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Abstract

In this report we present work progress from an interdisciplinary project that aims to 1)
enhance the understanding and characterization of unconventional resources basin and 2)
assess associated uncertainty in basin and petroleum system modeling discipline. In the first
part, we demonstrate the use of geostatistical approaches to address spatial uncertainties in
shale source rock basin modeling. For the second part, Generalized Sensitivity Analysis (GSA)
method was applied on 3D basin model to study sensitivities of model parameters from
different aspects as well as different types. Both parts of the study are rarely tackled in basin
and petroleum system modeling discipline and hence this can contribute as one of the first few
systematic studies in this area. Also, by utilizing a real world unconventional resources basin

makes this study more attractive than study based on synthetic case.

Motivation

Traditional approaches of using basin and petroleum system modeling to characterize
unconventional resources often lack the capability of capturing spatial uncertainties which are
essential for resource characterization. On one hand, there is a tendency to build one single
deterministic basin model and use it as “the best estimate scenario” model. On the other hand,
when tackling uncertainty, perturbation method is generally used to treat uncertain factors or
simple Monte Carlo sampling on some parameter uncertainties. Though these practices might
be sufficient for some types of modeling study purposes, they largely underestimate the
intrinsic complex spatial uncertainty. In our work, we will show an alternative way of dealing

with the spatial uncertainty using geostatistical tools and stochastic modeling approach.

Another interesting and challenging thing we will discuss in this paper is exploration on
sensitivity analysis in basin and petroleum system modeling discipline, which is an important

first step for a comprehensive uncertainty quantification study. The result from sensitivity



analysis can provide us insights about the significant parameters and improve the study
efficiency as well as enhance our knowledge. Due to the integrated nature of the basin and
petroleum system modeling discipline, the uncertain parameters often come from different
disciplines (geophysical, geological and engineering) and are of different types (continuous,
discrete, scenario-based). An effective and efficient sensitivity analysis is required to tackling
this issue.

Methodology

Numerical 3D basin and petroleum system modelling

Basin modelling studies the dynamics of geologic processes in sedimentary basins over geologic
time spans. A basin model is simulated forward through geologic time starting with the
sedimentation of the oldest layer until the entire sequence of layers has been deposited and
present day is reached (Hantschel and Kauerauf, 2009). It involves solving coupled nonlinear
partial differential equations with moving boundaries. The equations govern deformation and
fluid flow in porous media, coupled with chemical reactions and energy transportation. The
coupled system has to be solved numerically on discretized time and spatial grids. Following the
basin modelling workflow we constructed a numerical 3D basin model from integrated seismic,

well logs and organic geochemistry data.
Quantifying spatial uncertainties using geostatistical approaches

Some previous work has been conducted to quantifying spatial uncertainties in basin and
petroleum system modeling. Jia et al., (2012) pointed out that spatial uncertainties can have an
equally strong impact on the output as parameter uncertainties. In order to better quantify the
complex associated uncertainties in basin models, specifically spatial uncertainties, we propose
a stochastic modeling approach in which multiple realizations of spatial uncertain parameters
will first be generated using geostatistical tools SGeMS (Stanford Geostatistical Modelling
Software), then an ensemble of basin models corresponding to these realizations can be
constructed and simulated. In comparison to the traditional single deterministic basin model
approach, this stochastic workflow provides a better way of tackling spatial uncertainties which
will ultimately assist in risk assessment in this discipline. Notice that though this stochastic
approach with multiple realizations might be common practice in the reservoir modeling area

but it is not widely introduced into basin and petroleum system modeling discipline.
Generalized Sensitivity Analysis (GSA) Method

To tackle the complicated uncertain parameters as mentioned in the earlier section, we utilized



the generalized sensitivity analysis (GSA) method for the sensitivity study. This method classifies
the model response /decision variables into a limited set of discrete classes using clustering
method, and compares the parameter frequency distributions in each class to determine if
there is a sensitivity for certain model response. The detailed discussion and example of GSA
can be found in the reference. (Scheidt, C., and Caers, J., 2009)

Example

3D Piceance Basin model

In this study, a numerical 3D basin model for Piceance Basin was first constructed using
integrated seismic, well logs and organic geochemistry data in PetroMod software suite. This
model was built first to study the unconventional resources within this basin and then serves as
a tool to investigate uncertainty quantification in basin and petroleum system modeling. It
reconstructs the sedimentation history for Piceance Basin from Precambrian basement to

Upper Cretaceous/Tertiary formations. The following Figure 1 shows the present-day geometry

Depth [m]

5000

+

of this basin model.

{3 PetroMod

Figure 1: 3D view of present-day geometry for Piceance basin

The basin model has dimensions of 120 x 140 x 8, it covers the area of whole Piceance Basin
with horizontal grid size around 1Km x 1Km and vertical grid size ranges from several meters to
hundreds of meters depending on the local layer thickness. It covers a geological time span



from over 300 MA to present day. In order to characterize the unconventional tight gas
resources within Mesaverde Petroleum System, the following source rock and reservoir rock
information are used. Primary source rock layer is the thick widespread coastal-plain Cameo
coals with Type Ill kerogen, TOC ~ 65 wt%, HI ~ 225 mg/g C. The underlying Mancos marine
shale, though as thick as 3000 - 5000 feet thick, are considered as secondary source rock (lean
shale) with average TOC 1-1.5 wt% with a mixed Type Il and lll kerogen. (Yurewicz et al. 2008).
The upper Cretaceous Williams Fork Formation within Mesaverde group contains several low
permeability tight sandstone layers which are modelled as reservoir rock in this basin model.
The model is then simulated over the geological time span and prediction of present-day
resource distribution is obtained.

Notice that this 3D model represents our ‘best estimation’ of this basin based on available data
and knowledge as well as our study goal. Thus we refer to this model as the ‘base case scenario
model’, in comparison to the multiple basin model realizations which will be constructed in the

following uncertainty quantification study.
Uncertain factors for resource characterization

The integrated nature of basin and petroleum system modeling study makes uncertainty
quantification complicated and challenging. Since for petroleum exploration application, the
primary interest is the present-day hydrocarbon in place, we need to first identify parameters
which may have impacted the resource generation and accumulation. From the regional
geological study, the 1) source rock quality, and thickness and 2) effect of thermal history are
the two essential, but also the most uncertain aspects. To quantify the associated uncertainties
and improve the resources characterization, we categorize them into different uncertain
parameters. Source rock thickness and spatial distribution, Total Organic Carbon (TOC), and
Hydrogen Index (HI) are investigated to account for the uncertainties from source rock; for the
thermal history uncertainty, we mainly consider the temporal heat profile uncertainty due to
the regional uplift resulting from the Laramide orogeny. These uplift event always impact the
regional geological history significantly but are challenging to quantify due to the lack of
evidence after the uplift and associated erosion. In this study, we use two heat profile scenarios
to represent two scenarios of probable geological history. The following section will first
demonstrate quantification of spatial variation using the example of source rock thickness and
then illustrate the application of GSA method to study the sensitivities from the above
uncertain factors.

Quantify spatial uncertainties using stochastic modeling approach with
geostatistical tools



This part illustrates how spatial uncertainty of source rock thickness is tackled using stochastic
modeling approach with geostatistical tools. The regional geological study shows that the
primary source rock ‘Cameo Coal’ is often described as ‘wide-spread thickest coal’. However,
basin-wide coal thickness map remains uncertain. A typical layer thickness map would be one
uniform map with the estimated average coal thickness value, or one estimation map created
from interpolation, such as inverse distance, Laplace’s method or Kriging. These approaches
largely underestimate the spatial uncertainty in the source rock distribution. Especially when
the hard data are sparse one smooth estimation map is not capable of capturing the associated
spatial uncertainties. Multiple realizations from stochastic simulation algorithm are introduced
in this workflow to better assess the spatial uncertainty.

In the stochastic workflow, multiple realizations of coal thickness maps are generated using
Sequential Gaussian Simulation algorithm. Figure 2 shows one smooth Kriging estimation map
with 3 realizations of coal thickness maps generated from stochastic conditional simulation, all
of them honoring the well data.
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Figure 2 Source rock thickness maps from Kriging estimation and Sequential Gaussian Simulation

The grid size is 120 by 140 each grid corresponding to one grid cell in the basin model (with a
size of 1km by 1km). For the simulation maps, a spherical variogram with a maximum range of
50 grid blocks was selected based on the assumption of a smooth spatial variation feature of
the coal deposition. We use 18 coal thickness data from well information as hard data in order
to represent a sparse data scenario where uncertainty is large. We can observe that though all
realizations are conditioned on hard data, unlike the first smooth-varying ‘estimation map’,
each of the 3 realization maps provide one unique source rock distribution from the stochastic
simulation. The randomness introduced by the stochastic simulation method represents the
large uncertainties of our knowledge. Notice that the idea of utilizing stochastic simulation is
not to provide ‘the best single estimation’ but to create multiple equally probable realizations
so that we can utilize this ensemble and obtain prediction with an associated uncertain range.



In this case, the uncertainties of the spatial variation of the source rock thickness are first
captured in these realization maps and then incorporated into the basin models. Thus, 4 basin
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models were built and simulated based on these 4 different source rock thickness scenarios
while keeping all other model inputs the same. The model predictions of source rock
hydrocarbon generation at present day are given in the Figure 3 below.

Figure 3 Present-day hydrocarbon generation maps from 4 basin models

S_ource rock Kriging Realization 1 Realization 2 Realization 3
thickness map Estimation
Total Hydrocarbon
Generation [Tcf] 93.18 73 100.6 82.78

Table 1 Comparison of hydrocarbon generation between basin models

We can observe from both the Figure 3 that each model provides quite different spatial
distributions of hydrocarbon generation profile at present-day. The wide uncertain range in
these predictions shows the impact of large spatial uncertainties in source rock thickness when
only sparse data are available, and this is often true especially in the deeper source rock

formation with fewer well penetrations.

Determining sensitive parameters using Generalized Sensitivity Analysis
method

In order to determine which parameter/parameters has the most significant impact on the
model responses, we need a systematic approach to first study the sensitivities from these
various types of uncertain factors. In this study, we first explore four uncertain parameters
which represent the different uncertain aspects in the basin study. Here, we utilize the
Generalized Sensitivity Analysis method to identify the sensitivities. For one thing, this method
is capable for tackling uncertain parameters in both continuous and scenario-based, for another
thing, this resampling technique incorporated in GSA ensures the uncertain parameter is

statistically significant and thus improves its robustness. Notice that although one of the



attractive factor for GSA is identifying parameter interaction uncertainties, due to the
complexity of geological parameters, we only study the single way parameter sensitivity in this
GSA application. The uncertain parameters are summarized in the table below:

Parameter Type Probability Distribution
TOC Continuous Normal [60 20]
HI Continuous Normal [150 50]
Source Rock Thickness | Discrete, scenario-based 3 SGSIM realizations, equally
Realization probable
Thermal History Discrete, scenario-based 2 thermal profile, equally
probable

Table 2 Summary of uncertain parameters in this study

Total Organic Carbon (TOC) and Hydrogen Index (HI) are treated as continuous uncertain
parameters, with their probable distributions based on limited regional source rock study.
Source rock thickness uncertainty is represented by the three realizations of source rock
thickness map with equal probability assigned to each one. The uncertainty in thermal history is
guantified into 2 different heat profiles and thus is a scenario-based uncertain parameter. The
first scenario considers a stable thermal history with constant basal heat flow, and the second
scenario has basal heat flow decreasing trend from 30 Ma to present-day. 30 basin models are
constructed by sampling from the corresponding probability distribution using Monte Carlo

sampling to represent these four uncertain parameters.

Since one common goal for BPSM application is to assist resources characterization, we select
first model response as hydrocarbon distribution pattern and utilize the GSA method to
conduct the sensitivity analysis. In order to compare the spatial distribution patterns, we utilize
CHP (cluster-based histogram of patterns) method to quantify the patterns of each model
prediction. This method is attractive to compare various realization maps by grouping patterns
into clusters and, therefrom, deducing a cluster-based histograms of patterns (CHP). Details of

the algorithm can be found in the reference. (Tan et al. 2014)

Following the CHP algorithm, the reference case model was first chosen and the model
prediction of present-day hydrocarbon map is scanned and pattern was stored and clustered.
30 stochastic basin models are simulated to get the prediction of present-day hydrocarbon map
for each model. Then, each of the 30 model prediction map is scanned and the pattern is
compared with the reference pattern cluster prototype to obtain a cluster-based histogram. By
comparing the distances from these histogram, we can obtain a pairwise dissimilarity matrix.

Thus, we can also find the distances of all 30 basin model to the reference case model. The



following Figure 4 shows an MDS plot based on the JS-divergence distances between the
clustered-histogram of patterns. The red big dot stands for the reference case, with other 30

basin model colored by the distance value to the reference case.
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Figure 4 MDS plot shows the 30 basin model and the reference basin model (big red dot)

With the calculation above, each of the 30 model has a dissimilarity value which stands for how
different the hydrocarbon distribution pattern of this basin model compares to the pattern of
the reference model. This dissimilarity element is used to quantify the different hydrocarbon

pattern features in each model.

The GSA method is then conducted to identify sensitive parameters for the pattern dissimilarity

element. Three classes are clustered based on this model response and the Pareto plot of the



standardized measure of sensitivity for these four uncertain parameter is shown in the Figure 5

below:
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Figure 5 Pareto plot of the standardized measure of sensitivity for total hydrocarbon generation

From the sensitivity analysis results, the source rock thickness, TOC and thermal history are
identified as sensitive parameters among the 4 uncertain parameters we studied and the
source rock thickness parameter ranked as the parameter with the largest sensitivity. This
result indicates that to quantify the regional hydrocarbon distribution pattern requires
comprehensive knowledge and good quality control of source rock property as well as thermal

history.

The second model response we investigated here is the hydrocarbon accumulated within the
source rock. This model response is worth studying in that it represents the amount of
hydrocarbon accumulated either in the free pore space or absorbed on the kerogen, which is
true for many unconventional resources such as shale gas and tight gas. We conduct a similar
GSA workflow and clustered 30 stochastic basin models into three classes. The following Figure
6 shows the Pareto plot of the standardized measure of sensitivity to hydrocarbon accumulated

within source rock.
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Figure 6 Pareto plot of the standardized measure of sensitivity for accumulated hydrocarbon within source rock

Unlike the first model response we showed in the previous discussion, the accumulated
hydrocarbon within source rock is most sensitive to the uncertainties from the source rock
quality. The sensitive parameters in this case are Total Organic Carbon and Hydrogen Index,
both of which are essential parameters of characterizing the quality of source rock. TOC
represent the organic material concentration of the source rock, and the HI represents the
hydrogen richness of the source rock. Since the hydrocarbon accumulations are largely
impacted by the adsorption around the kerogen, the variation of the source rock properties

provides the first order uncertainty when determining the accumulation amount.

The following Figure 7 shows the comparison of hydrocarbon adsorption amount between two
basin models. The left one has a higher TOC value of 55 wt% compare to a much lower value of
30 wt% for the right one.




Figure 7 Adsorption amount from two basin model with different TOC values

The higher TOC amount means more organic materials and generally better quality of source
rock. The organic matter not only has higher hydrocarbon generation potential but also
provides adsorption capacity for the generated hydrocarbon, and these together make a high-
pay zone. This finding also indicates the importance of having good control of source rock
quantity (such as thickness) as well as quality (such as TOC, HI) control especially in the
unconventional resources assessment where most resources are located within the source

rock.

Discussions

The results of the uncertainty quantification and GSA applications on Piceance Basin model
show the importance and challenges of proper uncertainties assessment in basin and
petroleum system modeling. For quantifying the spatial uncertainty part, we started our
investigation by introducing stochastic modeling workflow and constructed scenario-based
models to achieve a better resource characterization. Notice that there are more things to
explore and maybe better way to tackling it, but this study provides some initial thoughts of
tackling this problem, unlike most of the current risk analysis based mainly on one deterministic

model and perturbations of parameters/estimations around it.

For the sensitivity analysis part, we aim to explore the application of GSA method to help
differentiate and identify uncertainties with complexity and ultimately use the findings from
the sensitivity analysis study to enhance our understanding and improve the model we

constructed.

The results in the example provide us reasonable insights of the sensitivities we wish to address
for current purpose. However, for a more comprehensive uncertainty quantification study in
general, several aspects need to be refined. For example, the following questions are worth
further investigation. How to quantify the model response of interest appropriately? The first
model response we studied in our example is not a simple basin modeling output variable but a
guantity that captures the spatial patterns of hydrocarbon distribution. In order to achieve this
goal, we need to conduct a post-process where we utilized the pattern-based CHP algorithm to
help quantify the features. We suggest that examining the sensitivity goal clearly and picking

model response based on study goal with appropriate quantification method is important.

Also, how to determine the uncertain factors and the corresponding uncertain range for each of

them can also be extremely challenging when some model inputs are less quantitative, for



example, scenario-based inputs, or information from interpretations which rely on subjective
decisions of the interpreters. In our example, it’s challenging to quantify the thermal history
event uncertainty factor since little quantitative information are available. Thus, we subjectively
made the assumptions of two different heat profiles to represent this uncertain factor. The
selection of uncertain parameters and decisions of the corresponding range are subjective and

may impact the sensitivity analysis.

This challenge applies not only to our study area but also true to the basin and petroleum
system modeling discipline, and it requires close collaboration with experts in area of interest
as well as efficient tools to help tackle it.
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