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Abstract In this paper, a new generalized sensitivity analysis is developed with a
focus on parameter interaction. The proposed method is developed to apply to com-
plex reservoir systems. Most critical in many engineering applications is to find which
model parameters and parameter combinations have a significant impact on the deci-
sion variables. There are many types of parameters used in reservoir modeling, e.g.,
geophysical, geological and engineering. Some parameters are continuous, others dis-
crete, and others have no numerical value and are scenario-based. The proposed gen-
eralized sensitivity analysis approach classifies the response/decision variables into a
limited set of discrete classes. The analysis is based on the following principle: if the
parameter frequency distribution is the same in each class, then the model response is
insensitive to the parameter, while differences in the frequency distributions indicate
that the model response is sensitive to the parameter. Based on this simple idea, a new
general measure of sensitivity is developed. This sensitivity measure quantifies the
sensitivity to parameter interactions, and incorporates the possibility that these inter-
actions can be asymmetric for complex reservoir modeling. The approach is illustrated
using a case study of a West Africa offshore oil reservoir.
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1 Introduction

Sensitivity analysis (SA) studies the relationships between the variation of the input
parameter values and the response (output) variation of a mathematical (numerical)
model. SA methods provide measures of sensitivity, which quantify the influence of
a parameter variation on model response. A parameter is denoted influential when,
for a given measure of sensitivity, it is determined to have a significant impact on
model response. When the parameter is influential, the common nomenclature in the
SA literature is to define the response as sensitive to the parameter. For many models,
not all input parameters are influential. In this case, a model response is denoted as
insensitive to the (non-influential) parameter. This paper focuses on quantifying the
influence of parameter interactions. A parameter interaction arises between input para-
meters when their simultaneous influence on the model response is not additive (Cox
1984). Interactions involving multiple parameters are denoted as multi-way parameter
interactions.

Sensitivity analysis methods provide a mathematical framework to quantify when
a model response is sensitive to a parameter or parameter interaction. A variety of
methods for SA are available, including response surface methodology (RSM), the
Morris method, and the Sobol (Saltelli) method, among others (Saltelli et al. 2000).
In reservoir modeling, the most common approach for sensitivity analysis has been
through the use of RSM (Myers and Montgomery 2002), often coupled with an exper-
imental design (ED) on the parameters (for example, applications of RSM to reservoir
modeling, see Dejean and Blanc 1999; White et al. 2001; Zabalza-Mezghani et al.
2004; Kalla and White 2007). RSM is often preferred to other methods in reservoir
modeling because of the high computational cost for evaluating a reservoir model
(rendering the Sobol method problematic), as well as the desire to identify influential
parameter interactions (not possible using the Morris method). One common limita-
tion of many SA methods (including those noted above) is that they only analyze a
single response, for example, field oil production after 10 years, while in reservoir
modeling, responses are time-varying. Note as well that RSM is best applied when
the model response is smoothly varying. This may not be the case in certain reservoir
modeling applications, such as when the model response has a stochastic component
and variation in some input parameters (e.g., geological interpretation) are likely to
induce non-smooth changes in the output response. Finally, RSM models interactions
between parameters as a product of the parameter levels, implying an assumption of
interaction symmetry. For example, in the standard RSM model

r = β0 +
∑

i

βi pi +
∑

i

∑

j

βi j pi p j ,

where one studies the effect of parameters pi on response r , the parameter interaction
(latter term when i �= j) is assumed symmetric, meaning that a high level of pi with
a low level of p j will have the same contribution to r as a low level of pi with a high
level of p j .

In this paper, a method is developed which is designed to overcome many of the
limitations of these traditional approaches and in particular, to allow quantification
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of the influence of asymmetric parameter interaction which can occur in cases with
non-linear responses with a stochastic component, and mixed parameter sets. No
assumptions on the nature of the parameters or their prior distributions are made, nor
on the response functions. The method is based upon the work of Spear and Hornberger
(1980), which they call generalized sensitivity analysis (GSA), and further expanded
by other authors (see for example, Beven and Binley 1992; Bastidas et al. 1999;
Pappenberger et al. 2008). The basic concept of GSA is to separate the models into
discrete classes (which Spear and Hornberger call “behaviors”). In the work of Spear
and Hornberger, two classes, B and B′, were defined for the growth of a particular
nuisance alga whose nutrients are supplied from farm runoff. Once the models for
alga growth were separated into different classes, the distributions of the parameter
values were examined within each class. The insight of Spear and Hornberger was
that non-influential parameters will have no impact on the classification, and thus the
distributions of the parameter values will be similar between classes. On the other
hand, an influential parameter will separate the models into the different classes, and
will thus be evident when comparing the distributions of the sampled parameter values
between classes. The GSA method has the following advantages. It is applied to an
ensemble of models created using a form of Monte Carlo sampling of prior cdfs. There
is no approximation or interpolation of the responses, thus requiring no assumption of
the smoothness of the response, or indeed its functional form in any manner. The SA
is performed by comparing cdfs, which can be of any form (discrete or continuous).

In this paper, the ideas of Spear and Hornberger are extended to first account for the
typical high-dimensional output of reservoir simulators. A distance-based classifica-
tion of the output is employed, and thus termed distance-based generalized sensitivity
analysis (DGSA). Next, the GSA is extended further by quantifying the influence of
asymmetric parameter interactions. The methodology is illustrated by an application
to data from an actual field reservoir.

2 Methodology

2.1 Notation

Most modeling problems in reservoir engineering have a number of common ele-
ments. First various input parameters need to be specified related to geological, geo-
physical and engineering aspects of the models. Training images, variogram para-
meters, relative permeability parameters, and rock physics model parameters are a
few examples. The list of various parameters is denoted as p. One should note that
some parameters are continuous; others are discrete, some may be non-numeric val-
ued, for example, a geological scenario or depositional model (whether for faulting
or facies). All these parameters are then used to create earth models m. Earth models
usually consist of faults, horizons, layers and grid cells filled with various properties
(Caers 2005). Stochastic methods are often used to create these earth models, hence,
a single input parameter set pi may lead to many earth model realizations denoted as
m(�)

i , � = 1, . . . , L , where L is the number of realizations generated per single input
parameter set pi . This stochastic variation for a fixed set of input parameters will be
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termed spatial uncertainty, as opposed to input uncertainty for the variation of the input
parameters p.

Flow models are typically deterministic, that is for a given input earth model m(�)
i

a single response r(�)
i is numerically simulated. Flow simulation generates a high-

dimensional list containing pressures and saturations over time over all the grid cells,
but one is most typically interested in production responses at well locations over time,
which will be the focus of the case study presented later.

2.2 A Distance-Based Generalized Sensitivity Analysis

2.2.1 Distance-Based Classification of Responses

The proposed approach relies on the generalized sensitivity analysis (GSA) of Spear
and Hornberger (1980) which is first extended to high-dimensional responses by ana-
lyzing flow responses using distance-based classification (Scheidt and Caers 2009a).
The GSA of Spear and Hornberger can be easily generalized for multiple classes by
classifying the flow responses into a limited set of classes (K being the number of
classes)

c = {c1, c2, . . . , cK }

meaning that, based on some measure of similarity (a distance), responses r(�)
i are

assigned uniquely to a class ck . It is important to emphasize that the classification
is performed on the model responses r(�)

i , and not on the input parameters p of the
models. For each class the number of responses is denoted as

nc = {nc1, nc2, . . . , ncK }.

Since in reservoir modeling time-varying responses over several wells are considered,
standard distances can be employed (Scheidt and Caers 2009a). Once a distance is
defined, one can proceed with clustering, that is grouping responses into a predefined
number of classes based on that distance. k-medoids clustering is used, which is a fairly
standard and robust choice for clustering. Regardless of the clustering method, the
clusters separate the models into discrete classes (behaviors in Spear and Hornberger)
based upon the dissimilarity distance function and the model responses of interest.
Using clustering, a generalization of Spear and Hornberger (a two-class method) to
any number of classes is achieved. An appropriate number of classes can be discovered
using the Davies–Bouldin index (Davies and Bouldin 1979), or the Silhouette index
(Rousseeuw 1987), for example. Alternatively, the modeler can select the number of
classes based upon a desired degree of resolution of the model response. A small num-
ber of classes differentiates models with large differences in response, and identifies
parameters which impact the large variations. As the number of classes increases,
more subtle differences in the response, and parameters which impact the variations,
can be identified. Our experience suggests that at least ten models per class should be
created.
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Fig. 1 Illustration of the CDF
distance. The distance is
calculated by determining the
area between the two cdfs
represented by the striped area
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2.2.2 Defining Distances Using CDFs

After classifying of the output responses, we can now list per each class, the values of
the parameters responsible for creating the responses belonging to that class. The crit-
ical observation of Spear and Hornberger is the following: if the statistical distribution
of the sample values of a parameter is similar amongst all classes then the response
is insensitive to the value of that parameter, hence the parameter is non-influential.
Conversely, if the statistical distributions of the sample values of a parameter are dif-
ferent amongst all classes, then the response is sensitive to the parameter values (the
parameter is influential). Therefore, some measure of dissimilarity between statisti-
cal distributions of a parameter observed over various classes will also be a measure
of sensitivity of that parameter to the response in question. We define a sensitivity
measure based on the concept of distances. To that end, the following notation is
introduced. The prior distribution of each parameter is denoted as F(pi ) (cdf) and
its empirical distribution function (from sampling) as F̂(pi ). After classification, we
obtain a class-conditional empirical distribution function F̂(pi |ck), ∀i, k.

To evaluate how the classification impacts the distribution of a parameter pi , the
distance between the prior empirical distribution function and the class-conditional
empirical distribution function is determined by a numerical calculation of the area
between the curves (illustrated in Fig. 1)

d̂k,i = f�cdf(F̂(pi ), F̂(pi |ck)) k = 1, . . . , K . (1)

This distance is denoted as the CDF distance. Equation 1 defines the measure of
sensitivity for parameter pi , used in this paper. Equation 1 is a single-way sensitivity
measure, since it measures sensitivity for a single parameter.

2.2.3 Testing Statistical Significance Using Bootstrap

Once the CDF distances are calculated, the question arises whether the distances are
statistically significant. This question is very relevant in reservoir modeling simply
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because the flow simulator cannot be run thousands of times and hence, a need to
consider small sample sizes.

To account for small sample sizes in hypothesis testing, we propose a bootstrap
method (Efron and Tibshirani 1993). The procedure is as follows. For each parameter,
the null-hypothesis Ho is

Ho : there is no difference between the statistical distributions of a parameter

pi in various classes.

The approach follows the classical logic of bootstrap hypothesis testing: if one accepts
the null-hypothesis, then, for a given parameter pi , the class-conditional cdfs of para-
meter values are not different and in fact equal to the prior F̂(pi ). The alternative
hypothesis is that the statistical distributions of a parameter are different between
the classes, hence, by definition, the clustering (and model response) is sensitive to
parameter pi . Bootstrap allows calculating the sampling distribution of d̂k,i under the
null-hypothesis. To do so, for each class ck and for each parameter pi , B bootstrap
datasets consisting of nck values are drawn. A non-parametric bootstrap is employed,
hence bootstrapped samples are drawn from F̂(pi ). A single bootstrapped sample
dataset for a class ck can then be written as

p(b)
i,k = {p(b)

i,1 , p(b)
i,2 , . . . , p(b)

i,nck
}

Based on these B bootstrapped datasets, bootstrapped distances for each class k can
be calculated

ˆ̂dk,i = f�cdf(F̂(pi ), F̂(p(b)
i,k )). (2)

From these multiple bootstrapped distances ˆ̂dk,i , the quantile ˆ̂d
(q)

k,i is estimated. The
quantile q defines the confidence level for which the hypothesis test is rejected. The
null-hypothesis is rejected as follows

if ∃k for which d̂k,i ≥ ˆ̂d(q)
k,i then Ho is rejected (3)

with d̂k,i the estimated difference between prior and class-conditional cdfs for the
given classification and parameter pi (Eq. 1). This test is applied to all parameters. In
the description of the method and examples, a 95 % quantile is used for testing the
null hypothesis.

Bastidas et al. (1999) also employed a bootstrap procedure for SA to ensure robust-
ness of their results. However, in their approach, these authors resampled from the
distribution of model responses (not from the parameter distributions), and used the
median of the Kolmogorov–Smirnov statistic after classification (into B and B′) to
measure sensitivity. Bastidas et al. did not consider parameters with discrete values
nor sensitivity analysis for more than two classes.
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Using the bootstrap results, the CDF distance (Eq. 1) can be standardized as follows

s(pi ) = 1

K

K∑

k=1

d̂ S
k,i with d̂ S

k,i = d̂k,i

ˆ̂d
(q)

k,i

, (4)

where s(pi )defines a standardized sensitivity measure for parameter pi on the response
r. Each term d̂ S

k,i in the summation in Eq. 4 is defined herein as the standardized CDF
distance for class k and parameter pi . A Pareto plot can be used to rank these sensitivity

measures. Note that by standardizing by ˆ̂d(q)
k,i , a value of d̂ S

k,i equal to or greater than
one signifies that the hypothesis test is rejected (following Eq. 3).

2.3 Multi-way Parameter Interaction

In reservoir modeling, one may often find that no single parameter has a statistically
significant influence on the response. One of the reasons is that the relationship between
input parameters and responses is stochastic (due to spatial uncertainty) as mentioned
above and that stochasticity confounds the relationship between input parameters and
response. Another reason is that the relationship between parameters as a whole and the
response is highly non-linear, hence certain combinations (two or more) of parameter
values may influence the response.

The above developed single-way sensitivity analysis has therefore been extended to
quantify response sensitivity for parameter interactions. In their original work, Spear
and Hornberger do not consider multi-way parameter interactions (as well as many
of the subsequent adaptations of the GSA including Bastidas et al. 1999). Spear et al.
(1994) propose a tree-structured density estimation approach for quantifying parame-
ter interaction sensitivities. An alternative, simpler approach to determining multi-way
parameter interactions is proposed by simple extension of the above concepts.

A general way of expressing parameter interaction is through conditional distrib-
utions. Consider for example two parameters pi and p j . To quantify sensitivity for
two-way parameter interactions (interaction for two-parameters), the exact same prin-
ciple is used as for a single-way sensitivity, namely: response is insensitive to the
parameter interaction if there is no difference in the class-conditional distribution of a
single parameter and the class-conditional distribution of that parameter additionally
conditioned to a second parameter. This verbal expression can be put into mathemat-
ical form as follows. For each interaction, two parameters pi and p j are considered
as well as the various indicators values i(pi ; tm) defined as follows for continuous
parameters

i(pi ; tm) =
{

1 if tm−1 ≤ pi ≤ tm
0 else

, m = 1, . . . , M

with t0 = min(pi ) and M the number of bins. Note that the thresholds are a subjective
choice of the modeler, with a natural choice being evenly spaced quantiles. For discrete
parameters, an indicator value can be defined
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i(pi ; tm) =
{

1 if pi = tm
0 else

, m = 1, . . . , M

where tm is the mth value of the discrete parameter, and M is the total number of
discrete categories. An indicator is simply a way of representing any type of parameter,
continuous or discrete, by means of a vector of zeros and ones.

For each class ck and for each threshold tm the conditional distribution F(pi |i(p j ;
tm) = 1, ck) can be estimated based on the parameter values obtained from the clas-
sification. Analogous to Eq. 1 for individual parameters, a CDF distance is employed
as a measure of sensitivity for two-way parameter interactions

d̂k,i | j,m = f�cd f (F̂(pi |i(p j ; tm) = 1, ck), F̂(pi |ck)) ∀k ∀m. (5)

Equation 5 is used to determine whether there is any interaction of p j on pi which
influences the response r. Similar to the approach for single-way sensitivity, one can
(1) perform a bootstrapped-based hypothesis test to determine whether there is indeed
a statistically significant interaction and (2) define a measure of conditional interaction
sensitivity per class

sk(pi |p j ) = 1

M

M∑

m=1

d̂ S
k,i | j,m ∀k with d̂ S

k,i | j,m = d̂k,i | j,m

ˆ̂d(q)
k,i | j,m

(6)

or an average measure of sensitivity over all classes

s(pi |p j ) = 1

K

1

M

K∑

k=1

M∑

m=1

d̂ S
k,i | j,m (7)

Note that this measure of sensitivity based on conditional interaction is asymmetric
simply because conditional distributions are asymmetric.

3 Case Study

3.1 Case Description

The West Coast African (WCA) reservoir is a deep water turbidite offshore reservoir
located in a slope valley. The reservoir model has been extensively described by Scheidt
and Caers (2009b), and here a short summary is provided.

The reservoir model has dimensions of 78 × 59 × 116, with around 120,000 active
grid blocks (the exact number varies for each simulation due to stochastic variabil-
ity). The reservoir has 20 producing wells and 8 water injection wells, operating
over 3.5 years. One major source of uncertainty in this model is the facies descrip-
tion, which cannot be easily inferred from the seismic data. However, four deposi-
tional facies are interpreted from the well logs: shale (Facies 1), poor-quality sand #1
(Facies 2), poor-quality sand #2 (Facies 3) and good-quality channel sand (Facies
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TI1
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Fig. 2 2D slice representation of the training images for the six different depositional scenarios for the
WCA case study

4). The depositional uncertainty for the facies is expressed through different training
images (TI), shown in Fig. 2. The facies are constrained to the available data: the
three-dimensional TI, well data and seismic data. For each realization, the facies are
populated with porosity, Vshale (volumetric concentration of shale) and horizontal
permeability (Kh) values using stochastic simulation. The vertical permeability (Kv)
is derived by applying a constant Kv/Kh ratio to the entire model. For more details,
please refer to Scheidt and Caers (2009b).

The reservoir models were simulated using streamline simulation (Batycky et al.
1997). Scheidt and Caers (2009b) noted that for this case, one streamline simulation
requires only 7 min of CPU time, compared to 2.5 h using a finite-difference flow
simulator on a standard PC. In addition, the responses from streamline simulation
were found to be highly correlated with the finite-difference simulation, making it an
excellent proxy for model classification using metric spaces, hence DGSA.

The method described in Sect. 2 has been implemented in-house in Matlab. With
this code, a study is first presented that illustrates the DGSA method and compares it
to RSM. For the purpose of comparison with RSM, only continuous parameters are
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varied, and the sensitivity of a single response is analyzed, which is the cumulative oil
production at the final simulation time. A single TI and geomodel are used, so there
is no spatial uncertainty.

A study is subsequently presented containing several aspects which would make a
traditional application of RSM extremely challenging, notably, (1) spatial uncertainty,
(2) combination of discrete and continuous parameters, and (3) hundreds of time-
varying responses of interest.

3.2 Sensitivity to Continuous Parameters Only: Comparison with RSM

In this case study, the continuous parameters in the flow simulation are:

• Residual oil saturation: SOWCR (U [0.15, 0.35])
• Maximum water relative permeability value: krwMax (U [0.3, 0.6])
• Water Corey exponent: watExp (U [2, 4])
• Kv/Kh ratio: KvK h (U [0.1, 1])

Each parameter is given a cdf, specified above, where U [X, Y ] indicates a uniform
distribution between numerical values X and Y , inclusive. 40 reservoir models are
created using Latin hypercube sampling of the probability space of the parameter cdfs
(Helton and Davis 2003) (10 models per continuous parameter).

The dissimilarity distance is calculated as the difference in the cumulative oil pro-
duction between all model pairs. The classification is performed using k-medoids
clustering. Results for two classes are presented, which is the optimal number of
classes given by the Silhouette index, containing 19 and 21 models for c1 and c2,
respectively. Figure 3 displays the prior (black) and class-conditional empirical cdfs
(red, blue). The models in the blue class (c1) correspond to lower values of cumu-
lative oil production, and red (c2) to higher values. Note the separation in the cdfs
between the prior and the class cdfs for the parameters which affect the water relative
permeability curve (krwMax and watExp). Lower krwMax values and higher watExp
are known to impede the production of water (and hence enhance the production of
oil), which is consistent with the empirical cdfs for krwMax and watExp in Fig. 3.

Figure 4 shows the results of a SA using the standardized CDF distance calculated
from the cdfs in Fig. 3 for each class (left), and the standardized measure of sensitivity
(Eq. 4). There are two parameters, krwMax and watExp, for which the hypothesis
(Eq. 3) is rejected, and therefore are judged to be influential to the classification based
on cumulative oil production. The other two parameters, KvKh and SOWCR, have
small distances and are determined to be non-influential to the classification.

For the two-way interactions, each parameter is divided into low, medium and
high value bins, using evenly spaced quantile values for the thresholds (tm). Fig-
ure 5 (top row) displays examples of two interactions, namely, SOWCR|watExp, and
watExp|SOWCR. Here, each bar represents the standardized CDF measure of sensi-
tivity, and thus has a length of d̂ S

k,i | j,m (Eq. 6). Each class is represented by a different
color (blue for c1 or red for c2) and each threshold is represented by different shading
(light, medium, dark color corresponding to low, medium, high bins, respectively).
Note that for SOWCR|watExp, the distances for only two thresholds could be calcu-
lated, as there were an insufficient number (<3) of higher values of watExp (for c2),
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Fig. 3 The empirical cdf curves for the four continuous parameters. The prior cdf is in black and the cdfs
for the two classes are in blue (c1) and red (c2)
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Fig. 4 Sensitivity analysis for four continuous parameters, displaying the standardized CDF distances
d̂ S

k,i,m (Eq. 4) for each class (left), and the average distance s(pi ) for each parameter (right)

and lower values of watExp (for c1). The classification is sensitive to the interaction
SOWCR|watExp, because at least one of the bars is larger than one. On the other hand,
the classification is insensitive to watExp|SOWCR.

Figure 5 (bottom row) displays the class-conditional cdfs for the interactions from
which the standardized distances are calculated. The interaction SOWCR|watExp has
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Fig. 5 The top row displays examples of two interactions (SOWCR|watExp and watExp|SOWCR). Each
bar has a length of d̂ S

k,i | j,m (Eq. 6) for each class and each threshold. The bottom row displays the class-
conditional cdfs (for class c1) for the interactions from which the standardized distances are calculated

a physical significance: higher values of SOWCR are interacting with low threshold
values of watExp (light blue dashed line), and lower values of SOWCR are inter-
acting with medium threshold values of watExp (dash-dotted line) to impact on the
response. This is an interesting result, since SOWCR is not an influential parameter
on its own. Note that the combination of low values of watExp and higher values of
SOWCR would encourage water production and hence reduce the final cumulative
oil production, which is consistent with the cumulative oil production values for this
class.

The analysis was performed for each possible interaction (12 in this case). One
possible way to display the results is to stack the bars (from Fig. 5) belonging to
a single cluster (see Fig. 6, left). Since the number of bins might not be the same
for different parameters, each bar is standardized by the number of bins for the given
interaction. As a consequence, the total length of the bar is sk(pi |p j ) (Eq. 6) where each
sub-bar (bars of different hue) has a length of d̂ S

k,i | j,m/M . Figure 6 (right) displays the
measure of sensitivity averaged over all classes (s(pi |p j ), Eq. 7). Three interactions
are influential, namely krwMax|watExp, SOWCR|watExp, and watExp|krwMax.
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Fig. 6 Two-way conditional parameter interactions for the cumulative oil production with four continuous
parameters. The figure on the left displays the CDF distance measure per class (red or blue bars), (sk (pi |p j ),

Eq. 6), and the contribution d̂ S
k,i | j,m/M of each distance per threshold (segments within the red or blue

bars). The average measure of sensitivity (Eq. 7) is shown on the right
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KvKh:krwMax

KvKh:SOWCR
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Fig. 7 Sensitivity analysis using RSM of cumulative oil production of the same 40 models of the four
continuous parameters used for the DGSA. The results using a response surface containing only the primary
factors are shown on the left. The results using a response surface with primary factors and interaction terms
are shown on the right. The red line indicates the threshold beyond which the parameter (or interaction
term) is influential

The sensitivity results of the DGSA are now compared to those determined by
RSM. In Fig. 7 (left), the sensitivity analysis resulting from a response surface con-
taining only primary factors (the 4 continuous parameters) is used. In Fig. 7 (right), a
response surface is employed which contains terms for the primary factors and all the
parameter (two-way) interactions. The red line in the figures indicates the threshold for
statistical significance. The results in Fig. 7 (left) are similar to what is shown in Fig. 4
for the DGSA approach. By contrast, the RSM resulting from the response surface
with primary and interaction terms (Fig. 7, right) has some differences, notably in the
insensitivity of watExp and the sensitivity of SOWCR. On the other hand, there are sev-
eral influential primary and interaction terms which are found in the DGSA (krwMax,
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SOWCR:watExp, and krwMax:watExp). Finally, note that the sensitivity measures for
RSM and the DGSA are different; hence, the values on the x-axes for Figs. 5 and 7
represent different quantities.

3.3 Application to Multiple Responses, Discrete and Continuous Parameters

Now, in addition to the four continuous parameters, the training image (TI) is added
as an additional parameter. Six TIs are specified (Fig. 2), each representing a different
geological interpretation. Each parameter cdf is the same as in the previous example,
and the probabilities of the TIs are equal. In addition, each run has a different geostatis-
tical realization. Distances between the oil production rates for the 20 producers over
the simulation period of the field are calculated from a total of 240 models (40 models
per TI, 10 models per continuous parameter per TI). The k-medoid classification thus
employs hundreds of response values to distinguish the models.

The result is first displayed for three classes, as selected by the Silhouette index.
Class c1 (blue), c2 (green) and c3 (red) contain 89, 91, and 60 models, respectively.
Figure 8 shows the cdfs for the five parameters with the prior cdf (black), and the
class-conditional cdfs (blue, green and red). It should be noted that c1 contains runs
which have in general a higher oil production rate (lower water production rate) for
the 20 producers compared to the runs in c2 and c3. This is consistent with the cdfs
in Fig. 8, which have higher values for watExp and lower values for krwMax for c1,
values which would increase the oil production and decrease water production. Classes
c2 and c3 contain runs with higher amount of water production, observations which
are consistent with their values of watExp and krwMax.

Figure 9 (left) displays the standardized CDF distances for each class for the five
parameters. The hypothesis tests for parameters TI, watExp and krwMax were rejected,
and are thus shown as influential (right). Figure 10 (left) shows the average measure
of sensitivity for the parameter interactions as determined by Eq. 7. Three bins (low,
medium, high values) for continuous parameters are chosen. The influential interac-
tions are shown in blue. Note that the sensitivity measures of some interactions are
high, yet are not determined to be influential from the hypothesis test. The maxi-
mum distance of KvKh|krwMax, for example, is 0.97, slightly below the threshold
of 1 for sensitivity. Figure 10 (right) displays the distance measures of the influen-
tial interactions for each class (Eq. 6). The stacked bars show the contribution of the
distance for each bin. The bins which show influential interactions are highlighted in
black.

Interpreting interactions in complex models with multiple parameter types is not
trivial, but there are a few things to note in Fig. 10. First, unsurprisingly, there is
an influential interaction between krwMax|watExp (as was found in the simple case
shown above). Second, three of the TI values show conditional interactions (TI1, TI3,
and TI13). Neither of the TI values with two levees (TI9 and TI10) have interactions.
Finally, although SOWCR is non-influential, there are influential conditional interac-
tions with SOWCR.

Figure 11 presents four of the class-conditional cdfs for the significant parameter
interactions for c1 (blue) and c3 (red). The krwMax|watExp dependency (Fig. 11, top
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Fig. 9 The standardized CDF distance for each class (left), and average distance over all classes (right).
The influential parameters (krwMax, watExp, and TI) are shown in blue (right)

 

 

Fig. 10 The average standardized measure of sensitivity as measured by Eq. 7 for all two-way parameter
combinations (left), and a detailed view of the sensitivity measures for all influential two-way parameter
combinations (right). Each bar length shows the average measure of sensitivity (in sk (pi |p j ), Eq. 6) for
the class (blue hues for c1, green hues for c2, red hues for c3), and each stack in the bar represents the
contribution of the distances of each bin to the total (d̂ S

k,i | j,m/M). The black rectangles highlight the bins
for which the hypothesis test was rejected

left) for class c1 presents a counter-intuitive interaction. Note that class c1 contains
runs which in general show lower amounts of water production compared to c2 and c3.
For lower values of watExp (light blue, dashed line) which promote water production,
note that the krwMax is lower to counteract the effect of watExp. Higher values of
watExp (dark blue, dotted line) have a small impact on the distribution of krwMax,
since watExp is a dominant influence on the classification (Fig. 9, right). Since the
overall distribution of krwMax must follow the prior (black) curve, the strong influence
of the medium values of watExp (blue, dash-dotted line) are a direct consequence of
the effect of the low and high values of watExp.
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Fig. 11 Selected cdfs for the class-dependent cdf for c1 and c3 (in black) and class conditional cdf for the
interactions (blue hues for c1, red hues for c3). Note that the line style indicates the different bins for the
conditional interactions

4 Discussion and Conclusions

A distance-based generalized sensitivity analysis approach has been presented which
is applicable to models with stochastic responses and diverse types of input parame-
ters (continuous and discrete). The case study illustrates several advantages to this
approach. First, the Monte Carlo sampling procedure can account for any type of
parameter with different cdfs, discrete or continuous. Second, the classification is not
limited to a single response, but can be an amalgam of several responses, based upon
the requirements of the modeler. Third, the responses can be stochastic in nature, with-
out any modification of the SA approach, and can thus deal with spatial uncertainty in
Earth models. Finally, since the model responses are used only for classification, proxy
models (in this example, streamline simulation) can be employed in this approach. In
other words, what is important is that the responses correctly classify the models—the
absolute accuracy of the proxy response itself is less consequential. This is a significant
advantage for computationally intensive models when a fast proxy model is available.

The CDF distance allows quantifying parameter influence. It is a flexible measure
of sensitivity that works for all distributions, discrete and continuous, and is robust
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for small sample sizes. The resampling procedure to standardize the CDF distance is
also designed to account for small sample sizes (small number of models in a class).
In addition, standardization of the CDF distance allows for a simple interpretation of
sensitivity and hypothesis testing. In this work, the CDF distance has been standardized
by the 95th quantile value of the distribution of distances determined, but any other
quantile may be selected. In practice, one may consider employing a correction for
multiple testing to account for the repetition of the hypothesis test over the number of
classes (Westfall and Young 1993).

Sensitivity analysis is necessarily subjective, whether using classical methods such
as RSM or using the DGSA. For the DGSA, although there are automatic clustering
algorithms that select the optimal number of classes, ultimately, the modeler must
decide on the optimal number or a range of numbers over which to perform the
analysis. In addition, the modeler selects the confidence level (95th quantile, 99th
quantile, etc.), and may even modify the criteria for the hypothesis test if so desired.
This degree of flexibility in interpretation is believed to be an advantage of the proposed
SA methodology.

Comparison of the DGSA with RSM has shown that the results are similar for the
case study analyzed. Note that in general, one should not expect that all SA methods
provide identical results (Pappenberger et al. 2008). The application to the WCA
field emphasizes the general nature of the developed approach, and demonstrates its
usability in cases where RSM approaches are very difficult to apply. The case study
also illustrates the complexity and counter-intuitive nature of parameter interaction in
the modeling of complex Earth systems.

Future work will focus on how to make use of this sensitivity analysis and its
asymmetric interaction in the quantification of uncertainty and the solution of inverse
problem.
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