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Abstract

The early stage development of a reservoir, facies modeling often focuses on the
specification and uncertainty regarding the depositional scenario. However, in
addition to well data, facies models are also constrained to a spatially-varying trend,
often obtained from geophysical data. While uncertainty in the training image has
received considerable attention, uncertainty in the trend/facies proportion receives
little to no consideration. In many practical applications, with either poor geophysical
data or little hard data, the trend is often as uncertain as the training image, yet is
often fixed, leading to unrealistic uncertainty models. In this paper we address
uncertainty in the trend jointly with uncertainty in the depositional scenario,
represented as a training image in multi-point geostatistics. The problem is
decomposed into a hierarchical model. Total model uncertainty is divided into first
uncertainty in the training image, then of variability modeled in the trend given that
training image. The result is that the joint uncertainty in trend and training image can
be easily updated when new information becomes available, such as newly available
hard data. In this paper we present the concepts of this approach and apply them to
a real-field case study involving wells drilled sequentially in the subsurface, where, as
more data becomes available, uncertainty in both training image and trend are

updated to improve characterization of the facies.



Introduction

In early exploration and appraisal phase of development of a reservoir, little information on the
reservoir is known; in this phase only a few wells are drilled, seismic surveys may not be available or of
very limited quality, and no production has started. As a consequence, a significant degree of
uncertainty is generally observed, due to the lack of data. The main sources of geological uncertainty in
such green fields are typically found in the facies proportions, trends and depositional scenarios. These
many sources of uncertainty must be accounted for in the modeling exercise and, once new data
becomes available, the models, and the prior beliefs which were used to construct them must be
updated to account for this new information. This is an important challenge in the industry today, as
rebuilding entirely new models with new data is often impractical, and procedures for updating prior

beliefs are rarely if ever employed.

This paper addresses the question of updating the uncertain parameters associated with trend and
training image when a new well is drilled. New well information does not only provide local information
by adding new conditional data in the model construction. It also may provide useful information of the
uncertain parameters. For example, a new well may reveal that some of the prior beliefs made in
constructing the models are inconsistent with the new well data. It may also suggest a different
understanding of the depositional system, or perhaps that certain parameter choices in generating the
models need revising. Under these circumstances, the geoscientists must review their understanding of
the reservoir and construct an entire new set of models. On the other hand, if the prior set of models is
consistent with the new data, the new well information may inform us that some parameters values are
more probable than others. The paper assumes the later alternative and provides a workflow to update

the probability of the uncertain parameters.

The proposed methodology is an extension of the workflow developed in Park et al. (2013). These
authors developed an approach to update probabilities of depositional scenarios (training images in
their application) when new production data becomes available. A Bayesian framework was employed
to update the uncertain probabilities and create a set of history matched models. The methodology
requires a set of prior models and their forward flow simulation to update the probabilities of the

training images.

The method presented in Park et al. (2013) has been extended in several aspects. First, more than one
uncertain parameter is considered in this paper, and second, the methodology is extended to
continuous parameters. The approach was additionally adapted to well data instead of dynamic data.
Finally, an automated procedure was developed to estimate the parameters required by the

methodology.



The approach was applied to a real turbidite dataset where only a single well was drilled. The main
uncertainties for this field are in the trend (width of the main channel belt containing the geobodies)
and in the depositional scenario. Below, a description of the field and its available data is presented,
followed by a detailed explanation of the methodology using synthetic well data. The methodology is
then applied on the newly drilled well and validated by comparison with rejection sampling. Finally, a

randomization procedure is applied to further validate the obtained updated probabilities.

Reservoir case study description

The field under investigation is a turbidite reservoir in early stage of development. The dimensions of
the field are 8.5x13.5x0.08 km at its largest point, discretized into 170x275x55 grid cells. Only one well
(wy) has been drilled and a second well is scheduled to be drilled in the near future. Both wells are
shown in Figure 1. At the time of the initial modeling phase, well w, was not drilled yet, hence it was not
used in the initial modeling phase of the reservoir. A 3D seismic survey was performed, but is of
relatively poor quality. Therefore, very little information is known about the reservoir and the initial
modeling phase should account for uncertainty in the facies architecture, locations and proportions,

represented by depositional scenarios and trends in the reservoir model.
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Figure 1: A single layer of the field, showing one realization of the facies, and the locations of the only

well drilled (w4) and the upcoming well (w,)

Modeling of uncertainty in depositional scenarios

Four facies have been identified from well w; and the seismic data. They consist of background shales,
thin bed sands, bedded sands and massive sands. Due to the low quality of the seismic, the location and
the proportion of each facies is highly uncertain. In addition, high uncertainty is present in geological

continuity, architecture, dimension of geobodies and facies proportions. Given the little amount of data

3



available, different depositional hypotheses can be made for this study. The facies are modeled using a
multi-point statistics (MPS) algorithm, where the depositional scenarios are represented as training
images (Tl). Uncertainty in the depositional scenario is represented by three different training images
(T1), illustrated in Figure 2. All training images have the four facies mentioned above and all represent a
levee channel complex, which was defined as the most probable depositional scenario. The training
images differ in the spatial arrangement and proportions of the channels and levee. As an example, only
one channel and lower percentage of sand can be observed for TI2, compared to TI1. In addition, some

levees that are present in TI1 and TI2 are not present in TI3.

TI1 TI2

Back Shale
Thin-bed
Bedded sand

- Massive sand

Figure 2: Three different depositional scenarios represented as Tls

It can be seen on Figure 3 that both wells (w; and w,) are located close to each other. Only a sub-region
of the reservoir around the two wells is thus considered in this study, for simplicity. The number of grid
cells in the sub-region illustrated in Figure 3 is 120x140x55, which corresponds to approximately
6x7x0.08 kilometers.

Rotate the grid

Figure 3: Use of a sub-grid around the wells



Modeling of uncertainty in horizontal trend and proportions

Most commonly, trends and proportions in the reservoir are derived from seismic data and are
represented as a set of probability maps per facies. Examples of probability maps inverted from seismic
are shown in Figure 4. A main channel belt containing the levee-channel complex can clearly be seen,

however its width is highly uncertain, due to the poor resolution of the seismic.
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Figure 4: Probability maps for each facies inverted from seismic data
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However, probability maps are not easily generated from seismic and can be highly uncertain. In
particular, one difficulty is that probability maps require the target proportions to be defined for each of
the facies, which in itself is highly uncertain. In this work, auxiliary variables (Chugunova and Hu, 2008)
are used instead of probability maps. An auxiliary variable is a continuous property that reflects some
property of the training image in a certain neighborhood (support). Auxiliary variable can for example
represent the facies proportion, object size, orientation, etc. of the training image, at a given location
(Chugunova and Hu, 2008). Compared to proportion maps, the advantage of auxiliary variables, in
addition to its simplicity, is that only one map needs to be defined, regardless of the number of facies in
the training image. In the case study investigated, an auxiliary variable indicating where the levee-
channel complex should preferably be located can be used instead of the probability maps shown in
Figure 4 without significant loss of information. Examples of auxiliary variables are presented in Figure
5. A high value (red) of the auxiliary variable implies that levees and channels are highly probable,
whereas a small value for the auxiliary variable implies most likely the presence of shale at the given

location.

As mentioned earlier, significant uncertainty lies in the width of the belt that contains the levee-channel
complex. A simple low-dimensional parameterization is used in this paper to account for uncertainty in
trend. By using a single parameter w, a set of auxiliary variables with varying widths can be generated
(Figure 5). The uncertainty on w is taken uniform between 70 and 140 (the prior distribution of w) and

defines the width of the auxiliary variable along the x-axis measured in number of grid blocks, equivalent



to between approximately 3.5 km and 7 km in width. Note that the auxiliary variables shown in Figure 5
vary in depth to respect the vertical trend observed in the seismic. The auxiliary variable guides the MPS
simulation to place channels in regions inside the belt. The auxiliary variable additionally accounts for
uncertainty in the facies proportions, which is a crucial advantage when the proportions are uncertain.

A narrower belt will contain less channels and levee (and more shale) than a wider belt.

T

w=70 S w=140

Figure 5: Example of auxiliary variables with different width w.

Creation of a set of initial /prior models

Having defined the training images and a set of auxiliary variables, a series of reservoir models are
generated. The multi-point algorithm CCSIM (Tahmasebi et al, 2012) is used. CCSIM is a pattern-based
technique that uses cross-correlations on an overlapping region between a previously simulated pattern
and the pattern to be simulated to ensure spatial continuity of geological features. Since searching
patterns in a large Tl is very CPU demanding, a multi-scale representation of the training image in the
Fourier domain is used (MS-CCSIM, Tahmasebi et al, 2014), where the large Tl is transformed into

sequential coarse grid training images.

Note that the models are only conditioned to the well wy, since at the time of the modeling study, the
second well had not yet been drilled. A set of 100 models was generated for each Tl and with varying
width w sampled from its prior distribution (uniform). Examples of a few models are shown in Figure 6.
Note that as expected, realizations generated with a small w concentrate geobodies in the center,

whereas realizations generated with a large w place geobodies more widely.
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Figure 6: Example of realizations for different training images and channel belt widths w

The next section describes in detail the proposed methodology to update the prior probabilities of the Tl
and trend when new well data becomes available. Updating the prior beliefs recognizes that some of
the trend values or Tls that were thought possible after drilling the first well may now be highly unlikely
given the information from the new well. lllustration of the method is provided using a synthetic well

data (shown in Figure 7).

Methodology

Bayesian approach

A Bayesian formulation is used to update the probabilities of the uncertain parameters. In this context,
the term prior uncertainty refers to the probability distributions of the uncertain parameters that
express the beliefs and uncertainties in the model parameters (in this case Tl and trend) before drilling
the new well w,. The set of models M that were generated in the study prior to drilling w, are denoted
as prior models and are used to update the prior uncertainty given new observed data. The traditional

Bayesian formulation can be expressed as:

P(D|M)P(M)

PMID) =20

In the presence of uncertainty in parameters 0, the posterior distribution P(M|D) can be written as:



P(M|D)=[ P(M|6,D)P(®|D)dB (1)

In this paper, we focus the study on the latter term, P(@|D) which corresponds to updating the prior
probabilities of the uncertain parameters (9=(TI,TR) in this example) given new observed well data.

Based on the values of P(8|D), P(M|0,D) can then be determined through a sampling procedure.

The notations used throughout this paper are the following:

e TR: random variable representing the trend (described by the belt width), with outcomes w,
w €[70,140].

e TI: random variable representing the training image choice, with outcomes ti, k = 1,..,K, K
representing the number of training images.

e d: response from the set of prior models: in this application, well data extracted at the well
location from the prior models.

e d,us: observed data at the newly drilled well w,

fTI,TRId (tik,W | dobs) : joint probability density of Tl and TR given data

i (Wldoy, )= Fram (Wt d,, ) : probability density of the trend, given tix and dobs.

The probability P(8|D)in this real field application is a probability density function (pdf) since the trend

is a continuous variable. It represents the density of the trend and Tl given the observed data and is
expressed as: fr; rpy (tik,Wldobs) . A sequential approach is used to estimate f;, ., (tik,Wldobs) . By

using conditional probability rules, the joint probability can be decomposed into two parts:
fTI,TRld (tik W dobs ): fTRlTI,d (Wl ti, 'dobs ) P(TI = tikl D= dobs) (2)

First, the probability of the discrete variable P(TI =ti | Dzdobs) given the observed data is evaluated
and then, for each outcome ti, of the discrete variable, the densities of the continuous variable (trend in
this case) given the observed data are evaluated: fTR|TI,d (Wl tik,dobs). Both terms in Eq. 2 are evaluated

using a combination of distance-based modeling (Scheidt and Caers, 2009a, 2009b) and kernel
smoothing (Silverman, 1986). Details of how to evaluate both terms from Eq. 2 are provided in the two

next sections.



Modeling of the probability of the training image given the data
First, the probability of the Tl given the data P(letilezdobs)is evaluated using the methodology

presented in Park et al. (2013). For completeness, a brief review of this work is presented, which will

then allow contrasting with what is presented here.
To estimate P(Tl =ti|D= dobs), Park et al. (2013) use Bayes’ rule as follows:

fti (dobs)P(Ti:tik)

ZK: £ (d,, )P(Ti =ti,)

P(Ti=ti|D=d,, )= (3)

Where f, (dobs ) = f(dobs |tik) represents the density of the observed data given the training image tij.
Only the probability densities ftik (dobs) need to be estimated since the priors P(Ti =ti,) are specified by

the user. The density f, (dobs) cannot be calculated directly and can only be estimated using a set of

prior models with response d (flow response in their application). However, since d can be a high-
dimensional variable, a low-dimensional representation of the model responses d is constructed. A
metric space is created where Park et al. define the distance as the difference in production response
between any two models from the prior. The observed data d.,s can be represented in this metric space

as well, as its distance to any other models can be evaluated. Multi-dimensional scaling (MDS, Borg and

Groenen, 1997) is then applied to create an equivalent Euclidean space on which fn.k (d)can be

approximated. The underlying assumption of the method is that ftik (d) can be approximated by the

density of points/models for a given Tl at the location of d, in the low-dimensional MDS space. Park et

al. employed an adaptive kernel density estimation method where the bandwidth is determined by

clustering to obtain an approximation offﬁk (d) .

In this paper, a similar procedure is followed to obtain P(TI =ti |D=d,, ) One major difference is the

purpose of the modeling study, which is to update the trends and Tls given the facies profile measured
at the newly drilled well, as opposed to the use of production data in Park et al. As in all distance-based

modeling approaches, the distance needs to be tailored to the response of interest. When evaluating

P(TI:tile:dobs), uncertainty in training images is of interest, therefore the distance should be

designed to distinguish between different patterns at the newly-drilled well. To evaluate a distance
between prior models and observed well data, well facies must be extracted from the prior models at
the well location (w,). A multi-point histogram approach is used (MPH, see for example, Deutsch and
Gringarten 2000; Lange et al. 2012), where histograms of patterns found at the new well location for

each reservoir model and the observed well are computed. The histogram represents the frequency



distribution of the patterns that appears in the well. A J-S divergence distance is used to evaluate the
differences in pattern distribution and to project the models in metric space. Based on the pair-wise
MPH distance, MDS can be applied to represent in metric space differences in patterns found at the
wells. Figure 7 (left) shows, for each training image, a 2D projection of the prior models (colored dots)

and the data (black cross) in MDS space.

Having defined a low-dimensional representation of d, which is denoted d', the next step is to apply
kernel smoothing to estimate f, (d;bs). In this work, an automated procedure to define the bandwidth
has been implemented described in Appendix. Figure 7 (right) shows an illustration of the densities
ft,.k (dr) estimated for each training image. Note that for illustration purposes, the densities are

evaluated in the space of d', but to estimate f, (d;bs) the densities only need to be evaluated at the

location of the new data, i.e.at d], .

Figure 7: (left): Low dimensional representation of the well facies d extracted at the new well location

for the prior models, for each TI. The observed well is illustrated and its location in space is shown by the

black cross. (right) Corresponding probability density ftik (d’)

The probabilities of each Tl given the observed well data are then obtained by assuming
fa, (dobs); fa, (d;bs) and using Eq. (3). Table 1 shows the resulting probabilities. It can be observed

that TI2 has a very low probability and can be rejected from subsequent modeling. In addition, TI3 has a

much higher probability than TIlwhen such a well is observed.

Tl TI2 TI3

P(T1] dobs) 0.17 0.030 0.8

Table 1: Updated probabilities for each training images.
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Now that the second term in Eq. 2 is determined, the first term, namely f;., , (W| tik,dobs), needs to be

estimated. This term consists of estimating for each training image the values of the trend that are most

likely plausible with the observed well.

Modeling of the probability of the trend given the training image and the observed data

The method presented in the previous section is limited to only one type of uncertainty (the TI) which
has discrete outcomes. In this study, the approach needs be generalized in two aspects. First, a joint
probability distribution must be evaluated since uncertainty is present in the trend and the TI. Second,
the parameter w which defines the trend is continuous, hence a joint probability of “mixed” parameters

(continuous and discrete) must be calculated.

As before, the probability density of the trend given the data and the Tl fTR|TI,d (Wl tik,dobs) can only be

estimated using a low-dimensional representation of the well data d extracted from the set of prior
models. The density is obtained in the similar manner as described above, namely, creation of a metric

space, followed by construction of the reduced space d' using multi-dimensional scaling. For
fTled(Wl tik,dobs), the distance must be designed to distinguish between different values of the trend.

Models generated with a small w will most likely show no geobodies at the new well location. As the
width increases, more geobodies will be observed. As a consequence, a good measure to distinguish the
value of w is the proportion of each facies in the well extracted from the models. The distance is
therefore defined as the root mean-squared sum of the difference in proportion of each facies between
any two wells. An example of the resulting MDS plot for all three Tls is provided in Figure 8, where
points are colored according to the value of the trend. The percentages shown on the axes represent

the variance explained by each dimension of the MDS map.
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Figure 8: MDS representation of the prior models. The distance is the difference in the proportion for

each facies.
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Figure 8 shows that, large values of w (red points, wide belt) tend to be grouped on the right side of the
graph, close to the observed data (black cross), whereas small values of w tend to be located further on
the right side. As a consequence, it expected that the probability density of w is high for large values of
w and then gradually decreases as w decreases. A mathematical evaluation is presented next, where

the probability density is estimated for each TI.

The main difficulty compared to the previous section lies in the continuity of the trend. Contrary to the
case of discrete uncertainty, a probability density must be calculated instead of a probability. One way
to address this challenge is to use an additional dimension to the MDS space representing the values of
w. An example of such a space is illustrated in Figure 9. Note that only one dimension is used to
represent the MDS (low dimensional representation of the data, d') in Figure 9 for illustrative purposes.
In reality, its dimension can be higher (2-5D in most problems, 3D in the example using the synthetic

well data).

Figure 9: Prior set of models in joint space (d', Tl, w). Points are colored according to the value of the w.

Evaluating fTRITI,d(Wl tik,dobs) can be done in the space represented in Figure 9. Since the Tl is a

discrete parameter and its value is assumed fixed to ti the density fTR|TI,d(W| tl'k,dobs) can be evaluated

independently for each TI. For simplification, the probability density is denoted as fT,k (w]d ). Again,

obs

kernel density estimation is used to evaluate fT,k (w|d) and then the values at d,, are taken. Since the

kernel smoothing is applied to both d and w, a bandwidth for the trend must be evaluated as well.

Details on how to compute the bandwidth automatically are provided in Appendix. Figure 10 shows the

probability densityfr,k (w]d) (left) and fT,k (wld,,,) (right).
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Figure 10: Probability densities: fr/k (w]d) (left) and fr/k (wld,,,) (right)

At this point, both terms of Eq. 2 have been estimated. Remaining is the multiplication of those terms,

to obtain the final probability density fTI,TR|d (tik,W | dobs) , Which is presented in Figure 11 (left).

Since the total proportion p of all geobodies in the models and the auxiliary variable width w are highly
dependent on each other, one can determine the updated joint probability density fTI,P|d (tik,p | dobs) in
the exact same way as for the width w. The only difference is that the density is estimated in the joint
space (d',Tl,p) instead of (d",TI,w). The updated joint probability density fT,lpld (tik,pldobs) is shown in

Figure 11 (right).

e
=
X

e
=)
=

f(p,Ti|d)

0.6 T

Figure 11: (left) Probability density of the trend and the training image given the new well data. (right)

Probability density of the proportion of geobodies and the training image given the new well data

Given the observed well data shown in Figure 7, the proposed approach shows that TI2 is not likely to
occur. The depositional setting represented in TI2 could thus be removed from the study. In addition,

only large vales for w are possible, which indicates a wide belt containing the geobodies. Not
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surprisingly, the proportion of geobodies p in the model is quite high, with values varying between 40%

and 75%. This confirms what was expected, as the well contains mostly sand facies.

The goal of this study is to update uncertainty based on new well information. Details on the method
were presented taking a synthetic well as the observed data. In the next section, the methodology is

applied using the real observed data from well w,, which was just recently drilled.

Results

Unfortunately, the actual well w, drilled encountered only shale; no producing sand was found. In this
section, first the probabilities of the trend and Tl are updated given that the new well is 100% in shale.
Then, the updated probabilities are validated by comparison with rejection sampling. Finally, a

resampling procedure is applied to validate the proposed method.

Application to the real observed data

The proposed approach is applied to the new observed well (100% shale). First the probability of the Tl
given the observed well data was computed and then the probability densities of the trend for a given Tl
and d,,s were estimated. The definitions of the distances remain the same for each expression of the
probability; the only change is the location of the observed data in MDS space. lllustrations of the MDS
spaces including the observed data for both the training image (left) and the trend (right) are displayed
in Figure 12. In both maps, the location of the new well is right at the edge of the cloud of points, which

is not surprising given that it traversed 100% shale.
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Figure 12: Low dimensional representation of the well values extracted from the prior set of models and
the observed well data (black cross) for different distances: (left): MPH and (right): difference in

proportions.

The updated probabilities of each Tl given the new well data are shown in Table 2. It can be concluded
that the new well is not very informative on the training image, although TI3 shows a slightly higher
probability than TI1 and TI2.
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TI1 TI2 TI3

P(T1] dobs) 0.33 0.30 0.37

Table 2: Updated probabilities for each training images given the observed well.

The joint probabilities of the Tl and the trend (w and p) given the observed well data are displayed in
Figure 13

f(p,Tld)

Figure 13 Joint probability density function: (left) f,, ., (ti,,wld,,.) and (right) f;, , (ti,.0| d, )

Given that the newly drilled well did not find producing sands, the updated probabilities suggest that
narrow belts (small values of w) are more likely to occur than wide belts. Note that it is possible to
obtain a 100% shale well for a wide belt for TI1 and TI2. This observation highlights one main advantage
of the procedure; it accounts for the unlucky possibility that a dry well can be obtained even with wide
belt, due to channel sinuosity, architecture, or simple bad luck. Interestingly too, the updated
probabilities of the proportion of geobodies show that a larger proportion for TI3 can be obtained,
compared to TI1 and TI2. The larger proportion of geobodies for TI3 can be explained by the fact that in
general TI3 contains more channel-levees than TI1 and TI2, but they are of smaller size, thus increasing
the possibility of missing the sand body. Finally, the new well does not provide significant information
on the type of depositional scenario. TI3 is shown to be slightly more probable that TI1 and TI2. In the
next section, rejection sampling is performed to determine the “true” joint probability density of the

trend (and proportion) and the Tl, which is then used to validate the proposed approach.

Real observed data: comparison with rejection sampler

In most situations, rejection sampling is not possible because it requires considerable CPU time. Here,
since the well has only shale, it is relatively easy to obtain models that contain only shale at the well
location. This would evidently not be the case for variable facies profiles at the well, such as the

synthetic well data used above. Rejection sampling is applied as follow:
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Draw randomly a T/ from the prior
Draw randomly a w from the prior
Generate a single model m with that T/ and w

Extract the well data from the models at the well location

i kN

If the well is in all shale, keep the model, otherwise reject it.

Rejection sampling was applied until 850 wells with 100% shale were obtained. The frequency
distribution of the uncertain parameters Tl and w are presented in Figure 14 (left). In Figure 14 (right),
the kernel smoothing densities obtained by the proposed approached are displayed again for
comparison. Both methods provide similar distributions. We can however see a slight edge effect for
small values of w in the kernel smoothing. This is due to the lack of models on the other side of the
boundaries. Figure 15 confirms the validity of the updated joint probability of the Tl and proportion of
geobodies p. In particular, the density of p for TI3 is much wider than for TI1 and TI2.

100

Frequency
o
(=]
fiw,Tl|d)

w 120 1 T

Figure 14: (left) Joint frequency distribution for (TI, w) obtained by rejection sampling. (right) Probability
density distribution of (TI, w) obtained by the proposed methodology

Frequency
f(p,Tlid)

Figure 15: (left) Joint frequency distribution for (T, p) obtained by rejection sampling. (right) Probability
density distribution of (Tl, p) obtained by the proposed methodology
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Now that the joint probability of the trend and width has been obtained, the next step is to update the

set of existing models to reflect the joint probability and, if necessary, create new models.

Selection of existing models consistent with the observed well data

Updating prior probability on the depositional scenario and the trend/proportion is not a goal on its
own. These probabilities should be accounted for when generating new models that are conditioned to
all the well data (new and old). For example for this field, only a few models created with a wide channel
belt and TI1 and TI2 should be generated, with a much larger proportion of models with a narrow belt.
In this particular case of a well drilled in all shale, some of the existing models may be valid and already
honor the new well data. These models should therefore be recycled in accordance to the updated
probabilities and used for the next modeling phase. Here, 76 models were valid out of the 300 initial
models and will be used in for the next modeling phase. If more models are needed, then one can
sample additional values of Tls and w from the updated joint distribution and generate the models by

conditioning at both wells.

Validation using a resampling procedure
As mentioned earlier, rejection sampling is much more difficult to apply for non-shale wells. In order to
confirm the validity of the obtained joint probability density, a validation procedure is applied. The idea

underlying this section is based on the total probability formula:

fri,1m (ti W)= jle,TRId (tip,w|d) f(d)dd (4)
d

One can see in Eq. 4 that if a randomization is performed on d, the integration of the conditional

probabilities should average out to the prior probabilities. As a consequence, one way to validate the

proposed approach is to do a randomization of d, evaluate the conditional density fr, 7z, (tik,W|d)

given that d using the proposed approach and integrate it over many d (right-hand side in Eq. 4). The

validity of the procedure to estimate the joint probabilityfT,,TRld (tik,wld) is then verified if the

procedure can retrieve the prior joint density (left-hand side in Eq. 4) densities.

The procedure is the following:
1. Draw a Tl and a w from their prior distribution (uniform for both variables)
2. Generate a single model m with that Tl and w

3. Extract well data and take it as observed well: dgp
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4. Evaluate fT,ITRW(tik,Wldobs) (fT,,P|d(tik,p|dobs)) using the methodology presented

above

5. Sample repeatedly from the resulting distribution fT,'TRld(tik,Wldobs) (
Jripa (tik Py ) )

6. Repeat the procedure many times

The densities fT,’TRW(tik,Wldobs) and fT,'P|d(tl'k,p|dobs) are evaluated using the same set of 300 prior

models (100 per TI, with a channel belt width varying uniformly) as for the above studies. The
procedure was repeated 300 times, with different d. For each iteration of the procedure, 1000 samples
were drawn from the conditional density distributions (step 5). Figure 16 displays the RHS (left) and LHS
(right) of Eq.4 for the auxiliary variable w (top) and the proportions of geobodies (bottom).

One can observe that distributions close to the prior distributions are retrieved, which confirms the
validity of the evaluation of fy; 754 (tik,wldobs) and fT,’Pld(tik,pldobs) . Because of the approximate

nature of this procedure, one cannot expect to obtain a perfect similarity between the RHS and LHS of
Eg. 4. In particular, for this example, only 300 prior models were to estimate the conditional densities.
Such a limited set may already contain some sampling error. In addition, the border effects from the
kernel smoothing can be observed. Even though not applied for this case, a correction procedure can be

used to overcome this.
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Frequency

Frequency

Figure 16: Resampling procedure: prior frequency distribution of the uncertainty parameters (left) and

frequency distribution resulting from the resampling procedure (right) for w (top) and p (bottom)

This randomization procedure confirms that the probability density of uncertain parameters can be
approximated by the density of points in the reduced joint space (d',TI,w). In addition, it confirms as

well that the bandwidth estimation is robust and leads to reasonable density estimations.

Conclusions

A methodology to update prior uncertainty when new data becomes available has been proposed in this
paper. This methodology is designed for fields in early development, with little available data (only a few
wells, no production) and hence considerable uncertainty. One major advantage of this approach is that
the workflow has been fully automated, rendering it practical for geoscientists. Updating the uncertain
parameters and accounting for their probabilities in the modeling exercise is a crucial part of a

successful modeling effort, and leads to better decision making.

The proposed method extends the idea of Park et al. (2013) in several aspects. It has been adapted to
handle multiple uncertain parameters, as well as a “mixture” of continuous and discrete parameters.
Even though only two uncertain parameters were used in the application, the methodology can be easily
applied to more uncertain parameters. In addition, a procedure to estimate automatically the

bandwidth in the kernel smoothing was developed as the bandwidth choice may influence significantly
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the density estimates. A validation of the approach was provided through a resampling technique, which

confirms the robustness of the proposed automated bandwidth calculation.

The method was applied successfully to a real field where new data was obtained through well log
measurements at a new well. The prior probabilities of uncertain parameters (in this case, depositional
scenario and trend) were updated, given that the new well was drilled entirely into shale. A
combination of distance-based modeling and kernel smoothing was used to successfully evaluate the

joint probability density. The joint probability was validated by rejection sampling.
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Appendix

Kernel Smoothing: estimation of the kernel bandwidth
The proposed workflow relies on estimating probability density functions using a kernel smoothing

approach (Silverman, 1986). The kernel density estimate is formulated as follow:

£00 =23 Kx—x,
ni5

where

o X =(X1, X2, ..., xd)T, Xi = (Xi1, Xi2y -+, x,-d)T, i=1,2, ..., nare d-vectors;

e His the bandwidth dxd matrix which is symmetric and positive definite;

e Kisthe kernel function which is a symmetric multivariate density: Ky(x) = |H|'1/2 K(H'1/2x).

The choice of the kernel function Kis not as crucial to the accuracy of kernel density estimators as the
bandwidth H (Wand and Jones, 1995). As a consequence, the standard multivariate normal kernel

function is used: K(x) = (2rm) %% exp(="sxx).

Estimation of the kernel bandwidth when estimating f(dops/tix)
Since only a neighborhood around the observed data is of interest when evaluating fﬁk(d) or
ft,-k (Wld) it is sufficient to evaluate the bandwidth only for points in the vicinity of the data. A

clustering technique is used to this end, where the new observed data is fixed as a medoid. The
bandwidth is then evaluated using only the points belonging to the cluster containing the observed data.

Silverman rule’s of thumb (Silverman, 1986) is then used to estimate the bandwidth:
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4 d+4 d_il . .. .th . . . .
JH; = ﬂ n*4 o, where g, is the standard deviation of the i"" variable, d is the dimension of
_l_

the space and H,-j =0,i#j. This bandwidth was proven to be good estimation for Gaussian kernel

distributions. Even though the distribution of points in MDS is not necessarily Gaussian, tests have

shown that it is a valid estimation.

Estimation of the kernel bandwidth when estimating ft,-k (W | d)

Since the trend is a continuous variable, a probability density is obtained instead of a probability, hence
smoothing along w is required as well. As a consequence, two separate bandwidths for d and w must to
be estimated. For d, the approach described in the previous section is applied, the resulting bandwidth
is denoted by H,. As before, Silverman’s rule of thumb is used to define the bandwidth during the kernel
smoothing. For w, to estimate the bandwidth H,, it makes sense to use values of w in a neighborhood of
the data, as only those values will be in fact considered when evaluating the joint density. Hence, the
same clustering that was defined for d is used and Silverman’s rule of thumb is applied on the values of
w within the cluster containing the history. The kernel smoothing is subsequently applied in the joint

space (d",w), using the bandwidth:
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