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Abstract 

Time constraints play a significant role in decision making in oil and gas industry. Decisions 

need to be made quickly, while quantification of geological uncertainties in support of the 

decision requires large amount of time. This time requirement comes from the fact that 

proper uncertainty quantification requires considerable effort in modeling and simulation 

which is highly time consuming both in the domain of computational power and in the domain 

of and manpower. The typical engineering solution to such problem is to simplify. 

Simplifications may come in many forms, but the most common ones are on the flow 

simulation side, where many proxy flow methods have been developed over the years. Needless 

to say that any approximation no matter how good it is, introduces certain degree of error 

into the analysis and subsequently affects decisions that any such uncertainty quantification is 

supporting.  

The general opinion amongst reservoir simulation and modeling community is that high 

fidelity flow simulations are at some point unavoidable and that any uncertainty 

quantification should strive towards making use of such models. This fact along with the 

ubiquitous problem of time constraints motivated ideas/solutions commonly referred to as 

“Model Selection”.  

SCRF has worked on model selection ideas quite extensively over the past few years. To date, 

our main contribution is the well-known distance kernel method (DKM) where we 

approximate distances of high fidelity simulations with some less expensive (time wise) 

simulation approach, and map these distances in low dimensional space with 

multidimensional scaling (MDS) producing an effective space for ultimate model selection. 

Few things that are required in practical problems but remained challenging for DKM 

approach were: multivariate distance approximation, and incorporation of scalar parameters 

in distance approximations namely original oil in place which is commonly used metric by 

reservoir engineers.  

In this paper we address these limitations by introducing concepts of functional data analysis 

(FDA) to model selection problem. We give a brief introduction to FDA and we also test our 

ideas on a synthetic reservoir case study. Throughout our study we tried our best to compare 

the results achieved with FDA methods, with the ones obtained with distance kernel method 

with MDS (whenever it was possible). 
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Introduction 

Decision analysis concepts formulated by Howard in 1960’s are today’s absolute norm when it 

comes to decision making in oil and gas project developments. The main idea behind these 

concepts is to achieve “clarity of thought” by identifying relevant uncertainties and perform 

detailed assessments of their influence on particular decisions at hand.  

This identification and assessment of relevant uncertainties is perhaps the most challenging part 

of every decision analysis project. Uncertainties are expressed in a form of probability density 

functions, whose assessment is often complex and time consuming. This is especially true when 

it comes to oil and gas decision problems where uncertainties are quantified through complex 

procedures of geostatistical modeling and flow simulations, which often require teams of people 

and very long computational hours.  

The nature of oil and gas decisions is such that tight time constraints are almost always 

imposed, which immediately rules “Monte Carlo” approaches as inappropriate. This fact 

motivated the development of approximate techniques for flow simulations that mainly focused 

on reducing computational time, by performing clever model simplifications. Of course, no 

simplification comes without a cost, or in statistical terminology “There is no free lunch”. 

Computational boosts usually are a consequence of reduced accuracy, which could become quite 

influential factor in the big picture of decision analysis. 

The general attitude amongst reservoir modeling community is that nothing is good enough to 

replace computationally expensive high fidelity flow simulations. This attitude motivated the 

development of a subset of methods commonly referred to as “model selection” where an attempt 

is made to “cleverly” select only a portion of a large ensemble of geostatistical realizations or 

scenarios and evaluate them with computationally expensive high fidelity flow simulations, with 

a hope that such subsample most accurately approximates true distributions acquirable only 

with exhaustive methods such as Monte Carlo. In fact, to calculate the deciles of any dynamic 

response, one would only need to select 10 models such that, when flow simulation is performed 

on them, the decile-response can be calculated exactly. The challenge therefore is to find an 

amount of models (probably more than 10) as small as possible from which those deciles can be 

calculated. 

The general strategy at SCRF has been to use proxy flow simulations only as a “guide” in the 

search for the most representative subset of models, or candidates for full-physics simulations. 

Current state of the art in this domain is the well-known distance kernel method [5,6,7] where 

we approximate true distances between computationally expensive flow responses, with less 
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expensive proxy responses. We further employ multidimensional scaling procedure and kernel 

based clustering to select the most representative candidates for computationally expensive flow 

simulation.  

Quite often we are interested in producing sampling spaces that are based on several proxy 

measures of our ensemble of models. A drawback of the DKM approach is that it requires 

discretization of flow profiles, since distances between the “curves” need to be computed at the 

concurrent time steps. This unfortunate fact may lead to loss of information since time 

dependent variations are essentially being removed from the analyses. 

Work presented in this report has several objectives. The first and most important is to 

incorporate time when exploring variation between flow responses and subsequently use such 

information in producing appropriate clustering spaces and model selection. The second 

objective is to expand the ideas of model selection into multivariate space, since in many 

practical applications multivariate responses (oil and water, and/or gas) need to be considered. 

This could introduce valuable information into our model selection procedure. Finally, common 

reservoir engineering applications consider original oil in place, as a very important parameter 

for what engineer’s call “model ranking”. We made an effort to develop workflow that would be 

capable of incorporating such information as well. 

It turns out that the answers to many of our questions can be found in relatively new family of 

statistical methods, commonly referred to as “Functional data analysis (FDA)”. The first part of 

this report is dedicated to a brief introduction to functional data analysis concepts, with the 

main focus on ideas useful for model selection. The second part of the report is reserved for a 

small case study, for which we developed a synthetic reservoir models that were flow simulated 

with high fidelity flow simulations and two types of proxies, simple upscaling and flow 

diagnostics.  

Last but not least, we also provide a quick start guide to functional data analysis for all those 

readers who like the concepts presented in this paper and would like to apply them on their own 

reservoir studies. 
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Functional Data Analysis 

Functional data analysis starts from a very common problem of data sampling. Often in nature, 

we collect data of some physical process that can be fully described with differential equations. 

Problem is that this data collection is usually conducted over irregular time and space intervals, 

and underlying process that produced this data is unknown.  

FDA’s main idea is to fit analytical functions to such data in a non-parametric fashion and 

further carry out the analysis with these analytical representations of the measured data. Much 

like multivariate data analysis, functional data analysis explores variation in the data through 

principal component analysis; only in this case, principal components are not represented by 

Eigen vectors but rather Eigen functions, due to the incorporation of argument variable (usually 

time). Fitting analytical functions also enables study of derivatives on recorded data, something 

that would be impossible with conventional multivariate statistical approaches. 

The first step in FDA is reserved for analytical function fitting also known as basis expansion. 

The second part is most commonly reserved for exploration of variance, commonly carried out 

by functional principal component analysis. We discuss both of these steps in continuance of 

this section. Additionally we discuss a very valuable element of functional data analysis, 

multivariate principal component analysis and mixed principal component analysis. We found 

the last two techniques to be crucial solutions to our problem of jointly incorporating oil water 

and gas into model ranking procedures, as well as scalar parameters such as OOIP.  

Basis expansion 

The idea is that measurements of some functional data (such as for example reservoir 

production rate as function of time) are taken over some time intervals (commonly irregular). 

The objective is to represent such data in some sort of analytical form. In functional data 

analysis this is accomplished by establishing series of basis functions multiplied with appropriate 

coefficients: 

                          𝑦̅𝑖(𝑡) = ∑ 𝑐𝑗
𝑖𝜙𝑗(𝑡)

𝑃

𝑗=1

 … … … … … . . (1) 

Where: 

- 𝑦̅𝑖(𝑡) is functional approximation of measured data; 

- 𝜙𝑗(𝑡) j-th basis function; 

- 𝑐𝑗
𝑖 - Coefficient that multiplies j-th basis function; 
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This requires selection of a basis system and number of basis functions by the analyst. Most 

commonly used basis systems are B-Splines and Fourier basis systems
1
. Figure 1 below provides 

a very basic example of these two basis systems. Ramsay and Silverman [1,2] point out that 

Fourier basis is the most suitable for periodic data, whereas B-Spline basis system is pretty 

much applicable for anything else. Given the nature of “curves” that we commonly deal with in 

petroleum engineering (production profiles, well logs, etc.) the B-spline basis system would be 

the most preferred choice in almost all applications, including model-selection problem that this 

paper is dealing with. 

         

Figure 1 Example of common basis function ensembles (Left-B-Spline basis system, R ight-Fourier 

Basis System) 

Just to provide a more intuitive sense of a basis expansion we provide a visual example of this 

procedure in figure 2 below. What is obvious form figure 2 is that basis functions do not have 

the same height as is the case shown in figure 1 (left). This is due to the fact that at this stage 

we already multiplied each basis function with its respective coefficient. Each dashed curve in 

figure 2 represents one product under the sum in equation 1 above. Please note that “edge” bases 

products have the exact same height as the data they are trying to fit. This is because the 

technique requires discontinuity in both curve and its derivatives at the edges of time domain 

that is being considered. It is obvious form figure 2 below that the sum of given basis products 

produces the full black curve plotted above them, which as the figure shows produces pretty 

decent fit of the “measured” data given in red dots.  

                                        
1
 Please note that functional data analysis community developed other types of basis systems besides B-

Splines and Fourier basis. For more details please refer to Ramsay and Silverman (2005 & 1997). 
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Figure 2 Example of Basis Expansion. Dashed lines are basis functions multiplied with their 

coefficients (see equation 1). Red dots represent original data (measurements). Full black line is the 

result of basis expansion 

Functional Principal Component Analysis 

Besides producing representations of discretely measured functional data, the basis expanded 

approximations also act as dimensionality reduction technique. Functional data analysis also 

allows one more step in dimensionality reduction through functional principal component 

analysis, which also enables exploration of variance within the data through analysis of principal 

component scores. Much like what we are used to doing in conventional multivariate data 

analysis and distance based multidimensional scaling approaches. 

The main difference between multivariate functional data analysis and functional data analysis 

lies in the principal components. In a multivariate sense principal components are vectors, while 

in the functional data analysis sense they are functions, in fact, eigen functions. There is also a 

small difference in the way we compute principal component scores. Table given below provides 

a more detailed comparison of the two methods: 
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Table 1 Comparison between PCA and fPCA (source: W ikipedia) 

 

M ixed Principal Component Analysis 

In uncertainty quantification procedures our models are featured with functional and scalar 

components. Functional components are oil, water, and/or gas rates vs. time, while the most 

important scalar component is original oil in place (OOIP). A very valid question at this stage 

is how to use all these pieces of information together in performing model selection? 

Fortunately enough, our industry is not the only discipline that deals with such data; there are 

many more examples in statistical literature that deal with quite similar “mixed” data. 

Functional data analysis community went furthest in providing meaningful solutions to this 

problem, whose most significant results is, the so called: “Mixed Principal Component Analysis”. 

The main idea behind mixed PCA is to decompose the problem into two parts. First part is the 

functional part that we process with basis expansion approach outlined before, which enables us 

to represent each curve as a vector of coefficients (basis multipliers). The second part is the 

scalar part, or in our example, original oil in place.  

What we accomplished with this is that we transformed the mixed problem into entirely 

multivariate problem consisting of basis coefficients and original scalar data (oil in place). At 

this point it is pretty much obvious that the next step in model selection boils down to simple 

and well known multivariate principal component analysis which is a well-known technique that 

does not require any discussion here. 

M ultivariate Principal Component Analysis 

Quite often several functional variables are recorded simultaneously over the same argument 

value, most commonly, time. Typical examples of such situation in the oil and gas industry are 

oil and water rates. If we are to compute principal components of such multivariate data we 

would first have to note that such principal components would now be defined by a bivariate-
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vector ξ= (ξ𝑂 , ξ𝑊)′, where each vector defines variation within one variable space (ξ𝑂-oil, ξ𝑤-

water).  

Practical computations of multivariate principal components, and principal component scores is 

much like previously discussed mixed PCA, only in this case we are dealing with multiple 

sources of functional data without any scalars such as for example OOIP. 

What this means is that each function is replaced with its coefficients, originating from 

appropriate basis expansion of multivariate function. Hence, transforming the problem into a 

simple multivariate case that we can easily solve with conventional PCA. This approach is very 

similar to previously described mixed principal component analysis. 

Comparison of M odel Selection Approaches 

2D Reservoir M odels Used In Our Case Studies 

In order to compare previously described ideas for model selection space building we developed a 

small reservoir case study. We generated a total of 100 reservoir models with two facies: 

channelized high permeability sand embedded into low permeability shaly sand. All 100 

realizations were finely gridded with a 201x201 grid.  

Since objective was to test model selection ideas based on proxy flow responses we decided to 

also subject our ensemble to proxy modeling. First proxy was produced with flow diagnostics 

toolbox (package in MRST from SINTEF), and its output consisted of the well-known F-Phi 

curves. Very simple upscaling of the finely gridded models produced second proxy. Each 

simulation had one injector at the bottom left corner and a producer in the upper right corner.  

Upscaled proxy flow models were developed by simple image resizing (averaging), which is a 

very poor upscaling scheme. Please note that this was done deliberately since we needed a proxy 

that would perform as poor as possible. Figures given below show couple of finely gridded 

realizations (201x201 grid) along with their “upscaled” counterparts (51x51). In continuance of 

this section we also provide flow responses from all 100 realizations both on finely and coarsely 

gridded models. 
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Figure 3 2 finely gridded realizations with their coarse counterparts  (PERM [md]) 

Flow responses from proxy and finely gridded flow simulations are given in figures below. 
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Figure 4 Fine (left) and Proxy (right) Production Variables 

M odel Selection Based on Flow Diagnostics (F-Φ  Curves) 

According to Shook, the Lorenz coefficient, a metric derived from flow diagnostics curves is a 

very valid measure of reservoir heterogeneity, and it can be used as a valuable guide to model 

selection. We don’t question Shooks [3] approach, we actually quite agree with him, but we also 

recognize some space for improvement. We can use flow diagnostics curves for model ranking by 

applying distance-based method on the raw F-Phi curves. In this paper we test this idea, vs. 

simple model selection based on Lorenz coefficient as well as against quite commonly used 

approach of clustering based on Lorenz coefficient and OOIP.  

Another idea is to process F-Phi curves with FDA basis expansion approach and functional 

principal component analysis, which we also considered. 

 

Figure 5 Example Model Ranking Based on Lorenz Coefficient and OOIP  
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Figure 6 An example of functional principal components (left) of FD curves and interpretation plot (right). 

Even though they have the same argument value as original data, their interpretation is difficult, at least in 

this “raw” form. For this reason, most common procedure in principal component interpretation is to plot 

them as perturbation of the mean which is shown on the right of figure 6 where we perturb the mean function 

with only principal component 1 which describes most of variance (85%). 

We found it very important to determine the most optimal number of high fidelity function 

evaluations necessary for accurate quantiles estimation. We organized the study in a way such 

that we performed clustering using specific number of clusters, performed high fidelity 

functional evaluations based on cluster medoids and compute quantiles, these are compared with 

the true quantiles evaluated on entire ensemble of high fidelity flow simulations. 

Results of our effort are given in figures below: 

 

Figure 7 Random Search vs. OOIP-Lorenz approach 

Since we already computed the Lorenz coefficient it was worthwhile investigating if quantiles 

from the Lorenz coefficient distribution would provide us with “exact” P10, P50 and P90 

quantiles. Figure given below shows an example of this exercise: 
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Figure 8 Model Selection Based on Lorenz coefficient only 

It is clear that three models selected from Lorenz coefficient’s distribution or through Lorenz vs. 

OOIP clustering are simply not enough to estimate true quantiles with high accuracy. 

The same study but this time carried out with MDS and FPCA approaches as applied on raw 

F-Phi curves are given in figure below. 

  

Figure 9 M DS on F-Phi Curves, vs. FPCA on F-Phi Curves  
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OOIP space. Figure below shows MDS and FPCA produced sampling spaces. Sampling 

algorithms do not see any difference between these two spaces, hence they produced the same 

results as shown in figure 9. 

 

Figure 10 Two sampling spaces.  

Left - produced with MDS, R ight - FPCA space produced with FPCA 

 

Upscaled Proxy M odel Selection with FDA  & M DS 

This part of our study focused on performing model selection only based on responses computed 

with upscaled flow simulations. In this section we pretty much carried out the same analysis as 

in previous flow diagnostics analysis, with the difference that here we also introduce 

multivariate functional data analysis. 

This study is organized as follows: 

1. We performed MDS on oil rates and compared its results with fPCA on oil rate. This is 

essentially single variate space building for clustering (or model selection). 

2. We introduced multivariate FPCA and compared results with multivariate MDS based 

on compound distances (combining distance matrices by weighting). 

MDS on Flow Diagnostics  FPCA on Flow Diagnostics
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Figure 11 Quantiles Convergence with FPCA approach (left) and MDS approach (right) – Single 

Variate Approach 

 

Figure 12 M ultivariate FPCA (left) vs. Multivariate M DS (right) 
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M ulti Proxy M odel Selection 

It is very common to have flow responses from multiple proxies. One such example is the case 

study we performed in the work described in this paper where we have two approximate 

measures: flow diagnostics and upscaling. In such situation it is natural to consider “combining” 

information from different proxies and create some sort of hybrid sampling space from which we 

would sample for high fidelity flow simulation runs? In MDS this would call for a difficult 

decision on the weights associated with each distance, which calls for a subjective decision by 

the modeler. 

This is where the true power of functional data analysis comes into the spotlight. Instead of 

considering the problem as separate univariate problems in MDS that than need to be combined 

a-posterior, FDA allows for a full multi-variate analysis. Thanks to basis expansion approach to 

curve fitting, each and every last one of our responses is now represented as a vector of basis 

coefficients. This includes oil rate curves as well as water rate production curves, along with the 

coefficients fully describing flow diagnostics responses (F-Phi curves). What this means is that 

all these coefficients can be used to create hybrid matrices in mixed principal component 

analysis approach and further analyze these matrices with conventional multivariate principle 

components approaches. We tried and tested this approach and we dedicate this section of the 

report to the results of such effort. 

There are many ways of mixing available proxy data. We limited our study to only a few in 

order to test the validity of mixed PCA approach. Description of each study carried out with 

mixed PCA is as follows:  

1. We performed mixed PCA with oil rates from upscaled proxy and with F-Phi curves 

from flow diagnostics. This data was subjected to basis expansion prior to mixing, and 

mixing was performed on basis coefficients (multipliers). 

2. Expanded this idea further by incorporating water rates into the analysis. 

3. Finally we added original oil in place (OOIP) to previous analysis with oil water and 

flow diagnostics proxy responses. 

Results of each one of these studies is given in following three subsections. 

  



O. Grujic, J. Caers SCRF Affiliates Meeting 2014, Stanford University 

 

 

Uncertainty Quantification with Proxy Flow Models 15 

 

1. M ixed FPCA on oil rate with FPCA on flow diagnostics curves. 

  

Figure 13 Quantiles Convergence - M ixed Proxy (fPCA+FD).  

Oil quantiles (left) and Water quantiles (right) 

2. M ixed multivariate PCA (Oil & Water) with fPCA on flow diagnostics curves. 

 

 

Figure 14 M ixed Selection. M ultivariate fPCA on upscaled models with fPCA on flow diagnostics. 

Left - Quantiles Convergence on Oil Variable, Right - Quantiles convergence on Water variable 
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3. M ixed PCA (Oil & Water) with Flow Diagnostics and Original Oil in Place 

 

Figure 15 M ixed PCA, M ultivariate Upscaled Proxy + Flow Diagnostics + OOIP. Left -Quantiles 

convergence on Oil Variable, Right-Quantiles convergence on Water Variable. 
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Conclusions and Future Work 

In this paper we introduced functional data analysis to the problem of model selection and 

modeling uncertainty with proxy flow models. We provided detailed comparison between 

previously published distance based method and newly introduced functional data analysis 

approach to model ranking. We showed that functional principle component analysis performs 

better or equally well as distance based method with multidimensional scaling. What we also 

showed is that functional data analysis approach enables model ranking based on several flow 

variables, in which it also outperforms a “workaround” solution with compound distances in 

distance based method.  

Interesting to note is that this study also demonstrated that on average no matter which 

method we use we cannot get away with any less than 30 high fidelity (fine flow) simulations. 

Any idea of only three models that fully “capture” true quantiles seams quite absurd at this 

point, since such endeavor would be possible only if entire probability distribution evaluated 

with high fidelity flow simulations is available. In other words, “error-less” sampling. 

In our future work we will focus on developing ideas that would enable reconstruction of fine 

flow simulations based on a few function evaluations. Response surface methods dealt with one 

variable at the time, usually oil rate at one time step. With functional data analysis we can go 

beyond this limit, by predicting and reconstructing entire flow responses with functional 

cokriging. Another interesting application of functional data analysis is history matching, since 

field measurements can come on irregular time scale for which functional data analysis methods 

were built to solve. Reconstruction capabilities of this approach also enable more advanced 

estimation of uncertainties in estimated quantiles with functional flavor of parametric bootstrap. 

Overall functional data analysis methodologies opened entirely new avenues of research for us, 

and influenced many interesting ideas that we plan on developing in near future. 
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Appendix – A 
A Quick Start Guide to Functional Data Analysis (FDA) 

Making first steps with functional data analysis could be quite tedious. For these reasons we 

decided to write a short quick start guide that would help all interested readers start 

implementing FDA ideas on their real reservoir case studies. 

First of all every reader is advised to consult the following absolutely essential literature on 

functional data analysis. These two books cover all theoretical aspects of FDA and provide nice 

examples that enable quick and easy comprehension. 

1. Ramsay and Silverman, Functional Data Analysis, Springer 2005.  

(There is also an older version from 1997) 

2. Ramsay and Silverman, “Applied Functional Data Analysis – Methods and Case studies, 

Springer 2002 

All methods outlined in Ramsay’s and Silverman’s books have been implemented in both 

MATLAB and “R”. Jim Ramsay generously shares these two toolboxes on his website: 

www.functionaldata.org. Please note that these two toolboxes are 100% identical in capabilities, 

every FDA function has its MATLAB and R versions. These toolboxes come with many useful 

examples. Many of these examples were also outlined in Ramsay and Silverman’s books, mainly 

“Applied Functional Data Analysis”, Springer 2002. 

Third and also very important publication, especially when it comes to computer 

implementation of FDA concepts was written by: Jim Ramsay, Giles Hooker, and Spencer 

Graves, and it’s titled: “Functional Data Analysis with R and MATLAB” Springer 2009. This 

book represents a very good reference for all functions and methods contained within the two R 

and MATLAB toolboxes. 

Last but not least, Prof. Giles Hooker’s website also has many free resources on FDA. Prof. 

Hooker teaches only course on FDA known to us. He also generously provides all his course and 

workshop materials on the website. The only drawback of this resource is that all 

implementations were written exclusively in “R”, which some readers might find discouraging.  

http://faculty.bscb.cornell.edu/~hooker/ 

 

Good luck using FDA! 


