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Summary 
 
Much of the difficulties in characterizing complex 
reservoirs are related to the uncertainty associated with 
seismic interpretation.  In this project, we examine two 
such sources: uncertainty in the velocity model, and 
ambiguities with expert interpretation due to conceptual 
geological uncertainty of reservoir structure.  We address 
the first issue by presenting a geostatistical method for 
generating multiple velocity models to capture this 
uncertainty. We take this a step further by obtaining a set of 
migrated images using these multiple models, and build 
uncertainty maps based on local Euclidean and Procrustes 
distances between the migrated images. These uncertainty 
maps can aid an interpreter in deciding a) if certain 
structures actually are present in the image and b) the 
spatial placement of existing structures. An illustration to 
subsalt imaging is provided. 
 
Introduction 
 
While advancements of seismic imaging have provided 
reservoir modelers with improved input for reservoir 
characterization, there are still large uncertainties 
associated with the seismic imaging itself and with the 
interpretations made on such images. One cause of 
uncertainty is due to the use of uncertain velocity models, 
which in turn leads to uncertain depth migration. 
Furthermore, due to the computational burden of migration 
and time spent on interpretation, generally only a single 
image is processed and interpreted. Common practice is to 
then stochastically perturb faults and horizon locations to 
capture uncertainty (Thore et al. 2002). However, this type 
of analysis neglects the uncertainty in the seismic velocity 
itself, as well as the uncertainties associated with both 
manual and automatic interpretation (Suzuki et al, 2005).   
 
While there exists a wide variety of commercial automatic 
interpretation tools, the majority of them rely on tracking of 
amplitude peaks that are not applicable for complex 
reservoirs, and manual structural interpretation by an expert 
remains the status quo.  Unfortunately, the images may be 
of limited resolution, and/or poor quality, making this a 
difficult task. An example is given by Bond et al (2008) 
who obtained interpretations from 412 experts on the same 
synthetic seismic image, of which only 21% correctly 
identified the correct tectonic setting. They suggested the 
need for tools to help minimize the effects of such 
‘conceptual uncertainty’. For instance, consider the seismic 
image of a target reservoir zone shown in Figure 1. Upon 
initial examination, one may interpret this to contain faults, 

and perhaps submarine canyons.  In actuality, this seismic 
image was obtained via migration using an imperfect salt 
velocity model and with patchy illumination. Had perfect 

velocity and acquisition been used, then the seismic image 
would appear as shown in Figure 2. We note that there are 
neither canyons nor faults, in this region, and the artifacts 
that appear in Figure 1, arise due to our limited 
understanding of the velocity model. Furthermore, we note 
that the vertical position of the main reflector is also 
shifted.   
 
This mimics a scenario common in reality; the best 
estimate of the velocity model is imperfect, and as a result 
the migrated image exhibits artifacts that may appear as 
real structures (a common problem in the case of Bond et 
al., 2008), and improperly positioned layers. The question 
we attempt to address is, how starting with a single velocity 
model can we identify regions of high uncertainty, thus 
aiding the expert during interpretation? To address the issue 
of uncertainty in the velocity model, attempts have been 
made to generate multiple velocity models, and thus 
multiple images. Clapp (2003) presents a methodology 
through which a prediction error filter and 1-D Dix 
inversions are used to generate velocity realizations. While 
this method showed promise, it was applicable only on 
smoothly varying 1-D velocity profiles. In this project, we 
developed a novel fractal based geostatistical simulation 
that can generate multiple realizations of 2D or 3D velocity 
models containing complex subsurface structures such as 
salt bodies. Using these velocity realizations and their 
correspondingly migrated images, we construct uncertainty 

Figure 1:  Consider such a seismic image, where would one 
interpret the reflectors, faults and canyons to be? Where is the top 
of the main reflector?  
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maps by means of image analysis techniques to identify 
regions where artifacts may occur, and locations where 
structure positioning may be uncertain.  

 
Geostatistical Randomization of Model Parameters 
 
While a variety of model parameters are used in seismic 
migration, we focus our attention on the velocity model. 
Consider the scenario, where the best estimate for a 
velocity model containing a complex salt body is given in 
Figure 3. Salt’s high seismic wave velocity causes it to act 
as a lens during imaging, and thus uncertainties in the salt 
structure have significant effects on the resulting image. 
Consequently, we generate new velocity models in which 
the salt boundaries shift in position, while retaining the 
overall characteristics of its shape. The workflow is 
outlined in Figure 4. 

 
Identify Salt Body  
The first step is to identify the shape and location of the salt 
body in the reference velocity model, for example as 
obtained from standard seismic processing. This can be 

accomplished using an edge detection filter followed by a 
boundary-tracing algorithm to produce a contour of the salt 
body. Alternative techniques could include Hough (Duda, 
1972) or Radon transforms (Deans, 2007).  
 
Characterizing Salt Body Roughness 
We note that the salt body’s geometric shape displays 
fractal properties. Fractals as introduced by Mandelbrot 
(1967), have long been used in a geological context.  
They are defined as sets that display self-similarity; that is 
they appear the same at every scale. One property is that 
fractals can be characterized by its fractal dimension can be 
used for characterization. Mathematically speaking, the 
fractal dimension is a statistical measure of the complexity 
as a ratio of the change in detail to the change in scale. 
There is no single definition of the fractal dimension; but 
we use the Minkowski-Bouligand dimension (Kenneth, 
1990) for the purpose of this study. It states that for a given 
set S, and N(𝜺) is the number of boxes with side length 𝜺 
required to cover the set, the dimension is given as: 
 

𝐝𝐢𝐦 𝑺 =    𝐥𝐢𝐦
𝜺→𝟎

𝐥𝐨𝐠𝑵(𝜺)
𝐥𝐨𝐠𝟏 𝜺

 

 
The fractal dimension is thus a single parameter that is not 
necessarily an integer, which describes a fractal shape. It 
should also be noted that the fractal dimension is a not a 
unique descriptor and lacks the necessary information to 
perfectly reconstruct the shape. It can however, be used to 
describe physical attributes such as roughness (Pfiefer, 
1984). Consequently, we can parameterize the salt 
boundary as fractal dimension, and then use it later to 
generate new boundaries with the same 
dimension/attributes.  
 
Defining Salt Surface Uncertainty 
Before geostatistical generation of salt body realization can 
proceed, we need to specify the local uncertainty around 
the salt body surface. In regions of high uncertainty, 
realizations of the salt boundary surface need to fluctuate 
more, while the contrary applies to regions with low 

Figure 2:  Assuming we knew the velocity model perfectly, this 
is the seismic image we expect to see. Note that there are neither 
canyons nor faults. Furthermore, the top of the main reflector is 
higher than it appears to be in Figure 1.  

Figure 4:  Workflow of fractal-based simulation of salt body 
realizations. 

Figure 3:  Velocity field containing a large salt body, representing 
the best estimate of the velocity model. A geostatistical 
randomization is applied to generate new realizations with varying 
boundary positions while retaining the overall characteristics of the 
body. The target reservoir zone is indicated by the dashed box.  

(1) 
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uncertainty. One method of selecting an uncertainty buffer 
would be for an expert to define this based on his/her 
intuition. Alternatively, illumination can be used as a 
metric to automatically construct such uncertainty model, 
which we term the “uncertainty buffer”. For instance, in 
Figure 5, illumination has been shown with the original salt 
body overlaid. Accordingly, regions with low illumination 
(blue) will result in wide uncertainty buffers, while high 
illumination (red) will yield narrow buffers.  

 
Generating Realizations 
Generation of the realizations can be accomplished by: 
sampling points along the boundary from the original salt 
body, perturbing it by a noise scaled by the size of the local 
uncertainty buffer, and interpolating between these sampled 
points using a fractal algorithm. For two-dimensional cases 
such as this, the midpoint displacement algorithm can be 
used, while in three dimensions, the diamond-square 
algorithm can be applied (Miller, 1986). The midpoint 
displacement algorithm works by computing the midpoint 
between sampled points, and then perturbing it by some 
noise. This process is recursively applied with the 
perturbation noise decreasing at each level proportional to 
the fractal dimension. This is repeated until a prescribed 
recursive depth is achieved. The resulting set of points 
represents the boundary of the salt body in the new 
realization. The points can be connected to generate a 
continuous boundary.  The resulting realization will 
resemble the original velocity model in terms of roughness, 
but the boundaries will be more varied in regions of low 
illumination, and less varied in regions of high 
illumination. Figure 6 depicts regions from sample 
realizations exhibiting this behavior. 
 
Distance Based Generation of an Uncertainty Map 
 
Having generated a set of velocity realizations, we can then 
proceed with performing migration, yielding a set of 
seismic images.  While it would be ideal for an expert to 
interpret all resulting migrations, we recognize that this is 
generally not feasible. Instead, we aim to develop a single 
uncertainty map from this set of images and provide it as an 
interpretation tool that highlights areas of the seismic image 
that are most uncertain.  

 
We can identify regions of high uncertainty within the 
image by examining which areas vary the most across the 
entire set of images. In other words, areas of low 
uncertainty should appear to be similar in every image. 
Therefore, by taking a window around each voxel in the 
reference image, and comparing it to the same window over 
all other images, we can produce an uncertainty map that 
gives a voxel wise model of uncertainty. The question is 
therefore on the nature of the distance/metric used to 
compare the images. 
 
Euclidean Distance: 
A simple metric would be the average difference between 
corresponding pixels across the set of images. For the sake 
of illustration, we constructed 100 salt body realizations 
using the aforementioned fractal methodology. Twelve 
representative realizations were selected using the 
methodology outlined in Scheidt and Caers (2009), and 
migrated. We then computed an uncertainty map using the 
Euclidean distance in a region of the image centered on the 
target zone illustrated in Figure 1. Figure 6 shows the 
uncertainty map overlaid with the image generated using 
the reference velocity (Figure 3). Examining the migrated 
images, it can be seen that the reflectors shift vertically, 
with the greatest variation in the middle. This explains why 
the uncertainty map indicates the greatest uncertainty in 
that particular region. This concurs with the observation 
made by examining the reference image with the truth; that 
the center of the reflector are more uncertain that the sides.  
 
Procrustes Distance: 
The Euclidean image only looks at voxel-wise comparison 
and may not reflect properly variation in patterns (sets of 
voxels) between images. For this reason we investigate the 
use of the Procrustes distance, a statistical shape analysis 
that is used to measure similarity of shapes (Hurley & 
Cattell, 1962). 

Figure 5:  The illumination map for our reference salt velocity 
model. This is used to generate uncertainity buffers for our salt 
body 

Figure 6:  Regions from sample realizations generated from the 
reference velocity model in Figure 3, and uncertainity buffers 
defined using the illumination map shown in Figure 5. Note that 
regions of low illumination exhibit more variation, while regions 
of high illumination exhibit little variation between realizations.  
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Given two shapes with points at coordinates (xj1, yj1, zj1) 
and (xj2, yj2, zj2), the algorithm proceeds in four steps:  
1. Compute centroid of each shape, and compute 

translation between the two: 
 

𝒙,𝒚, 𝒛 =
𝟏
𝒏

𝒙𝒋

𝒏

𝒋!𝟏
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2. Use Frobenius norm as shape size metric to compute 
scale change required 

𝑺 𝒙 = [(𝒙𝒋 −   𝒙)𝟐
𝒏

𝒋!𝟏

+   (𝒚𝒋 −   𝒚)𝟐 +   (𝒛𝒋 −   𝒛)𝟐] 

3. Compute optimal rotation to superimpose the two 
shapes. If x1 and x2 are n x 3 matrices containing 
shape coordinates, we apply a SVD to x1

Tx2 to obtain 
UDVT, the rotation matrix is then given by VUT. 

4. We apply the transformations computed in previous 
three steps. The Procrustes distance is defined as the 
sum of squared point distances after transformation 

𝑷𝒅𝟐 = [(𝒙𝒋𝟏 − 𝒙𝒋𝟐)𝟐
𝒏

𝒋!𝟏

𝒚𝒋𝟏 −   𝒚𝒋𝟐)𝟐

+ 𝒛𝒋𝟏 −   𝒛𝒋𝟐)𝟐  
In our application, we pre-process the images by applying 
an edge filter; creating a binary image highlighting the 
major reflectors. When Procrustes analysis is performed, 
the distance is now a measure of the shape variation of 
reflectors and structures amongst the set of images. For 
instance, while the middle of the reflectors in the generated 
realizations vary in vertical location, their shapes are 
similar, and Procrutus analysis indicates a low distance in 
those areas. Conversely, Figure 7 shows that the regions of 
high uncertainty are now aligned with the vertically dipping 
reflectors/canyons. This is an indication that in these 

regions, the shapes of the structures vary across the set of 
realizations, which is in line with the fact that such 
structures are artifacts resulting from an inaccurate velocity 
model. The Procrustes-based uncertainty map allows 
identifying with uncertainty in reflection patterns resulting 
in uncertainty in geological structure, including the 
locations of possible artifacts.   

 
Conclusion 
 
In this study, we investigate two sources of uncertainty 
associated with seismic characterization. The first, arising 
from uncertainty in the velocity model, can be addressed by 
generating multiple velocity realizations. We developed a 
fractal-based geostatistical method for generating 
realizations by varying lithologic boundaries. The second 
cause of uncertainty lies in the interpretation of seismic 
images. To this end, we generated multiple velocity 
models, and invoked different measures of distances on the 
migrated images to generate various uncertainty maps. It 
was found that a Euclidean-distance-based uncertainty map 
was able to capture spatial uncertainty of structures, while a 
Procrutes map was able to indicate regions of structural 
uncertainty. We conclude that the two maps are 
complementary, and when used together can aid an expert 
in interpretation by providing insight into various kinds of 
image uncertainty. Such measures could perhaps also be 
used for automatic interpretation tools.  
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Figure 6:  Uncertainity map generated using Euclidean 
distance on our set of migrated images.  

Figure 7:  Uncertainity map generated using Procrustus 
distance on our set of migrated images. (2) 

(3) 

(4) 


