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Abstract

Pre-stack seismic inversion has been used extensively in reservoir characterization to predict
lithology as well as fluid content because both P-wave impedance (Zp) and S-wave impedance
(Zs) can be extracted simultaneously from pre-stack P-wave data. However, traditionally, only
one inversion result is provided due to long computation time which ignores the big uncertainty
in the inversion result caused by many factors in the inversion process such as seismic wavelet,
geological model and Zp — Zs relationship, etc. In this work, we use the algorithm introduced by
Hampson and Russell (2005) to estimate Zp and Zs of a North Sea reservoir. Then, a classification
method based on statistical rock physics (Mukerji and Avseth, 2000) is used to classify the
whole 3D reservoir into three different facies (shale, brine sand and oil sand) given inverted Zp
and Zs, to provide a 3D probability cube of each facies. The main contribution of this work is
sensitivity analysis of the important parameters in pre-stack seismic inversion, in particular,
with respect to its impact on facies classification. To achieve this, experimental design is
performed and both seismic residual (difference between original seismic data and synthetic
seismogram using inversion results) and facies classification results are analyzed to determine
sensitivity of these parameters. The result of this work shows the most sensitive parameter in
terms of seismic residual is seismic wavelet while facies classification result is most sensitive to

initial geological model.

Introduction

Simultaneously estimating compressional and shear impedances from P-wave reflection seismic
data can be useful in direct hydrocarbon detection as well as lithology discrimination as P-
waves are sensitive to changes of pore fluid, while S-waves mainly interact with rock matrix,
and are relatively unaffected by pore fluid (Ma, 2002; Hampson and Russell, 2006). In the past
two decades, many authors have discussed different prestack seismic inversion methods

through prestack gather or a few partial stacks of different incident angles to simultaneously



estimate Zp and Zs or Vp and Vs (e.g., Mallick, 1995; Simmons and Backus, 1996; Ma, 2002;
Buland and Omre, 2003; Hampson and Russell, 2005). Traditionally, the inverted Zp and Zs
together can be used directly to predict lithology and hydrocarbon based on rock physics
analysis from well logs for specific reservoirs (Castagna et al., 1995; Mavko et al., 1998).

Lithology information extracted from seismic data can be used as soft constraint for reservoir
facies modeling, applicable to both two-point and multi-point geostatistical methods. Most of
these methods require a probability cube of each facies. Zhu and Journel (1993) introduced
Markov-Bays algorithm to combine facies probability derived from seismic data into indicator
facies simulation. The tau model was later developed by Journel (2000) to easily combine
knowledge from multiple information sources, of which seismic information is definitely an
important piece. To get such probability cubes, statistical rock physics can be used to calculate
lithofacies and pore-fluid probabilities (Mukerji et al., 2001; Avseth et al. 2001).

Obviously, different inversion methods call for different input parameters, though most of
them share some common inputs, determined by the same theory behind different inversion
algorithms. In this work, we focus on sensitivity analysis of Hampson and Russell’s pre-stack
seismic inversion algorithm using data from a North Sea reservoir. In a general sense, sensitivity
analysis aims to evaluate the impact of varying some “input parameters” on some “output
response” (Caers, 2011). Often used sensitivity analysis techniques include “one-way sensitivity
analysis” such as tornado charts as well as “multi-way sensitivity analysis” such as experimental
design and GSA (general sensitivity analysis) (Fenwick et al., 2012). In this work, we use
experimental design to assess the sensitivity of a few important parameters in pre-stack
inversion, including seismic wavelet, geological models, Zp-Zs relationship, Zp-Density
relationship and Vs/Vp ratio. As the seismic inverse problem always involves finding a model
that either minimizes the error energy between the observed and the theoretical seismograms
or maximizes the cross-correlation between the synthetics and observations (Sen and Stoffa,
1991), we first assess the sensitivity of seismic residual (error energy) to each parameter.
However, from a reservoir modeling perspective, inversion itself is never the goal, but the facies
classification result is more important, either for direct exploration purpose or as soft
constraint in reservoir facies modeling. So, we then look at the sensitivity of facies classification
to each parameter. This is the critical point: we investigate inversion sensitivity not just for
matching the observed seismic data but for reservoir facies characterization. We investigate not
just how important is a parameter for impedance inversion but also how important is it really
for facies characterization.



Literature Review and Theoretical Background

Post-stack Seismic Inversion

Prior to the origin of pre-stack seismic inversion, post-stack seismic inversion was first
used to estimate P-wave impendence and it still plays a big role in reservoir
characterization these days. The theoretical basis of post-stack inversion is the
convolution model which models the seismic trace as a wavelet convolved with the

normal-incidence reflectivity. Mathematically, it can be written as
s(t) = W(t) =r(t) (1)

Where t is the two way travel time, s(t) is the seismic trace, W(t) is the seismic wavelet, *

represents the convolutional operator and r(t) is the normal-incidence reflectivity, defined as

Zpi+1—Zpi
rPl' — Pi+1 Pi (2)
Zpi+1tZpi

In model based inversion, we start with a low frequency model of the P-impedance and
then perturb this model until we obtain a good fit between the seismic data and a
synthetic trace computed by applying equations (1) and (2) (Hampson and Russell,
1991). Equation (1) could be rewritten as the following matrix equation:
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Where s is the seismic trace vector, W is the wavelet matrix, and r is the reflectivity vector.

When reflection coefficient is small (in the order of 0.1 or less), equation (2) can be rewritten as
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Which could be expressed in matrix form as
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Where Lp = In(Zp) is introduced for convenience, rpis the reflectivity vector, D is the
derivative matrix, and Lp is the log impedance vector.

Combining equation (3b) and (5b) gives us the forward model which relates the seismic trace to

the logarithm of P-impedance:
S =-WDL, (6)

By solving equation (6), we can estimate Lp from a knowledge of the observed seismic trace and
an extracted wavelet.

Pre-stack Seismic Inversion

The problem with post-stack seismic inversion is that it ignores the amplitude change with
offset. Thus it could only provide us P-wave impendence while pre-stack seismic inversion can
simultaneously provide Zp, Zs and potentially density. When incident angle is greater than
zero, an incident P-wave will produce both reflected and transmitted P-wave as well as
reflected and transmitted S-wave through mode-conversion. The amplitudes of the reflected
and transmitted waves can be computed using the Zoeppritz equations (Zoeppritz, 1919) using
the concepts of conservation of stress and displacement across the layer boundary. Hampson
and Russell (2005) extended the theory of post-stack seismic inversion to pre-stack seismic
inversion using the Fatti Modification of Aki-Richards Equation which is a linearized version of

the Zoeppritz equations.

Fatti et al. (1993) re-expressed of Aki-Richards Equation as:

Typ(0) = 11 + o1 + C31p (7)
Where ¢; = 1 + tan?6, ¢, = —8(;—;)2tan26 and c; = 0.5tan?0 — Z(Z—Z)ZSinZH

And the three reflectivity terms are given by:
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As discussed in the theory of post-stack seismic inversion, when the reflection coefficient is very
small, P-wave reflectivity vector 1p can be written as the product of derivative matrix D and log
P-impendence vector Lp. Similarly, S-wave reflectivity vector and density reflectivity vector can

be written as in equation (8) and (9).
1
TS = EDLS (8)

p = DLp (9)



Where Ly = In(Zg) and Lp = In(p).
Substituting above parameters into Fatti’s equation (7), we get:
rpp(8) = 51D Ly +5 ;DL + c3D Ly (10)

Similarly as in post-stack inversion, convolving reflectivity with the seismic wavelet gives the
seismic trace. The difference is that the seismic wavelet as well as the reflectivity is angle
dependent now. So, for a given angle trace 15p(8), zero offset trace inversion given in equation

(6) is extended by combining it with equation (10) to get the following equation:
Sg =5 c1WaDLy, +5c;WeDLg + csWpDLy, (11)

Equation (11) could be used for inversion to estimate Zp, Zs and density. However as given it
ignores the prior knowledge from rock physics that there is a relationship between the

background trends of Zp, Zs, and density. Generally, these relationships are given by
Ly = kL, + k¢ + AL (12)
Lp =mL, + m,+ ALp (13)

Where k, kc, m, mc are all constants that can be derived from well log data, AL and ALj are
the deviations away from a straight line fit. When hydrocarbon occurs, Zp-Zs relationship and
Zp-Density relationship will deviate away from the background straight line, thus we would like

to get the deviation amount.

Substituting equation (12) and (13) into equation (11), we get the final equation used in pre-

stack inversion:
Sog = CiWyDLp + c;WyDALg + c3WyDALp, (14)
Where ¢; = %cl + ;kc2 + mcz and’c; = %cz.

So instead of direct inversion for Zp, Zs and density, this algorithm inverts for Zp AlLsand Alpto
keep their relationship. Zs and density can be calculated easily after inversion by adding the
initial value with the deviation value. There would be memory and stability issues if equation
(14) is solved by direct matrix inversion. Model based inversion is adopted to avoid the
problem by first setting the initial guess Zp, Zs and density models, then iterating toward a
solution using the conjugate gradient method.



Statistical Rock Physics

Rock physics is the bridge to relate rock properties and seismic attributes. Generally, rock
physics model needs to be built for a specific reservoir facies using well log data and core data,
considering local geological information. Then the rock physics model is used to characterize
rock properties, such as lithology and fluid content. Combined with certain statistical
techniques, rock physics can be applied in a quantitative way for reservoir characterization
(Mukerji et al., 2001; Avseth et al., 2001). The basic principle is as follows. First, seismic
lithofacies that have characteristic geologic and seismic properties are defined and identified
from well log data, core data and thin section. Then the rock physics model is built based on the
training data covering different lithofacies. Very importantly, the training data is extended using
statistical rock physics models to derive distributions of rock properties for scenarios not
observed in the original training data but are expected to be observed in the reservoir away
from the wells. . In the end, statistical classification techniques such as Bayesian classification,
use seismic attributes, e.g. inverted Zp and Zs to classify the whole 3D reservoir into the most
possible facies and also calculate the probability cubes of each facies.

The classification method used in this work is quadratic discriminant analysis which classifies
each sample according to the minimum Mahalanobis distance to each cluster in the extended

training data. The Mahalanobis distance is defined as:

M? = (x — )" X7 — ) (15)
Where x is sample to be classified in the attribute space, which is the vector [Zp; Zs] in our case;
Y; are the means of the attributes for different facies or classes;

2;is the training data covariance matrix for facies i.

The Mahalanobis distance can be interpreted as the usual Euclidean distance scaled by the
covariance. In linear discriminant analysis, a single covariance matrix is used for all classes,
whereas in quadratic discriminant analysis (used in this work) different covariance matrices are
used for each individual class.

Methodology

In practice for most pre-stack seismic impedance inversion, due to long computation time,
generally only one pre-stack inversion result is provided which ignores the big uncertainty in
the inversion result caused by many factors in the inversion process. Even though statistical

rock physics is included to estimate uncertainty and map probabilities occurrence of different



facies, there can still be large uncertainties caused by seismic inversion because the
probabilities are calculated from only one deterministic inversion result. So it is meaningful and
necessary to do sensitivity analysis of pre-stack seismic inversion, to understand the impact of

each parameter on the inversion result as well as on the classification result.

The sensitivity analysis method used here is experimental design which allows study on joint
effect of parameter combinations. In the current work, though we did not look at the joint
effect of different parameters but nevertheless experimental design still has more benefits than
“one-way sensitivity analysis” which varies one variable at a time and keeps all other input
variables constant. Compared to “one-way sensitivity analysis”, experimental design allows us
to look at the distribution variance of the output. The investigated input parameters include
seismic wavelet, initial geological model, Zp — Zs relationship, Zp — Density relationship and
Vs/Vp ratio. As for the initial geological model, we studied separately the wells used to build the
geological models and also model frequency. As argued in the introduction, both inversion
residual and classification result are responses that we need to investigate to study the

sensitivity of pre-stack seismic inversion.

The reservoir we work on for this sensitivity study is a North Sea turbidite system and has a
comprehensive database available, including two seismic partial stacks, horizon of the top of
the reservoir zone and two wells in the study field. Average incident angle for the near offset
and far offset partial stacks are respectively 8 degrees and 26 degrees. Two wells are well 2 and
well 3, of which well 2 is selected as a type well for facies identification and building training
data because it has the most extensive well log data, including S-wave velocity, porosity and

saturation in addition to all the other conventional logs.

Pre-stack Seismic Inversion and Determination of Input Parameters

On the basis of the theory of Hampson and Russell’s pre-stack seismic inversion method, the
commercial software Strata is used to do inversion for Zp and Zs using the two seismic partial
stacks. Next, we will go through the inversion process and meanwhile determine the value of

input parameters that we are going to study.
1. Seismic Wavelet

Calculation of the synthetic seismogram is usually the first step and also one of the key steps in
seismic inversion as it provides the time-depth conversion for well-to-seismic tie and also gives
the seismic wavelet for the specific reservoir. The process of extracting seismic wavelet and
finding the best time-depth relationship is generally an interactive process. First, using Ricker

wavelet, by matching well tops and seismic horizons or looking at some markers (interface with



large impendence contrast), we can shift the well log to approximately the correct time. Then
we extract a wavelet using well data from seismic data of reservoir zone. Again, with this new
wavelet, we need to shift, stretch or squeeze well log to change time-depth relationship for a
better correlation between seismic data and synthetic seismogram, then a better wavelet is
extracted since the time-depth relationship is more accurate now. This procedure is repeated
until we get the best correlation between measured seismic and synthetic seismic which
indicates a correct time-depth conversion and a proper seismic wavelet. Figure 1 is an example
of this well-tie process which shows the final correlation between near offset seismic trace at

well 2 and synthetic seismogram. The corresponding wavelet is shown in figure 2 (bottom left).

Since different angle stacks have different seismic wavelet, the above procedure needs to be
done for each angle stack separately to get the angle dependent seismic wavelet. For sensitivity
analysis purpose, we choose two sets of wavelets, one of which is a Ricker wavelet and the
other is the extracted wavelet from seismic tie using both wells. Figure 2 shows the frequency
spectrum of Ricker wavelet (top) and the extracted wavelet (bottom) for both near (left) and far
(right) offset seismic data. As can be seen in figure 2, near offset wavelet has higher frequency
compared to far offset wavelet. That is because high frequency signal is absorbed during longer
travel path for far offset seismic wave propagation. Table 1 shows the correlation coefficient
between seismic trace and synthetic seismic at well locations. Even though the frequency
spectrum of Ricker wavelet and the extracted wavelet has obvious differences as shown in
figure 2, we can see from this table that the correlation coefficient between the synthetic

seismic from this two wavelet and original seismic trace is not significantly different.

Table 1. Correlation coefficient between seismic trace and synthetic seismic at well locations
using Ricker wavelet and the extracted wavelet respectively

Correlation coefficient Ricker wavelet Extracted wavelet
near offset 0.69 0.68
Well2
far offset 0.51 0.56
near offset 0.52 0.55
Well3
far offset 0.44 0.63
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Figure 1: Correlation between synthetic seismic and measured near offset seismic data at well2
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2. Zp-Zs Relationship

In the literature review part, we mentioned that there is a relationship between Zp and Zs
which can generally be described with equation 12.This equation actually indicates that there’s
a linear relationship between InZp and InZs for brine saturated sand and shale and it will deviate
from this straight line with hydrocarbon saturation. The parameter k in equation 12 that defines
this relationship goes into the second term of coefficient ¢; in the final equation used for inversion
(equation 14), so we need to study its impact on the inversion and facies classification result. To
do this, we determined Zp-Zs relationship in two different ways using well 2 because it has both
Vp and Vs. As shown in Figure 3, we first did an auto fit with least square linear regression (left)
to all of the available data from the target zone. We then defined another relationship
manually, leaving out oil formation samples (right). The parameters in equation 12 that define
the linear relationship between InZp and InZs are shown at the bottom of the figure. Often a
global least square linear regression is done to get the parameters. This could be risky
sometimes because it might include samples from oil zone and even samples from outside of

the target formation which will of course give a wrong relationship.
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Figure 3: ZP - ZS relationship: auto fit with least square linear regression (left) and user defined
relationship leaving out oil formation samples (right).

3. Zp-Density relationship

The role of the relationship between Zp and density is similar to that of the relationship
between Zpand Zs in the inversion process. Equation 13 describes the relationship between Zp

and density, in which parameter m goes into the third term of coefficient ¢; in equation 14.



Generally, density log is available for most wells, so establishing Zp-Density relationship is
relatively easier and more accurate than establishing Zp-Zs relationship. However, in order to
study the sensitivity of pre-stack seismic inversion and facies classification to Zp-Density
relationship, we established the relationship in two different ways, respectively using only well
2 and using two wells together, as shown in figure 4. The parameters in equation 13 that define
the linear relationship between InZp and Inp are shown at the bottom of the figure.
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Figure 4: ZP — Density relationship: derived using only well 2 (left) and using two wells (right).
4. Vs/Vp Ratio

In Fatti’s re-expression of Aki-Richards Equation (equation 7), Vs/Vp ratio is required to calculate
the coefficient c; and cs. In reality, Vs/Vp ratio is spatially variable, and also depends on the fluid
saturations. But assumption is made that it's a constant within a rock layer to simplify
calculation. So we need to study the impact of Vs/Vp ratio to inversion and facies classification.
The default Vs/Vp ratio is 0.5 which is a reliable value for most clastic rocks, but a more accurate
vale can be acquired form well log data. Figure 5 is the histogram of Vs/Vp ratio from 2100 m -
2300 m of well2. It ranges from about 0.35 to 0.55 and the median is 0.43. For sensitivity
analysis, we choose the default value of 0.5 and the median 0.43 respectively as the input of

Vs/Vp ratio for inversion to see how it affects the results.
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5. Geological Model

The purpose of building the geological model in this pre-stack seismic inversion algorithm and
all the other model based inversion methods is to provide an initial guess for the final solution.
Based on the theory of Hampson and Russell’s pre-stack seismic algorithm, this means to
initialize the solution to [Lp ALg ALp]T = [In(Zpy) 0 0]7, where Zp, is the initial impendence

model and then iterate towards the final solution using the conjugate gradient method.

To build the geological model, we need to have structure data such as horizons and faults as
well as well log data. In the study area, one horizon is provided and no obvious faults are found.
In the current research, we did not study the uncertainty caused by different structures limited
by data. But in general structural uncertainty could cause big uncertainty in the inversion

results, so as well in facies classification results.

The set of wells used to build the geological model is another parameter that controls the
geological model and hence affects the inversion. So for sensitivity analysis purpose, we build
the geological model respectively using only well 2 and using both wells together. However, as
mentioned earlier, only well 2 has shear wave velocity information which is necessary to build
geological models for pre-stack seismic inversion. So Vs estimation needs to be done for well 3.
Empirical relationship between Vp and Vs is a method often used to estimate Vs from Vp
because generally Vp is available. But it has to be done for sand and shale separately, as well as
for different fluids (brine sands versus hydrocarbon sands) as they generally have different Vp-

Vs relationship. In well 3, no oil is encountered so we only need to consider different lithology



in this study. Figure 6 is the established empirical relationship between Vp and Vsrespectively
for sand and shale using well 2. Then this relationship is applied to well 3 for shale and sand
intervals separately to calculate Vs from V.

2000 I‘ ] :.. J T 1 .'uI:
RN RN NN AREE .'. 1200*:: 1 ,,|:|‘j .;n-!,-u- /
HT , - ..-:.:'l.'ﬂ:::
S SANNNNNNNN [k = L ELLmes
wm-.#.. ".% erg | L SDDfii
e _-_r_fff'ff|f§ffff:fff: w3 ==
2000 2250 2900 2750 3000 3250 3500 3750 2200 2300 2400 2500 2600
Vp Vp
Sand: Vs=0.771*Vp-915.21 Shale: Vs=0.876*Vp-1114.52

Figure 6: Empirical VP - VS relationship established from well 2 for sand (left) and shale (right)
intervals respectively

6. Model Highcut Frequency

When building the geological model, another input parameter required is the highcut frequency
which can’t be set too high because high frequency information in the inversion result should

come from seismic data, but not rely on well log interpolation.

However, there are no golden rules to determine the highcut frequency value, so we would like
to test out the sensitivity of the pre-stack seismic inversion to the highcut frequency. In this
research, we choose two highcut frequencies, 5 HZ and 10 HZ respectively and the
corresponding geological modes are shown in figure 7. The top figure is the vertical section at
well 2 of the geological model with highcut frequency set to 5 HZ and the bottom one is 10 HZ.
If we compare this two figures carefully, we see the higher frequency information in the bottom
section, as shown with the arrow.
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Figure 7: Vertical section of the geological model at well 2 with highcut frequency set to 5 HZ
(top) and 10 HZ (bottom) respectively

After setting up all the input parameters, ZP and ZS are inverted from two partial stacks for
each parameter combination. Since there are 6 parameters and each parameter has 2 levels of
value, there are 2° = 64 runs total. Table 2 shows the 6 parameters that are being varied and
their values used to do sensitivity study in this work. Figure 8 shows the vertical sections of
inverted Zp and Zs at well 2 using the parameters as following: Ricker wavelet, VS/VP=0.5, user
defined Zp-Zs relationship: In(Zp) = 1.64153 = In(Zs) — 6.41555, Zp-Density relationship
derived from well 2:Inp = 0.232547 =1In(Zs) — 1.2141, and geological model built using
both wells with highcut frequency of 5 HZ. The inversion results shows some horizontal
continuity and also interruption. Figure 9 shows the comparison of well log (after resampling)
and inverted seismic trace at well locations for both wells which indicates a good inversion at

well locations.



Table 2. Six parameters and their values used for sensitivity study on prestack seismic inversion

Seismic . . . . '
wavelet Zp-Zs relationship Zp-Density relationship
Ricker Auto fit: Derived using well 2:

wavelet | 1p(7.) = 1.20732 = In(Zs) — 2.60242 | Inp = 0.279084 * In(Z) — 1.63195

Extracted User defined: Derived using well 2 and well3:

wavelet | 1n(7.) = 1.64153 = In(Zs) — 6.41555 | Inp = 0.232547 = In(Zs) — 1.2141

Vs/Vp Geological model

Ratio Highcut frequency Wells used to build model
0.5 5HzZ Well2 + Well3

0.43 10 HZ Well2 only

P-Impdeance
({m/s)*(g/cc))
9064

8772
8481
8190
7899
7603
N7
7026
6735
6444
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5862
5571
5279
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4406
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3964
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Figure 8: Vertical section of one inversion result of ZP (top) and ZS (bottom) at well 2
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Figure 9: Comparison of well log data (blue) and inverted seismic trace (red)

Facies Classification using Statistical Rock Physics

As stated in the theory background, statistical rock physics can be used for facies classification
and calculating probability cubes of each facies using inverted Zp and Zs. We applied the
workflow introduced by Avseth, Mukeriji et al. (2001) to do this.

The first step is facies identification using well log data, core data and thin section. As shown in
figure 10, 6 facies are identified in the study area, including: lla Cemented clean sandstones, llb
Uncemented clean sands, llc Plane-laminated sands, Il Interbedded sands and shales, IV Silty

and silt-laminated shales and V Pure, massive shales
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Figure 10: Six facies identified in the field as marked in different colors in well 2

In order to simplify the classification and increase the classification success rate, 6 facies are

clustered into 3 larger groups, which are shale, brine sand and oil sand.

The second step is building training data which will be used for statistical classification later. As
shown in figure 11, deep water saturation and shallow water saturation is very different,
indication mud invasion in the oil formation. Since density and sonic logging tools have very
limited detection depth, it's proven that even in the oil zone, brine sand properties were

measured. Thus fluid substitution is done to get oil sand properties using Gassmann Equation:

K3 _ Kriz _ Ky Kf11 (16)
Kmin—K> ¢(Kmin_Kflz) Kmin—Ki1 ¢(Kmin_Kfll)
P2 = p1— Dpsin + Bpsin (17)

4
_ ’Kz +su _ ’ u
sz - p23 Vsz - z (18)



Where K, i, p; are bulk modulus, shear modulus and density of rock with water;

K,, u, p, are bulk modulus, shear modulus and density of rock with oil;

K11, prin are bulk modulus and density of water;

K12, priz are bulk modulus and density of oil;

Konin is bulk modulus of mineral(quartz here) ;

@ is porosity.

Zp-Zs cross plot of the training data is shown in figure 12 which shows good clustering of each
facies in Zp-Zs space. And obviously Vp or Vs alone will not be able to discriminate different
facies.

-
Sxo

220}

2130

%)
=
o

Depth(m)
~
3

n
=]

270t

Figure 11: Deep (red) and shallow (blue) water saturation curves of reservoir formation at well 2.
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Figure 12: Zp-Zs cross plot of training data

The final step is facies classification using quadratic discriminant analysis method with the
training data and inverted Zp and Zs data cubes. The theoretical basis of discriminant
classification has been discussed in the theory background and now the following two figures
show one example of classification results using the inverted Zp and Zs,

Figure 13 shows facies classification results at well 2 (left) and well 3(right), in which black
stands for shale, blue stands for brine sand and red stands for oil sand. Consistent with well log
data and geological background, above the reservoir zone, most data is classified as shale, and
well 2 has oil occurring in the oil formation. There are some data points misclassified as oil sand
while in reality well 3 didn’t encounter oil. That is inevitable due to limited information and
large uncertainty in the inversion process and also the reason why we need to do this sensitivity
study. Average oil sand probability over the interval of interest (figure 14) also shows a higher

oil sand probability around well 2 while it’s close to zero at around well 3.
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Figure 13: Facies classification results at well 2 (left) and well 3(right): shale- black; brine sand-

blue; oil sand- red.
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Figure 14: Average oil sand probability over interval of interest.

Sensitivity Analysis Results

In the parameter determination section, we decided to study sensitivity of pre-stack seismic
inversion to six parameters, and each parameter has 2 levels of value, so we did a total of 64
(2°) inversion runs. For each set of inverted Zy and Zs cubes, statistical rock physics techniques
discussed in the last section are used to do facies classification and probability calculation for

each facies.

As mentioned in introduction, seismic inverse problem always involves finding a model that
either minimizes the error energy between the data and the theoretical seismograms or
maximizes the cross-correlation between the synthetics and observations (Sen and Stoffa,
1991). So we calculate the seismic residual (error energy) by subtracting synthetics from
observed angle gathers and study how it is affected by each parameter. We use L1-norm of the
seismic residual as output response and the sensitivity analysis result is shown in figure 15.
From this figure, we see that the seismic wavelet has the largest impact on pre-stack seismic
inversion as the seismic residual for different wavelet changes the most among all six

parameters.

As argued earlier in this paper, for reservoir modeling, impedance inversion itself is never the
goal. In contrast, facies classification is more important, either for direct exploration purpose or
as soft constraint in reservoir facies modeling. So, next we take a look at the sensitivity of facies
classification to each parameter. We used L1-norm of the oil sand probability as output and the
result is shown in figure 16. As shown in figure 16, change in the geological models causes the
largest change in oil sand probability while seismic wavelet has a much smaller impact on the

oil sand probability compared to its impact on the seismic residual. Zp-Zs relationship also has



large impact on facies classification, so establishing an accurate Zp-Zs relationship, based on
appropriately calibrated rock-physics model is very important.
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Figure 15: Box plot of L1 norm of seismic residual versus different sets of parameters
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Figure 16: Box plot of L1 norm of oil sand probability versus different sets of parameters

Conclusion

Sensitivity analysis is performed on facies classification using pre-stack seismic inversion and
statistical rock physics by working on real field data of a North Sea reservoir. Our work shows
that while pre-stack seismic inversion combining with statistical rock physics is a useful
technique to do facies classification, but there are large uncertainties. While seismic wavelet
causes the largest uncertainty in terms of seismic residual, facies classification is most sensitive
to geological model followed by Vp-Vs relationship. So we should pay more attention to these
parameters in the inversion process. When used as soft constraint in reservoir facies modeling,
this uncertainty might not cause much problem but it must be considered and evaluated when
used directly in reservoir characterization to help make exploration decisions. In the end, |
would like to point out a limit of this research which is that it used Hampson and Russell’s
prestack inversion algorithm, so for a different algorithm, input parameters might not be

exactly the same. But we believe the most important parameters should be consistent.
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