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a b s t r a c t

Pattern-based spatial modeling relies on training images as basic modeling component for generating
geostatistical realizations. The methodology recognizes that working with the unit of a pattern aids its
reproduction, particularly for large systems. In this paper improvements are made, in terms of both the
computation time and conditioning, of a pattern-based simulation method that relies on the cross-
correlation-based simulation (CCSIM), introduced by Tahmasebi et al. (2012). The extension lies on the
use of a multi-scale (MS) representation of the training image along a pattern projection strategy that is
markedly different from the traditional multi-grid methods employed in the current methodologies, and
proposes acceleration of the method by carrying out most of the computations in the Fourier space.
In the proposed multi-scale representation, we transform the high-resolution training image into a
pyramid of consecutively up-gridded views of the same image. The pyramid allows for rapid search of
the patterns that can be superimposed over a shared overlap area with previously simulated patterns.
A second advantage of the multi-scale view lies in data conditioning by means of a new hard data-
relocation algorithm and the use of a co-template for looking for conditioning points ahead of the raster
path employed in CCSIM. Using synthetic and real-field multi-million cell examples with sparse, as well
as dense datasets, we investigate quantitatively how the improved algorithm performs with respect to
CCSIM, as well as the traditional MP simulation algorithms.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Ever since its inception over two decades ago, research in
multiple-point geostatistics has witnessed a prolific development
in new algorithms whose aim is to capture and reproduce patterns
from training images (TIs), anchored to local hard and soft data (see
Daly and Caers, 2010; Hu et al., 2008). Regardless of the develop-
ments, the wide-spread application in practice is still lacking, even
in oil and gas reservoir modeling, where most of such techniques
have received considerable attention. We conjecture that, next to
the availability of TIs (see the discussion in Honarkhah and Caers,
2010); two main reasons lie at the origin of lack of wide-spread use:
quality of pattern reproduction and CPU performance. In this paper,
we present a method that simulates multi-million cell grids in a
matter of seconds, and provides a considerable improvement in
terms of pattern reproduction over most established algorithms,
while attempting to maintain accuracy in point data conditioning

and to avoid reducing artificially the variability between the reali-
zations.

In his original and seminal algorithm, Strebelle (2002) used a
search tree in a single normal equation simulation (SNESIM) to
accelerate the calculation of local conditional probabilities, render-
ing the application of multiple-point geostatistics practically
possible. SNESIM has considerable computer memory require-
ments for simulating multiple-facies (Caers et al., 2003), although
the issue has been addressed to some extent (Straubhaar et al.,
2011; Strebelle and Cavelius, in press). However, the existing
solutions do not address the difficulty in reproducing thin features
or very low proportion patterns (curvilinear shale barriers, frac-
tures, etc.). Pattern-based methods, in geostatistics originally
proposed by Arpat and Caers (2005,2007), also known as “patch-
based methods” in computer graphics (Liang et al., 2001;
Mariethoz and Lefebvre, in press), aim to overcome the memory
limitations, as well as improve pattern reproduction quality. These
methods basically consider stochastic simulation as a randomized
puzzle in which the patterns are puzzle pieces that need to be
superimposed (and be constrained to data) in order to generate a
realization. In the same context, Zhang et al. (2006) provided a
filter-based selection of patterns (FILTERSIM) to speed-up the
time-consuming search of SIMPAT that was, however, at the cost
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of lesser pattern reproduction. Honarkhah and Caers (2010) relied
on a distance-based pattern clustering (DISPAT, http://github.com/
SCRFpublic/dispat) to rapidly search for patterns without the
approximations made in SIMPAT. Tahmasebi et al. (2012) recog-
nized that using a cross-correlation function, as well as simulating
along a one-dimensional raster path (instead of a random path),
and using an overlap between neighboring grid blocks provide
considerable improvements to the simulation in terms of speed
and pattern reproduction. Furthermore, it has been quantitatively
demonstrated (Tan et al., 2014) that CCSIM performs better than
DISPAT for several cases. Several extensions on the pattern-based
approach have also been published recently (Rezaee et al., 2013;
Abdollahifard and Faez, 2013; Faucher et al. 2013).

In this paper, we further develop and improve the CPU perfor-
mance of the CCSIM algorithm in terms of simulating categorical
variables. Our contribution lies in two areas: (1) accelerating the
algorithm with a multi-scale search for the best matching pattern
and relying on the Fourier (frequency) domain for calculating the
cross-correlations and (2) improving point data conditioning by

means of a data relocation algorithm and use of a co-template. We
provide a thorough quantitative analysis of the improvements in
terms of pattern reproduction, data conditioning and variability of
the realizations. We make comparisons with the original CCSIM
method as well as SNESIM on a large variety of cases, including a
real-field case study. A newMATLAB code, MS-CCSIM, is provided in
https://github.com/SCRFpublic/MS_CCSIM.

2. Accelerating CCSIM

2.1. Review of the CCSIM algorithm

CCSIM is a pattern-based algorithm, also referred to as a
“patch-based” algorithm, for conditional geostatistical simulation
(Tahmasebi et al., 2012), although similar two-dimensional (2D)
algorithms (unconditional) have been published in the computer
graphics literature (such as image quilting; see, for example, Efros
and Freeman, 2001). Fig. 1 provides an overview of the main
concepts. The main features are the use of a raster path (along the
line of a Markov Mesh simulation; see Daly, 2005; Stien and
Kolbjørnsen, 2011), along which patterns are simulated. To super-
impose patterns along with the raster path, a small overlap area is
defined. The TI is searched for a pattern that superimposes best
according to some measure of similarity calculated over the
overlap area. The measure of similarity used in CCSIM is a
correlation function, hence the name cross-correlation-based
simulation or CCSIM. The pseudo-code in Table 1 describes several
components of the algorithm.

The algorithm requires as input the training image, size of the
square template and size of the overlap area, see Fig. 2 for
definitions. To create enough variability between realizations, the
origin of the raster path, its direction (8 possible directions in 2D;
24 in 3D) as well as size of template is varied for each new
realization (lines 3 and 4 in Table 1). At each location u¼(x,y,z)

pat2 ? pat2

pat1 pat1

patk

?pat k

Fig. 1. The concept of raster path and overlap region.

Table 1
Pseudo-code for CCSIM.

1: ccsim (ti, sizeT, sizeOL, max_c and, nreal)
2: for each realization ireal ¼1 : nreal do
3: T’randomize (sizeT)
4: path’randomize_raster (path origin, path direction)
5: for each location u along path do
6: OLu’extract_from_current_realization (u,T,sizeOL)
7: CC’calculate_convolution oOLcurrent, ti4
8: cand_loc’rank (CC, max_cand)
9: loc’draw_random (cand_loc)
10: real(u)’assign (loc, ti, sizeT)
11: end
12: end
13: return all realizations
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along the path, the values in the overlap area of the current
realization are extracted and cross-correlations calculated by
convolution with the training image (lines 6–8 in Table 1). These
cross-correlations, belonging to each location in the training
image, are ranked (high to low) and a random location is drawn
for the list of the “max_cand” best candidate locations. The pattern
at that location is assigned to the realization (“real”) at location u.

Conditional simulation is achieved by searching for any point
conditioning data that fall within the template to be simulated
(Fig. 2). If such conditioning data (devT) are present, then the

cross-correlation distance is changed by including a difference
between the conditioning value and the values within any pattern
in the TI. If no pattern can be found that matches the point
conditioning data, then the template is recursively split until a
pattern is found (see Fig. 2 and Tahmasebi et al., 2012 for details).

Regardless of it accuracy and efficiency that has been demonstrated
for a wide variety of problems (Tahmasebi and Sahimi, 2012,2013), it is
clear that the original CCSIM algorithm cannot account for condition-
ing data that are ahead of the raster path, potentially leading to poor
point conditioning. This problem is common in raster-based methods

TemplateT

overlap area OL devT

Fig. 2. (A) Configuration of the template and overlap area, (B) when hard data are present, (C) splitting of the template.
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Fig. 3. Example application of up-gridding a binary training image using bi-cubic interpolation and Otsu's thresholding.
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(Stien and Kolbjørnsen, 2011; Kjonsberg and Kolbjørnsen, 2008).
In this paper we propose a solution to the problem. First, however,
we present a method to accelerate the unconditional algorithm.

2.2. Multi-scale simulation

In many multiple-point simulation (MPS) algorithms, a multi-
grid simulation is used to enhance long-range pattern reproduc-
tion, alleviate computer memory requirements, and/or speed-up
the algorithms. The multi-grid idea starts from a sparse but coarse
grid and then successively simulates on progressively finer grids.
It was originally introduced in the context of covariance-based
models (Tran, 1994). Simulating on multiple-grids is not, however,
without its own issues. While the use of multi-grid solves the
computer memory issue incurred in SNESIM by avoiding very
large search templates (Strebelle, 2002), it gives rise to new issues,
such as point data conditioning, locally biased pattern

reproduction, and reduction of spatial uncertainty (Caers, 2012).
Recently, Straubhaar and Malinverni (2013) presented a new
methodology to alleviate such issues.

In this paper we use a multi-scale, instead of a multi-grid
approach. Multi-scale approaches are not uncommon in the
computer graphics and computer vision field (Koenderink, 1984;
Lindeberg, 1994) and different multi-scale methods are available in
the literature (Wei and Levoy, 2000; Liang et al., 2001). In the
multi-scale approach, instead of subsampling the TI, as done in
multi-grid simulation, the coarse grid values are interpolated from
the finer scale resolution, the finest scale being the original TI.
We employ bi-cubic interpolation in 2D and tri-cubic interpolation
in 3D (Lekien and Marsden, 2005). In 3D, the interpolated value v

at any arbitrary location (x,y,z) is obtained from the 64 nearest-
neighbor gridded values at locations ðuxi ;uyj ;uzk Þ as follows:

vðx; y; zÞ ¼ ∑
3

i ¼ 0
∑
3

j ¼ 0
∑
3

k ¼ 0
aijkuxiuyjuzk : ð1Þ

The coefficients are obtained by solving a set of 64 equations (see
Lekien and Marsden, 2005, for details). In case of binary variables,
the interpolated value is no longer binary. In that case Otsu's
(1979) thresholding method to turn the continuous valued tri-
cubic interpolations back to binary variables (categorical values are
basically a vector of binary indicator variables) is used (see Fig. 3).
The result is then a pyramid of up-gridded images ti0,…,tiG�1,
where G is the total number of resolutions considered.

The MS-CCSIM proceeds similar to the unconditional CCSIM,
and the pseudo-code in Table 2 summarizes the code. Fig. 4, in
addition, explains several steps in this algorithm. One starts from
the lowest resolution training image tiG�1 and finds a pattern in
tiG�1 that superimposes the previous simulated patterns at that
resolution (lines 9–13). Next, the same location in the next scale
G�2 is determined (line 15); this is the green location in Fig. 4.
A search window (red box in Fig. 4) is placed around this location
having the following size

Search box size¼ 2� ð“template size T for grid G�2”Þ

Note that the template T doubles when going from a resolution
G�g to a resolution G�g�1. The idea of using such a search box is
that, there is no longer a need to search for a matching pattern
over the entire TI tiG�2, as the search is limited to a cropped
version of the training image at that scale (line 16). This is
continued until the final resolution ti0. The pattern found at this
resolution is then pasted on the simulation grid (line 22).

Table 2
pseudo-code for MS-CCSIM.

1: ms_ccsim (ti, sizeT , sizeOL , max_cand, G, nreal)
2: for each multi-scale g ¼ 1:G�1
3: ½tig ; sizeTg ; sizeOLg �’resize ti, sizeT , sizeOL by factor 1

2g� 1 in x y z

directions.
4: end
5: for each realization ireal ¼ 1 : nreal do
6: T’randomize ðsizeTÞ
7: path’randomize (path origin, path direction)
8: for each location u along path do
9: OLu’extract_from_current_realization (u, T, sizeOL)
10: OLG�1’resize OLu by factor 1

2G� 1 in x y z directions

11: CC’calculate_convolution oOLG�1; tiG�14
12: cand_loc’rank (CC, max_cand)
13: loc’draw_random (cand_loc)
14: for each multi-scale g ¼G�2: 1
15: locg’project (loc, tig)
16: croptig’crop ðtig ; locgÞ
17: OLg’resize OLu by factor 1

2g � 1 in x y z directions

18: CC’calculate_convolution oOLg ; croptig4
19: cand_loc’rank (CC, max_cand)
20: loc’draw_random (cand_loc)
21: end
22: real (u)’assign ðloc; ti; sizeTÞ
23: end for
24: save the realization
25:end for
26:return all realizations

Template

Cropped area of the TI

Fig. 4. Principle of the multi-scale search: starting from a coarse resolution version of the training image, a matching pattern is searched top-down in the pyramid. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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2.3. Fourier acceleration

CCSIM uses a cross-correlation function as a measure to
identify patterns that superimpose in the overlap area. To accel-
erate the cross-correlation computations, we first note an impor-
tant point, namely, the recognition that the cross-correlation
function acts as a convolution (filtering) template. Thus, the
computation time can be reduced by transferring the data in the
TI to the Fourier space by using the convolution theorem.

The TI is first transferred to the frequency domain (Cooley and
Tukey, 1965; Oppenheim and Schafer, 1989; Duhamel and Vetterli,
1990), using the fast Fourier transform (FFT) method. If a 3D
training image TI(x,y,z) has a size Tx � Ty � Tz , then:

ℱ½TIðx; y; zÞ� ¼ bTIðωÞ ∑
Tx �1

x ¼ 0
∑

Ty �1

y ¼ 0
∑

Tz �1

z ¼ 0
TIðx; y; zÞexp½�2πiðxωx=Txþyωy=Tyþzωz=TzÞ�;

ð2Þ

where ω¼ ðωx;ωy;ωzÞ. The inverse is then given by

TIðx; y; zÞ ¼ 1
Tx � Ty � Tz

∑
Tx �1

ωx ¼ 0
∑

Ty �1

ωy ¼ 0
∑

Tz �1

ωz ¼ 0

bTIðωx;ωy;ωzÞ

�exp½2πiðxωx=Txþyωy=Tyþzωz=TzÞ� : ð3Þ

According to the shift theorem for Fourier transforms:

ℱωðf � gÞ ¼ f ðωÞgðωÞ; ð4Þ

according to which

ℱω½TIðx; y; zÞ � AT ðx; y; zÞ� ¼ℱ�1fℱ½TIðx; y; zÞn�Uℱ½AT ðx; y; zÞ�g; ð5Þ

where n denotes the complex conjugate of the quantity,ℱ�1 denotes
the inverse Fourier transform, and AT denotes the overlap area.

Thus, the new algorithm consists of transferring the TI and the
overlap areas to the Fourier space, calculating the cross-correlation
function, and finally inverse Fourier transforming the result to the
spatial domain, in order to select the appropriate matching pattern(s).

3. Improving point conditioning

3.1. Point conditioning

The difficulty of point conditioning in the original CCSIM
algorithm had two underlying causes: (1) the use of patterns
instead of pixels makes conditioning to local point (pixel) data
more difficult and (2) the use of a raster path ignores the data
that are located ahead of the path. The third issue that compli-
cates point conditioning is the use of the multi-scale approach,
whereby the TI has a multi-resolution representation (the multi-
grid approach faces similar issues in point conditioning; see
Straubhaar and Malinverni, 2013). Note that point-conditioning
data is at the same support or resolution as the finest resolution in
the TI pyramid of Fig. 4. Hence, the issue of how to search for
patterns at coarser resolutions, in the presence of point condition-
ing data, arises.

Dual mesh

Primal mesh

cell with volume v 

Fig. 5. Definition of the geostatistical grid for simulating a property with volume v

on the primal mesh.

Fig. 6. Various possible configurations of hard data within the dual mesh and the
data relocation proposed. (A) Simplest case of not more than one hard data per dual
mesh grid cell, (B) case requiring re-assigning hard data based on distance to the
nearest location, (C) case where multiple hard data cannot be assigned to the
nearest location: in that case the cell value is assigned the category with highest
frequency.
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We employ two new ideas to address these issues. First, we
develop a new data relocation method whereby the point data are
temporarily assigned to coarse grid nodes. Second, we introduce a
co-template to look for the data ahead of the raster path.

3.2. Data relocation

We first stipulate more precisely the nature of the conditioning
problem when dealing with multi-resolution grids. As in any
geostatistical approach, we basically work with a corner-point
representation for each multi-resolution grid (Deutsch and
Journel, 1992); meaning that at every corner of a grid, a cell of
certain volume (the same as the volume of the point data) is
located, regardless of the resolution g, see Fig. 5. The volume v

of the cell is the same for all resolutions g. The grid consists,
therefore, of a “primal mesh” on which the volumes are located
and a dual mesh, as shown in Fig. 5

Consider now a multi-resolution grid g with a number of
possible configurations of point data. The simplest situation arises
in Fig. 6(a), where each cell in the dual mesh g contains no more
than one point datum. In that case any point datum (if present) is
assigned to the geostatistical cell at the center. If more than one

point datum is present in a single cell of the dual mesh, then the
point data are assigned based on the distance between the
geostatistical cell location and that point datum. If, however, too
many point data are present or not all point data can be assigned,
then a frequency distribution of the remaining point data is
calculated and the geostatistical cell is assigned the category with
the highest frequency.

3.3. Accounting for data ahead of the raster path: the co-template

One of the common problems in raster path MPS algorithms is
the difficulty of taking into account any point data that are ahead
of the simulation path. To account for such data ahead of the path,
we employ a method similar to Parra and Ortiz (2011). First, we
define a second, larger template, termed “co-template,” and search
for all the data that lie within this larger co-template (see Fig. 7).
The size of the co-template can be modified by the user and is
equivalent to a search neighborhood in traditional geostatistical
algorithms. Next, a two-stage look-up is employed. First candidate
patterns are searched using the original (primary) template
(red line patterns in Fig. 7B), meaning any patterns superim-
posing in the overlap area with the previously simulated pattern

co-template

primary template

point data

primary pattern co-pattern

Fig. 7. Using co-template for considering the hard data ahead of the raster simulation path. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)

Fig. 8. (A–E) Training images used in this paper. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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(i.e. primary pattern). With each such training pattern is asso-
ciated a larger pattern defined through the co-template (i.e. co-
pattern; patterns with dashed red line in Fig. 7B).

4. Examples

4.1. Comparing using analysis of distance (ANODI)

Our aim is to test the computer code provided on GITHUB in
terms of various performance aspects. First, we compare the CPU
performance of MS-CCSIM with the original CCSIM and analyze the
contribution of the multi-scale search and FFT to the speed-up.
Next, we investigate the properties of unconditional simulations
generated with the MS-CCSIM algorithm. Our analysis focuses on
pattern reproduction and variability between the realizations, the
latter is also termed “space of uncertainty”. We use a recently
published method for doing such comparison quantitatively, termed
“analysis of distance” (ANODI; see, Tan et al., 2014; https://github.
com/SCRFpublic/ANODI). Since this method is used throughout the
paper, we first provide a short review of this method.

ANODI calculates a statistics-based distance between the reali-
zations, as well as the distance between the realizations and the
TI. These distances are then used to compare realizations gener-
ated with different algorithms, or with the same algorithm and
different parameter settings in a quantitative fashion. The aim of
ANODI is to rank algorithms based on two criteria that are often

competing: better pattern reproduction (comparison with the TI)
and spatial uncertainty (variability among realizations). Each
criterion is summarized with a distance; in fact to avoid dealing
with standardization of distance, a ratio of these distances is
calculated. The set of realizations that minimizes the distance
between patterns of the realizations and TI patterns (i.e. pattern
reproduction), while at the same time maximizes the uncertainty
space (distance between the realizations), is given the highest
rank. All other sets are then ranked relative to this best set. For
details on what distances are used (a subjective choice) and how
they are calculated, we refer to Tan et al. (2014). Note that other
comparison methods have been proposed (Soleng et al., 2006;
De Iaco and Maggio, 2011) and could be used.

In summary, any comparison between sets of realizations A and
B will be summarized as follows. Consider the case where set A
ranks higher than set B; then, the following scores are reported:

Space of uncertainty (between): 1:rbetween set A:set B
Pattern reproduction (within): 1:rwithin set A:set B
Total (between/within): 1:rtotal set A:set B

Because set A ranks higher than set B, rtotal will be less than 1. If set
A performs better in terms of space of uncertainty then rbetween

will be larger than 1, while better pattern reproduction will result
in rwithin being less than 1.

The distances can also be used in multi-dimensional scaling
(MDS; Cox and Cox, 2001; Borg and Groenen, 2005) to plot

Fig. 9. Different unconditional realizations for (A) training image of Fig. 8(A), CPU time: 4.8 s, (B) training image of Fig. 8(B), CPU time: 4.8 s, (C) training image of Fig. 8(C),
CPU time: 45 s and (D) training image of Fig. 8(D), CPU time: 450 s.
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the realizations in a 2D map, together with the TI. This provides an
additional visual appreciation of both the space of uncertainty and
pattern reproduction.

Lastly, we compare the conditioning performance of the pro-
posed algorithm. To do so, we employ a slight modification to
ANODI. Instead of calculating distances between all the realiza-
tions, we compute distances between realizations only near the
conditioning locations. This “local” ANODI allows, therefore, focus-
ing on what happens near the local data, as compared to the
“global” ANODI that focuses on global pattern reproduction and
variability.

4.2. Training images considered

In this paper, several different categorical TIs are used for
evaluating the performance of the proposed method. The TIs are
presented in Fig. 8. Fig. 8(A) shows a complex channel TI (with a
size 1000�1000) where the difficulty lies in the reproduction of
long connected sinuous channels. Fig. 8(B) (also of size
1000�1000) is the Strebelle TI (Strebelle, 2002), extensively used
in evaluating MPS algorithms. Fig. 8(C) (200�180�30) is a three-
category training image containing 3D sinusoid channels with
crevasse splays. Fig. 8(D) shows a more complex binary 3D
channel (200�200�50). All the cases contain channels because
they are often the most difficult to deal with. To illustrate that the
methods apply to other forms of spatial continuity, Fig. 8(E)
(400�600�10) represents a challenging case of thin features,
generated by using an ant tracking algorithm on seismic data
(Pedersen et al., 2002). The result is a delineation of lineaments

(faults/fractured zones) that are deemed relevant for an area
where no such seismic data are available.

All the simulations were carried out on a Dell desktop with a
3.40 GHz CPU processor and 16 GB RAM.

4.3. CPU performance

Unconditional simulations of all TIs (except the real field case)
are shown in Fig. 9. While the algorithm appears to reproduce
structures well, at least visually, a detailed comparison will be
provided in the next sections. It is also worth noting that the size
of the template is determined in the same way as in Honarkhah
and Caers (2010), namely, using the so-called “elbow plot” (pattern
entropy versus template size). Tahmasebi (2012) found through
sensitivity analysis that a reasonable choice is to take the overlap
size to be between 1/5th and 1/6th of the template size, a result
that is also reported in computer graphics literature (Efros and
Freeman, 2001). This means that for all cases, template size and
overlap area are automatically determined without manual inter-
vention or optimization.

In this section we study the CPU performance. Our aim is to
analyze the performance of both the accelerating elements of the
algorithm: multi-scale search and the use of the FFT to calculate
the cross correlations. First, we analyze the performance on a
small TI (cropped TI from Fig. 8(D) with the size of 50�50�40) by
employing only the FFT and then, by employing both the FFT and
multi-scale search. The increase in the CPU time as a function of
the size of the TI is compared with the original CCSIM algorithm in
Fig. 10. Clearly, both the FFT and the multi-scale search contribute
to a significant reduction in the CPU time. Next, we carry out the
same analysis for a much larger TI with a size of 300�300�50.
The CPU performance is again compared with CCSIM; see Fig. 10.
We note that the largest contribution in the acceleration lies in the
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example.

ccsim

ms-ccsim

snesim

TI

Fig. 11. (A) MDS plot illustrating the variability of realization generated with
CCSIM, MS-CCSIM and SNESIM algorithms by using the training image in Fig. 7
(a) and (B) two SNESIM realizations. The axis values are not shown because the goal
of MDS plots is to visualize the relative distances between the points (representing
realizations).

P. Tahmasebi et al. / Computers & Geosciences 67 (2014) 75–8882



ccsim

ms-ccsim

snesim

TI

Fig. 12. MDS plot for demonstrating the variability in CCSIM, MS-CCSIM and SNESIM algorithms by using the training image in Fig. 8(C), and (B) two different snesim
realizations.

Hard Data

Realization 1 Realization 2 Realization 3

Rejection Sampling 
ensemble average

ms-ccsim
ensemble average

Fig. 13. Conditional simulation with two hard data locations right under each other. The result of rejection sampling and ensemble average of 400 realizations in a zoom-in
view are shown.
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multi-scale search. The overall CPU reduction is around two orders
of magnitude for large multi-million cell grid dimensions.

4.4. Comparing uncertainty space of MS-CCSIM, CCSIM and SNESIM

In this section, the uncertainty space of the new MS-CCSIM is
compared to those of CCSIM and SNESIM by using the multi-
dimensional scaling and analysis of distance, ANODI is presented.
50 realizations were generated with each of the three algorithms. For
this study, two TIs, namely, those shown in Fig. 8(A) and (C) were
used for the analysis. A multi-scale Jensen–Shannon divergence-
based distance (see Tan et al., 2014 for details) was calculated
between any two realizations, as well as between any realization
and the TI, resulting in a table of 151�151 distances. The MDS was
used to visually appraise the distances; see Fig. 11. In this figure the
axis are removed, since the focus is on the relative difference

between the point clouds (the realizations generated with each
algorithm) and the TI (the black dot). Figs. 11 and 12 present the
MDS plots for the two cases. One can visually appreciate that SNESIM
performs as well as MS-CCSIM in Fig. 11, but not as well in Fig. 12. It is
also clear that the variability between the realizations generated by
MS-CCSIM is similar to those of SNESIM in both cases. Furthermore,
two different realizations for SNESIM are presented in Figs. 11 and 12
(B) as well, which can be compared with the realizations generated
by MS-CCSIM and shown in Figs. 9(A) and (C).

ANODI also provides a quantitative comparison whereby the
algorithms are compared based on both the space of uncertainty
and the ability to reproduce TI patterns

Space of uncertainty
(“between”):

1: 0.95: 1.24 ccsim: ms-ccsim:
snesim

Pattern reproduction
(“within”):

1: 0.98: 1.64 ccsim: ms-ccsim:
snesim

Total (“between/within”): 1: 0.97: 0.76 ccsim: ms-ccsim:
snesim

Overall, for TI in Fig. 8(A), SNESIM and MS-CCSIM perform equally
well in terms of the uncertainty space (1.24 and 0.95, respectively),
except that MS-CCSIM does it at a fraction of the CPU time and
has a better pattern reproduction (1.64 and 0.98, respectively).
The CPU time for MS-CCSIM and SNESIM are 4.8 s and 300 s,
respectively.

For TI in Fig. 8(C), the scores indicate again that MS-CCSIM
outperforms SNESIM

Space of uncertainty
(between):

1:1.18:1.31 CCSIM:MS-CCSIM:
SNESIM

Pattern reproduction
(within):

1:1.32:1.92 CCSIM:MS-CCSIM:
SNESIM

Total (between/within): 1:0.90:0.68 CCSIM:MS-CCSIM:
SNESIM

4.5. Evaluating conditioning

A simple case with two sets of hard data (one channel datum
and one background datum) is first considered, in order to test
conditioning using the new data relocation and co-template
method. The reason for using only two data is that we can use
the perfect conditioning method, namely, rejection sampling.
In rejection sampling, we generate unconditional realizations
and reject those that do not match the two point data of Fig. 13.
We generated 400 conditional realizations using the rejection
sampler. We also generated 400 realizations using the conditional
MS-CCSIM of which three are shown in Fig. 13. We calculated the
ensemble average of both sets of realizations. The ensemble
average of the rejection sampler compares well with the condi-
tional method. Furthermore, a scatter plot for the ensemble
average of rejection sampling and MS-CCSIM is also provided in
Fig. 14.

Unfortunately, rejection sampling cannot be used as a method
of comparison with more dense data. Instead, we propose the
aforementioned local ANODI, which is the same as the ANODI
method used in the previous section, except that it is applied to
areas around the conditioning data. Consider, as an illustration of
the local ANODI, the same case as presented in Fig. 13. A box is
drawn around the two conditioning points of size 40�40. Other-
wise, the analysis of local ANODI proceeds in the same fashion as
global ANODI. Fig. 15 shows the MDS plot. In terms of quantitative
comparison, we obtain
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Fig. 14. Scatter plot for the presented ensemble averages of rejection sampling and
MS-CCSIM in Fig. 13.

Local ANODI

ccsim
ms-ccsim

Global ANODI Rejection sampling

Fig. 15. MDS plot illustrating local and global variability in CCSIM, MS-CCSIM and
rejection sampling algorithms.
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Space of uncertainty
(between):

1:0.82:0.79 rejection sampling:
MS-CCSIM:CCSIM

Pattern reproduction
(within):

1:1.01:1.03 rejection sampling:
MS-CCSIM:CCSIM

Total (between/
within):

1:0.81:0.76 rejection sampling:
MS-CCSIM:CCSIM

Thus, it appears that conditioning works relatively well in terms of
pattern reproduction, but slightly reduces uncertainty when
compared to a perfect sampler.

To study the impact of using a raster path with different
directions in each realization as well as the use of a co-template,
we consider the case in Fig. 16, with multiple binary hard data
shown at the top. 100 realizations are generated (a) using a single

Hard Data

using single path using multiple-path
using co-template 
and multiple-path

Fig. 16. case with multiple binary hard data. Ensemble average of 100 realizations are shown for (A) single raster path, no co-template, (B) using multiple raster path,
(C) using both co-template and multiple raster path.

Fig. 17. Top: locations of two wells and bottom: realizations of the MS-CCSIM algorithm and the snesim algorithm.
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raster path and no co-template, (b) using multiple raster paths and
(c) using multiple raster path as well as a co-template. It is clear from
the ensemble average of these three sets of realizations that the best
continuity near conditioning data is obtained in the last case.

Next, we study a 3D conditioning case, with two wells and
Fig. 8(D) as TI. Two wells, a single conditional model conditioned
to two wells and the corresponding ensemble average for 50
realizations are shown in Fig. 17. As a comparison, the same TI and
well data were used in the SNESIM algorithm, of which one
realization and the ensemble average are shown in Fig. 17as well.
At least qualitatively – visually – the proposed MS-CCSIM algorithm

appears to reproduce better the long-range channels. However, due
to use of the raster path, we can observe some artifacts and
asymmetry in conditioning around the well data.

For a more quantitative comparison, the local and global ANODI
plots for MS-CCSIM and SNESIM are shown in Fig. 19. For this
analysis, two windows with a size of 50�50 around the wells were
considered. The global ANODI scores were obtained as follow:

Space of uncertainty (between): 1:1.02 MS-CCSIM:SNESIM
Pattern reproduction (within): 1:1.36 MS-CCSIM:SNESIM
Total (between/within): 1:0.75 MS-CCSIM:SNESIM

The local ANODI scores are

Space of uncertainty (between): 1:1.60 MS-CCSIM:SNESIM
Pattern reproduction (within): 1:2.35 MS-CCSIM:SNESIM
Total (between/within): 1:0.68 MS-CCSIM:SNESIM

4.6. Real field example

We now turn to the real field example of Fig. 8(E). The TI
depicts fracture zones (red), imaged by applying an ant-track
method on a seismic data set. This TI will be used in modeling a
similar reservoir that does not have seismic data, but is deemed to
contain similar fracture zones. Additionally, at well locations the
presence/absence of fractures zones is observed by forming point
conditioning data constrains (Fig. 20). Given the complexity of
these patterns and the large size of the TI, existing MPS algorithms
are difficult, if not impossible, to apply.

We generated 50 conditional realizations, of which one is shown
in Fig. 18. The CPU time for this case was 200 s per realization.
To assess the conditioning accuracy, we calculated the ensemble
average, shown in Fig. 21, where only cells with high probability are
shown and the other cells removed from the 3D volume for better
visualization. In the zoomed area we notice a higher probability of
fracture near wells that indicate fracture presence. This indicated that
the generated realization extrapolated from the interpreted fracture
zones using the pattern of the TI in Fig. 8(E).

ms-ccsim snesim

Fig. 18. Ensemble average for MS-CCSIM and SNESIM with zoom in near the well location.

Local ANODI

Global ANODI

ms-ccsim

snesim

Fig. 19. Comparing local and global variability in MS-CCSIM and SNESIM in an MDS
plot. The black dot denoted the training image.
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5. Discussion and conclusions

There is natural logic to use pattern-based approaches for
simulating large grids. In multi-million cell models, it is simply

inefficient to simulate every single grid cell one at a time, regardless
of whether one uses a random or raster path. The result is, first, that
pixel-based models are too CPU demanding for such cases and,
second, that the pattern-reproduction is unacceptably poor, in

realization

Hard data

fractures

Fig. 20. A conditional realization (bottom) for fracture training image shown in Fig. 8(e) and hard data (up).

Fig. 21. Ensemble average of 50 realizations on a 360�780�15 grid.
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particular in cases involving thin, curvi-linear and low proportion
features. In this paper, we build further on the idea of simulating
patterns, more specifically on the CCSIM algorithm. The main
contribution lies in using a multi-scale search for finding a pattern
superimpose optimally in their mutual overlap area with the
previously simulated patterns along a raster path in the Fourier
(frequency) domain. The use of the FFT and multi-scale search speeds
up the algorithm, such that multi-million models can be simulated in
seconds. However, there is no guarantee that the multi-scale search
results in the best pattern. It is possible that the best pattern at the
finest scale is not within the area of the best pattern at the coarse
scale and, in particular, when many levels of coarsening are applied.
In this fashion, the multi-scale algorithm samples from a set of
patterns with reasonably good match instead.

Furthermore, in the same framework, two efficient strategies
for a better hard data conditioning were presented: first hard data
are relocated efficiently in different grid levels and, secondly, by
using a co-template one can alleviate the main issue in dealing
with point data ahead of the raster path. A large set of complex
examples of diverse nature testifies of the ability of the new MS-
CCSIM algorithm. Our currently on-going work is focused on
extending this methodology to continuous variables, as well as
investigating ways of conditioning to secondary data.
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