crustal crystalline rocks was first noted

by Brace (1980), who observed that, even given the relatively limited number
of permeability measurements available at the time, the crust was unlikely to
be able to sustain pore pressures much greater than hydrostatic. Recently
acquired in situ permeability data support this observation, and furthermore
suggest a gross scale dependence in which permeability increases with in-
creasing scale (Clauser, 1991). This relationship is particularly well illustrated
by hydraulic tests made in the German Continental Deep Drilling Program
(KTB; Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland)
pilot and main holes at depths as great as 9.1 km (Huenges et al., 1997;
Fig. 2). During these tests, an interval of the borehole was mechanically iso-
lated, and fluid was pumped into it. The test intervals used for these experi-
ments varied between a few tens of meters and almost 3.5 km, providing esti-
mates of the gross vertical permeability of kilometer-scale sections of the
upper crust. Data from the most reliable experiments—7 low-volume
buildup drill stem tests and 12 open-hole buildup tests—indicated permea-
bilities of between 10–20 and >10–16 m2: the majority of the most reliable
measurements consistently gave permeabilities of >10–17m2. In comparison,
laboratory measurements made under estimated in situ pressure and tempera-
ture conditions on centimeter-scale core samples obtained in the 0–7.5 km
depth range indicated permeability of between 10–20and 10–18m2 (Huenges
et al., 1997). A three to four order of magnitude discrepancy existed therefore

∆S S Pf−( ) = +2 12µ µ .
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Figure 1. Dependence of differential
stress, ∆S, on effective mean stress,
S
–

– Pf , at six locations where deep
stress measurements have been made.
Dashed lines illustrate relationships
predicted using Coulomb frictional-
failure theory for various coefficients of
friction, µ. References: Fenton Hill—
Barton et al. (1988); Cornwall—Pine
et al. (1983), Batchelor and Pine (1986);
Dixie Valley—Hickman et al. (1997);
Cajon Pass—Zoback and Healy (1992);
Siljan—Lund and Zoback (1999); KTB
(German Continental Deep Drilling
Program)—Brudy et al. (1997).



between the large-scale and small-scale permeabilities of rocks tested under
approximately the same effective confining pressures (Fig. 2).

At the same location, Shapiro et al. (1997) concluded that progressive
hypocentral migration over distances of >1 km during an induced seismicity
experiment performed at the bottom of the KTB main hole (Zoback and
Harjes, 1997) indicated bulk permeability of ~10–17to 10–16m2. Analogous
experiments at the Fenton Hill (Nevada), Soultz (Alsace, France), and Hijori
(Yamagata, Japan) hot dry rock sites gave similar permeabilities of 10–17to
10–16m2 at depths of 3.0–3.9 km, 2.8–3.4 km, and 1.7–1.9 km, respectively
(Shapiro et al., 1999; Sasaki, 1998). Slightly higher permeabilities (10–16to
10–15m2) were estimated from hydraulic tests and induced seismicity diffu-
sion at the Monticello Reservoir, South Carolina, by Zoback and Hickman
(1982) at very shallow depths (<1 km).

A similar result was obtained in experiments made at the Cajon Pass
borehole in southern California. Morrow and Byerlee (1988, 1992) obtained
permeabilities of 10–22to 10–19m2 from core samples retrieved from 0.5 to
2.1 km depth (which also exhibited a systematic one order of magnitude
decrease per kilometer), whereas Coyle and Zoback (1988) measured a
permeability of ~10–18 m2 over 100 m and 300 m hydraulic test intervals.

Core measurements at in situ confining pressures (for hydrostatic fluid
pressures) on samples from the 12-km-deep Kola Peninsula superdeep well
consistently show extremely low permeability values of <10–20m2 (Lockner
et al., 1991; Morrow et al., 1994). Unfortunately, hydraulic testing was not

performed on the Kola borehole, so no large-scale permeability data were
obtained directly. However, thermal models of borehole temperature data
constrain the kilometer-scale permeability of the 0–2 km and 6–8 km inter-
vals to 10–14m2 and 10–17m2, respectively (Kukkonen and Clauser, 1994).

Reservoir impoundment provides another method of inducing seis-
micity and has been used by several authors to estimate kilometer-scale
permeability. Roeloffs (1988) used seismicity occurring beneath the Mead
(Arizona-Nevada) and Nurek (Tadjikistan) Reservoirs following peak im-
poundment to estimate hydraulic diffusivity. When transformed into equiva-
lent permeabilities, Roeloff’s data suggest permeabilities of 10–16 to 10–15

m2 between 0 and 5 km beneath the Mead Reservoir and ~10–14m2 between
0 and 8 km beneath the Nurek Reservoir. Both these results are an order of
magnitude higher than those obtained from direct fluid-injection results.
The hydraulic response of a 250-m-long shear zone to fluctuations in reser-
voir level at the Bad Creek Reservoir (South Carolina) was used by Talwani
et al. (1999) to calculate permeability, giving a result of 10–15m2.

Manning and Ingebritsen (1999) compiled and interpreted geothermal
and metamorphic data to provide crustal permeability estimates at depths
greater than observable in boreholes (>10 km). The permeability threshold
above which fluid advection transports heat more effectively than conduction
appears to be ~10–16m2, whereas the corresponding threshold for advective
solute transport is only 10–20m2. Similarly, time-integrated fluid fluxes dur-
ing metamorphism—manifested geochemically, petrologically, and iso-
topically in both metamorphic protoliths and the associated fluids—indicate
permeabilities of 10–19to 10–18m2 during regional metamorphism. Manning
and Ingebritsen (1999) demonstrated that crustal permeability obeys a
power-law decrease with depth according to the relationship (Fig. 2)

(2)

Figure 2 clearly illustrates that with the exception of laboratory measure-
ments on cores, different methods of estimating in situ permeability give
relatively consistent results. Core measurements, even when made under in
situ pressure and temperature conditions, give very low permeabilities that
vary substantially owing to local heterogeneities. Consequently, although
the core measurements determine the intrinsic permeability of the rock
mass, they are not indicative of the effective permeability controlling large-
scale upper crust hydraulics. In contrast, borehole measurements and
experimentally and reservoir-induced seismicity at several locations give
almost uniformly high permeabilities of >10–17m2. Furthermore, these per-
meabilities agree extremely well with independent estimates based on geo-
chemical and geothermal considerations. We conclude that the permeability
of the upper crust is ~10–17to 10–16m2 over 1 to 10 km scales.

HYDROSTATIC PORE PRESSURE AND CRITICALLY
STRESSED FAULTS

Fluid pressures at depths of several kilometers have been measured
using several independent techniques in deep boreholes drilled into crys-
talline basement and have been consistently found to be approximately
hydrostatic. Table 1 lists the deepest of these boreholes, in each of which
fluid pressures are unequivocally near hydrostatic. Stress magnitudes at each
of these locations (except the Kola borehole, where stress measurements
were not performed) are consistent with Coulomb frictional-failure theory
for coefficients of friction of 0.6–1.0 such as are measured experimentally in
laboratory settings (Byerlee, 1978; Brace and Kohlstedt, 1980; Fig. 1), and
seismicity was induced by fluid injection at a number of these sites.

By using borehole televiewer images and high-resolution temperature
logs from the Cajon Pass, Long Valley (California), and Yucca Mountain
USW-G1 (Nevada) boreholes, Barton et al. (1995) showed that critically
stressed faults—i.e., faults with ratios of resolved shear to normal tractions
of 0.6–1.0—are hydraulically conductive, whereas those that are not criti-
cally stressed are not hydraulically conductive. Figure 3 presents these data
in a somewhat different form from that shown by Barton et al. (1995), and
it is clear that the hydraulically conductive fractures are critically stressed

log . log .k z= − −3 2 14
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Figure 2. Deep crustal permeability data acquired from core samples, in
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according to the Coulomb frictional-failure criterion. Hickman et al. (1997)
and Barton et al. (1998) subsequently obtained similar results in the Dixie
Valley geothermal field adjacent to the Stillwater fault, a range-bounding
normal fault in the Basin and Range province, Nevada, on which M7.3 and
M6.8 earthquakes occurred in 1915 and 1954, respectively. In this case too,
the critically stressed fractures, including the Stillwater fault, were found to
be hydraulically conductive, whereas the noncritically stressed faults and
fractures were not. Ito and Zoback (2000) have reported similar results
utilizing data from the KTB main borehole.

It seems clear from all of these in situ studies that, in general, the crust is
in frictional failure equilibrium (even in relatively stable intraplate areas), near-
hydrostatic pore pressures exist to great depth in crystalline intraplate crust,
and the faults that are critically stressed maintain the crust’s high permeability.

FAULTS, FLUIDS, AND FLOW
Given that the upper crust’s permeability,k, is ~10–17to 10–16m2, we

may ask over what lengths of time appreciable hydraulic diffusion occurs.
The characteristic time,τ, for a diffusive process is given by

(3)

where l is a characteristic length scale of the process,κ ~ k/(φβf + βr) is the
hydraulic diffusivity,βf and βr are the fluid and rock compressibilities,
respectively,φ is the rock porosity, and η is the fluid viscosity. For low-
porosity rocks (φ < 0.02) at 150 °C, where βf = 5 × 10–10Pa–1, βr = 2 × 10–11

Pa–1, and η = 1.9 × 10–4 Pa·s, the previous equation gives

(4)

where τ and l are in years and kilometers, respectively. This relationship is
illustrated for various values of permeability in Figure 4. For crustal permea-
bilities of 10–17to 10–16m2, the characteristic times for fluid transport over
length scales of 1–10 km are only 10–1000 yr. Thus fluid pressures in the
crust are expected to equilibrate over relatively short time scales, which en-log log log ,τ = − −2 16l k

τ κ φβ β η= = +( )l l kf r
22 ,
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ables hydrostatic fluid pressure regimes to be maintained to depths of 10 km
or more. We envisage brecciation associated with slip on critically stressed
faults as countering fault-sealing mechanisms by incremental failure and
thereby maintaining high permeability.

Continual faulting at a small scale appears necessary to maintain high
permeability and low fluid pressures. Hence it appears that “stable crust” is
only a relative term: with respect to stress and faulting we argue that stable
intraplate crust is subject to continual small-scale failure. With respect to
deformation, however, it is clear that long-term intraplate strain rates must
be extremely low.

CONCLUSIONS
The bulk permeability of the upper crust in intraplate regions is ~10–17

to 10–16m2 over length scales of 1–10 km. Hence, the brittle crust is effec-
tively permeable over time scales of 10–1000 yr and pore pressures can be
maintained at hydrostatic values. We argue that this high permeability results
from hydraulically conductive, critically stressed faults, presumably because
brecciation associated with slip on active faults offsets permeability reduc-
tions associated with fault-zone sealing. Thus, intraplate crust is able to sus-
tain higher differential stresses than would be possible if bulk permeability
were sufficiently low to sustain fluid pressures higher than hydrostatic.
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