
STANFORD CENTER FOR RESERVOIR FORECASTING

Writing MATLAB Plugins For SGEMS

Lewis Li

lewisli@stanford.edu

January 13, 2014

REVISION HISTORY

Revision Date Author(s) Description

1.0 13.12.29 Lewis Li Initial Draft.
1.1 14.01.06 Lewis Li Added comment regarding compiling VTK on OSX

Mavericks.
1.2 14.01.08 Lewis Li Fixed instruction for installing Boost.
1.3 14.01.13 Lewis Li Updated CMake to automatically link MATLAB li-

braries.

1 INTRODUCTION

Before, we get into the specifics of actually writing the plugins, I first wanted to a note a few
basic concepts and jargon that would probably be conducive to understanding what each step
in this tutorial actually does. Obviously, if you are well versed in computer science you can
jump to the next section.

1.1 MATLAB VS C++

As you probably know, computers can only read and write binary data (0s and 1s), this includes
only binary instructions. Unfortunately, humans cannot program in binary 1, so whatever

1Well you actually could, but good luck creating anything substantive

1

programming language we write in, must be compiled into binary or object code in order for
the computer to understand. There are many types of programming languages, and if you are
interested CS 242 provides an good foundation for understanding why modern programming
languages are designed the way they are.

MATLAB falls under the category of an interpreted, along with Python, Perl, etc. In these
languages, the program executes directly without first compiling. It does this by breaking each
line of the program code into a set of pre-compiled subroutines that were installed with the
language. So in MATLAB, when the statement A + B is executed, the interpreter looks for the
pre-compiled addition function and passes in the parameters A and B.

Conversely, languages such as C/C++ or FORTRAN are compiled languages, which means that
a compiler must first translate each statement into machine code before the program can be
run. Compiler design is a complicated process and CS 143 provides a good introduction to
the topic. There are a variety of C++ compilers available (for Linux: gcc, OSX: clang, and for
Windows: Microsoft Visual Studio Compiler).

These SGEMS and its plugins have been tested on Ubuntu 12.04, OSX 10.9, and Windows 8, but
for the purpose of this particular tutorial, I will focus on Microsoft Visual Studio 2010 running
on 64-bit Windows 8.1.

1.2 32 BIT VS. 64 BIT

This refers to the number of bits the computer uses to represent a memory address. Simply
put 32 bit can address 232 bits of RAM, while 64 bit can address 264. Modern computers
(last few years) are now for the most part all 64-bit. The only place you are likely to find a
32 bit computer is in the student offices of GESB or the Museum of Computing in Mountain
View. 32 bit and 64 bit compiled programs will only run on the system they were compiled
for. In Windows 32 bit applications are referred to as Win32, while 64 bit programs are termed
x64. The architecture x8664 refers to the current Intel Processors architecture that can run
both 32 and 64 bit programs. However, all parts of a program must be compiled in the same
way! Meaning you can’t have half the program compiled in 32 bit and the other half in 64 bit!
Therefore, while compiling SGEMS and its associated plugins, pick one architecture and stick
with it.

1.3 LIBRARIES

Libraries are collections of code that can be used in different programs. They can range
from performing low level tasks such as sending commands to the screen to specialized data
structures. The C++ Standard Library (STL) is an example of a library. A wide variety of libraries
are available for free, and generally it is a good idea to make use of existing libraries than to
write code from scratch. Not only does it save time, but commonly used open source libraries
are usually well maintained by the community and rarely contain bugs. SGEMS makes uses
of a few libraries, which we are termed its dependencies. These are described in the next few

2

section.

SGEMS LIBRARIES

SGEMS was designed in a modular sense, with a central manager that loads and unloads each
module. Specific geostatisical algorithms are written as libraries that the central manager
loads. Likewise, MATLAB plugin will also need to be written as a library. The benefit of using
libraries is that once a function is working correctly, it does not have to be re-compiled each
time a modification is made to somewhere else in the SGEMS codebase. Rather, by including
the specific library, during compilation the linker can extract the pre-compiled (and working)
code into the program during compilation. This is generally referred to as a static library. On
Windows, shared libraries have the extension lib, on OSX and Linux a. A second type of library
is called a dynamic library. Dynamic libraries take the idea of static libraries even further. It
allows several programs to use a single copy of a library. Instead of linking the pre-compiled
library code into the calling program, the linker maps the functions in the dynamic libraries at
run-time. This has the advantage of reducing the size of the compiled program. On Windows,
there is a third type of library that is needed for dynamic libraries. It is called a import library
and is also denoted with the extension .lib. A import library is basically used only to reassure
the linker that a certain identifier is legal, and will be present in the program when the .dll is
loaded. So the linker uses the information from the import library to build the lookup table for
using identifiers that are not included in the .dll. To use a library, its header file needs to be
included in the main project such that the compiler knows which functions and symbols are
declared.

SGEMS uses dynamic libraries for each of its modules.

1.4 BUILD SYSTEMS

For simple projects, a software developer can involve the compiler with the appropriate source
files and linker with appropriate libraries from the command line him or herself. For more
complicated projects, build automation is generally desired. This involves writing a file called
the makefile 2, which contains a list of all libraries and source files that need to be read in order
to successfully compile the program. For moderately complex projects, a developer can write
his or her own makefiles, and call the build utility (make on Linux and OSX, and nmake on
Windows), to compile and link the program. However, for large complicated programs, an
additional program can be used to generate the makefiles themselves. The most popular of
such is cmake; this is what SGEMS and its dependencies uses.

2 COMPILING SGEMS

2On Windows, a Visual Studio project file serves the same purpose

3

2.1 DEPENDENCIES

SGEMS makes use of a few pre-existing libraries that need to be first installed on the system in
order for compilation to succeed.

2.1.1 MICROSOFT VISUAL STUDIO 2010

Microsoft Visual Studio is an IDE (integrated development environment) bundled with a
compiler. It is available for free legally to Stanford students and faculty at https://www.
dreamspark.com/Account/SignIn.aspx. It is also available for free illegally on other parts
of the Internet. I will leave it to you to find such sources if you so choose to do so.

2.1.2 BOOST

Boost is a set of peer reviewed C++ libraries that allow for linear algebra, random number
generation, image processing, and data structures for fast searching, etc. It is often considered
a complement to the standard C++ library and is of extremely high quality. Many of features
implemented in Boost are often incorporated into the next version of C++ (this was especially
evident during the design of C++0x: the latest version of C++). The current version of Boost is
1.55, however, SGEMS should work with any version greater than 1.48.

WINDOWS You can save a lot of time by installing a precompiled boost library from http:

//boost.teeks99.com/. I tested SGEMS with boost_1_49_0-vc64-bin.exe. This is an archive
of Boost libraries compiled for 64 bit applications using Visual Studio. You will need to make
note of which you decompressed these libraries to, as we will need this later. You will also
need the boost header files, which can be found by downloading the appropriate version from
http://sourceforge.net/projects/boost/files/boost/, and unpacking.

LINUX On Ubuntu, one can simple run the following command in the terminal:�� ��sudo apt-get install libboost-dev-all

On Ubuntu 12.04, the default version is 1.49 already.

OSX On OSX, you make life a lot easier by installing homebrew first (http://brew.sh/, and
then entering the following command in a terminal:�� ��brew install boost

2.1.3 PYTHON

SGEMS contains a wrapper for Python that allows for scripting. SGEMS has been tested with
Python 2.7.x. Python 3.x is not tested and not recommended for use yet.

4

WINDOWS Python can be found at http://www.python.org/download/. Python 2.7.5
installs python27.dll into windows system path. You may need to manually copy it into
python27/Libs/python27.dll.

LINUX On Ubuntu, one can simple run the following command in the terminal:�� ��sudo apt-get install python-dev

OSX On OSX, enter the following command in a terminal:�� ��brew install python

2.1.4 QT

Qt (pronounced Cute), is an open-source software framework that is cross platform (works
on Windows, Linux, OSX). A software framework is used to provide a standard structure for
applications, and to promote code reuse. Qt is especially useful for developing graphical
user interfaces (GUIs). It ships with Qt Designer, a visual layout program for designing user
interfaces without the need to write any code. Qt is fully open source and the source code
is available at (). SGEMS supports Qt 4.8.x. In order to write and compile SGEMS plugins,
Qt must be compiled using the same compiler to avoid any potential issues. There are two
approaches to this: the first involves downloading pre-compiled Qt binaries, and the second
involves compiling Qt from its source.

WINDOWS A precompiled Qt binary for 64 bit Visual Studio can be found at: http://

sourceforge.net/projects/qtx64/files/qt-x64/4.8.4/msvc2010/. This should work
for most cases.

LINUX On Ubuntu, one can simple run the following command in the terminal:�� ��sudo apt-get install qt4-dev-tools

OSX On OSX, enter the following command in a terminal:�� ��brew install qt

COMPILING FROM SOURCE If the pre-compiled binary does not work for some reason on your
setup, the alternative is to download the source from http://download.qt-project.org/

official_releases/qt/4.8/4.8.5/qt-everywhere-opensource-src-4.8.5.zip.mirrorlist.
Once downloaded and extracted to an appropriate folder (ex: C:\Qt\4.8.5), open the Visual

Studio Command Line (All Programs → Microsoft Visual Studio → Visual Studio Tools →
Visual Studio Command Prompt) and navigate to the Qt folder. To configure the build use:

configure -debug-and-release -no-webkit -platform win32-msvc2010 -no-script -no-
scripttools -opensource

5

Figure 2.1: Options to select for configuring cmake to build VTK

After configuring, one can use: �� ��nmake

to compile Qt, or alternatively download JOM (a clone of nmake, but with multicore support
from http://qt-project.org/wiki/jom) and use�� ��jom -j4

to build. This build will take anywhere from 20 minutes on a i7 processor to 12 hours on the
ERE student computers. Jom has to be in the same folder as the Qt source or it’s path needs to
be added to the Path environmental variable.

2.1.5 VTK

VTK stands for the Visualization Toolkit and is a widely used library for visualizing data. It
does need to be built from source on all platforms. SGEMS has been tested using VTK 6.0.0
(http://www.vtk.org/files/release/6.0/vtk-6.0.0.zip). Download and extract this,
then open cmake to this folder. On OSX Mavericks, an error may occur due to a tiff library. A
patch is available by running:

brew install https://raw.github.com/jenshnielsen/homebrew-
science/c1d4a5111ac926b133fc56b3d3444ce966ce8f39/vtk.rb

Select the source folder and a directory where the resulting project files should be written to.
Following that, select the following options as shown in Figure ??.

6

VTK_Group_Qt

VTK_Group_Rendering

VTK_Group_Views

VTK_Group_StandAlone

Press Configure and ensure the Compiler is chosen to be Visual Studio 10 Win64 followed
by Generate to create the project files. If you compiled Qt from source and selected no-webkit,
then cmake will give an error. To remedy this, un-select VTK_Group_Qt, select advanced and
select all Qt related modules except:

Module_vtkGUISupportQtWebkit

Note that if you make any changes to the options, you must press Configure again until
there are no lines highlighted in RED.

WINDOWS: If the Generation was successful, a project file called BUILD_ALL will be generated
in that binary folder. Open that file in Visual Studio 2010 and select build. After the build
is complete, close Visual Studio and open with Administrator rights, and build the INSTALL
project.

OSX \LINUX : Open the directory in a terminal and run:�� ��make -j4

followed by: �� ��sudo make install

2.1.6 GIT

Git is a distributed revision control and source code management (SCM) system. It can be
downloaded at http://git-scm.com. It is needed to clone the SGEMS source code.

2.1.7 MATLAB MCR

The MATLAB Compiler Runtime is a series of libraries that MATLAB DLL files need in or-
der to run. This can be found at http://www.mathworks.com/products/compiler/mcr/.
Make sure to download the 2013a (8.1) edition for your operating system. The installation is
straightforward.

2.2 SGEMS COMPILATION

ENVIRONMENTAL VARIABLES The environmental variables need to be set in order for SGEMS
to compile properly.

• QTDIR and QTDIRx64: path to Qt

7

• VTKDIR: path to VTK

• BOOSTDIR: path to Boost

• PYTHONDIRx64: path to Python (64 bits)

• AR2GEMS_ PLUGINS_ DIR: path to the source code

• VTK_AUTOLOAD_PATH: path to VTK binaries (e.g. C:\code-dev\VTK\VTK\bin\Release)

• PATH: must contain AR2TECH _ SGEMS _DIR\plugins \designer, AR2TECH_ SGEMS _
DIR\bin \bin\Release

COMPILATION The SGEMS source needs to be cloned from the command line using:�� ��git clone -b develop https://github.com/gogo40/ar2gems.git

You will need access to the repository. Once the SGEMS source code has been cloned, use
cmake to open the SGEMS source directory. Ensure that the following variables have been set:

QT_QMAKE_EXECUTABLE

VTK_DIR

BOOST_ROOT

AR2GEMS_PLUGINS_DIR

to the directories where you have installed Qt, VTK and Boost. VTK should be under Program
Files, while Boost and Qt should be under the folder where you put them. BOOST_ ROOT may
not be present, so you may need to define it. There is a checkbox for ’USE_MATLAB_ADD_ON’,
that needs to be selected in order to build with SGEMS with MATLAB. Note that will only work
with the R2013a version of the MCR, so make sure that is installed. Configure needs to be
pressed twice again after selecting this checkbox such that CMake finds the paths to the MCR.
As before, Press Configure and ensure the Compiler is chosen to be Visual Studio 10 Win64
followed by Generate to create the project files. Open that file in Visual Studio 2010 and select
build.

POTENTIAL BUGS CMake sometimes has issues finding certain dependencies. The most com-
mon problem is finding Python and Boost. If any errors show up, manually set PYTHON_LIBRARY_DIR
to your Python path_libs_python,.lib.

If compilation fails, try setting the environmental variables first. There is sometimes a
bug with certain widgets not displaying properly. The current work around is to move the
ar2gems_widget.dll library into AR2GEMS_PLUGINS_DIR\plugins\designer. I am working on
a permanent fix for this.

At this point, SGEMS should run by itself.

8

Figure 2.2: Options to select for configuring cmake to build SGEMS

3 PREPARING THE MATLAB SIDE

MATLAB has a built in compiler that can turn MATLAB functions into shared libraries that can
be called by C++ programs. On Windows, this process is invoked by first running:�� ��mbuild -setup

inside the MATLAB workspace, and then selecting the Microsoft Visual Studio compiler. The
command to actually build the software is:�� ��mcc -B csharedlib:mylib <MATLAB files>

The given example that I have prepared draws a sphere on the input matrix. Therefore, the
function is simply: �� ��mcc -B csharedlib:drawSpherelib drawSphere.m

Note that MATLAB is able to pull in all required functions. The MATLAB compiler will
generate the following files:

drawSpherelib.h
drawSpherelib.dll
drawSpherelib.lib

Keep note of where these three files are stored, as we will need them later. The h file is the
header file which contains the function declarations required for a C++ program to call this
MATLAB function, while the dll and lib are the dynamic and import libraries. Examine the
matlab scripts drawSphere.m and ccsim.m for sample matlab functions.

Listing 1: Sample MATLAB function

function [output] = drawSphere (input , R)

9

%DRAWCIRCLE Toy example to draw c i r c l e on r e a l i z a t i o n
% This i s a toy example that shows how to load a r e a l i z a t i o n and then
% draw a sphere of radius R in the center of the r e a l i z a t i o n and then
% output i t back to SGEMS

% Step 1 : Obtain the dimensions of the input r e a l i z a t i o n
lengthInput = s i z e (input) ;

% I f the grid i s 2D, we w i l l need to append the third dimension
i f (numel(lengthInput) < 3)

lengthInput (3) = 1 ;
end

% Step 2 : Pre−a l l o c a t e memory for the output r e a l i z a t i o n
output = input ;

% Step 3 : Run the actual algorithm
% F i r s t find the maximum value of inputReal , so we can draw a c i r c l e on i t
[max_val , position] = max(input (:)) ;

% We w i l l draw a sphere around the center
center = c e i l (lengthInput / 2) ;

for i = 1 : lengthInput (1)
for j = 1 : lengthInput (2)

for k = 1 : lengthInput (3)
r = (i−center (1))^2 + (j−center (2))^2 + (k−center (3)) ^ 2 ;
i f (r <R*R)

output (i , j , k) = max_val ;
end

end
end

end

end

4 PREPARING THE C++ SIDE

The C++ side of SGEMS-MATLAB plug is more involved than generating the MATLAB side. It
consists of three steps: creating a user interface, setting up the parameter file, and then finally
writing the actual C++ class.

10

Figure 4.1: Sample graphical user interface created using Qt Designer

4.1 GRAPHICAL INTERFACE

QT DESIGNER The first step is to create the user interface. If you are comfortable with Qt, and
prefer to code the GUI, that is also an option. For everyone else, I recommend installing Qt
Designer (comes with Qt Creator and can be found at http://download.qt-project.org/
archive/qtcreator/2.5/. Qt Designer allows us to edit form files (.ui) which represent what
the user interface will actually look like. This is a drag and drop type of design as shown in
Figure ??.

FORM FILE The form files (with extension .ui) need to be placed in AR2GEMS_PLUGINS_DIR
\plugins\Geostat. For sake of ease, I recommend starting by copying and renaming one of the
example form files I have provided (drawSphere.ui or ccsim.ui). Remember what you name
your form file because it will be the name of your plugin! It is case sensitive.The first step is
to change the name of the class and its algorithm description. These settings can be found in
the Property Editor on the right hand side as shown in Figure ??.

To add additional widgets in, simply drag and drop them from the Widget Box on the left.
Rename each widget to something descriptive, as you will need it later when writing the code
in order to access its contents. Figure ?? is an example of a text box that has been added to
then renamed as prefix_out.

LAYOUTS The way that Qt prevents improperly aligned widgets is through the use of layouts.
The user drags in the layout (vertical, horizontal, grid, etc), and then places widgets inside
the layout. Qt will then take care of the alignment and resizing of each individual widget. I
personally find Grid layout to be the most flexible and generally rely on those.

SGEMS WIDGETS Now, it would be ideal to include widgets that could access SGEMS objects.
For instance, a widget to select an existing grid or property. In fact, many of these widgets
have already been written (they can be found in AR2GEMS_PLUGINS_DIR\ar2gems\qtplugins.
There is a long list of these widgets in the selectors.cpp file, as well as more complicated

11

Figure 4.2: Rename the form and its algorithm description using the Property Editor

Figure 4.3: Example of a QLineEdit widget that has been dropped into the main interface and
renamed prefix_out.

selectors (such as variograms) that have its own class in that folder. For our example, we have
made use of FileChooser (used to select the file containing the XML parameters), GridSelector
(used to select just a grid), and PropertySelector (a widget to select both a grid and one of its
properties). The one issue here is that Qt Designer does not have the capabilities to render
these custom widgets. Instead, we have to drag a blank widget item into the GUI and place it
where we want. Then, we right click on this blank widget and select ’Promote Widget’. We can
then select which custom widget we want to add in like in Figure ??.

Once, we have designed the GUI to our liking, we can move on to the next step.

12

Figure 4.4: Interface to select which custom widget we want to promote the blank widget to

4.2 PARAMETER HANDLING

The graphical user interface handles all the parameters pertaining to objects from SGEMS,
but we have elected to use a XML format to store additional parameters that the MATLAB
algorithm may need. The keyword to indicate the start of the file is matlabParameters, while
the individual parameters are labelled as the user chooses. An example XML file for the
drawSphere example is shown below:

<matlabParameters>

<radius>20</radius>

</matlabParameters>

4.3 C++ INTERFACE

HEADER Now to put everything together, we do need to write some C++ code. I have prepared
a base class called matlab_ xml that takes care of the parameter handling and linking with
the SGEMS root manager. To begin, create a new class that inherits from the matlab_ xml
base class. It is a good idea to put the source and header for your new class in AR2GEMS_
PLUGINS_ DIR_ ar2gems_ geostat_ matlab. The header file for the drawSphere example is
shown below. There a few function that must be present in a plugin. The create_ new_ interface
function is required in order for the SGEMS root manager to be able to register this plugin, the
name function simply returns the name of the plugin which is also required. Finally, there
are two remaining functions: initialize and execute, which are required to be completed. The

13

remaining private variables are used to store grids and properties that the plugin needs at a
class level.

Listing 2: Sample header file for MATLAB plugin

c l a s s matlab_drawSphere : public matlab_xml
{
public :

s t a t i c Named_interface * create_new_interface (std : : s t r i n g &);

public :
e x p l i c i t matlab_drawSphere () : matlab_xml () { }
~matlab_drawSphere () ;

v i r t u a l bool i n i t i a l i z e (const Parameters_handler * parameters ,
Error_messages_handler * errors) ;

v i r t u a l i n t execute (GsTL_project *) ;

v i r t u a l std : : s t r i n g name() const { return "drawSphere " ; }
private :

std : : vector < Grid_continuous_property * > props_ ;
Grid_continuous_property * prop_input ;
Geostat_grid * grid_ ;

} ;

SGEMS PARAMETERS AND OBJECTS In the initialize function, the first step is to the run the
extract_ parameters, which parses the values entered into the user interface. To obtain pointers
to SGEMS objects from the SGEMS root manager, I have prepared two functions in the base
class that all derived plugins can use. The first is loadGridAndRealizations(), which takes in the
name of a PropertySelector widget and returns pointers to both the selected grid and property.
The second is loadGrid, which takes in the name of a GridSelector widget and returns a pointer
to the grid. In the drawSphere example, we have a PropertySelector widget named Input_grid,
which contains the selected grid and property on which we want to draw a sphere. To read the
grid size right from the object, we first need to cast the grid into a regularized grid and then we
can obtain its dimensions.

Listing 3: Loading SGEMS parameters: example 1

// Extract SGEMS Parameters
// This function i s inherited from the parent and parses the parameters
// from the GUI
extract_parameters (parameters) ;

loadGridAndRealizations (grid_ , prop_input , QString (" Input_data ") ,

14

parameters , errors) ;

// We need to read the dimensions of the input grid and store i t into
/ the variable inputGridDim
RGrid * rGrid = dynamic_cast<RGrid * >(grid_) ;
inputGridDim = new GsTLGridNode (rGrid−>nx () , rGrid−>ny () , rGrid−>nz ()) ;

For other widgets that we only need to read an entered value from, we can simply call value
on that widget. For instance, in the drawSphere case, we need to read the name of what the
output property should be called from the prefix_out widget.

Listing 4: Loading SGEMS parameters: example 2

// Read the t e x t in the widget prefix_out , which stores the s t r i n g
// to be pre−appended to the input property name in order to obtain
// the output property name
std : : s t r i n g p r e f i x = parameters−>value (" prefix_out . value ") ;
std : : s t r i n g filter_name = p r e f i x + "_" + prop_name ;

Finally in our preparation for running the algorithm, we create a blank realization that we
can put our results in after.

Listing 5: Creating new SGEMS objects

// Create a new group in the grid for the output property
Grid_property_group * group =

g e o s t a t _ u t i l s : : add_group_to_grid (grid_ , pref ix , " General ") ;

// Create the output property (empty at t h i s point)
Grid_continuous_property * prop =

g e o s t a t _ u t i l s : : add_property_to_grid (grid_ , fi lter_name) ;
prop−>set_parameters (parameters_) ;
props_ . push_back (prop) ;
group−>add_property (prop) ;

EXTRACTING MATLAB PARAMETERS To read the XML file, the function initializeMATLAB is
run. This function is inherited from the MATLAB_xml class. After that, the parameter can be
read using the matlabParam object, with the corresponding label used in the XML file. For
instance, the radius entered in the XML file can be accessed using:

Listing 6: Reading MATLAB parameters from XML

matlabParam [" radius "] . toInt ()

STARTING MATLAB ENGINE To initialize the MATLAB Engine and your own MATLAB plugin
library, the following two functions need to be called:

15

Listing 7: Initializing your own library and MATLAB

m cl I ni t i a l i z e A p pl i c a t i o n (NULL, 0)
drawSpherel ibInit ia l ize ()

Obviously, you would replace drawSphere with the name of your library.

MATLAB ARRAYS MATLAB arrays in C++ are declared using the mxArray keyword. The
dimensions of the MATLAB arrays needs to be stored using a mxSize object which is essentially
just a wrapper for an int object. The following listing shows how we can declare a MATLAB
array with appropriate dimensions and copy a SGEMS object into it.

Listing 8: Declaring MATLAB arrays and copying C++ arrays into them

// Declare matlab array for the input matrix
mxArray * inputMat ;

// We w i l l always assume 3D grids
mwSize numDim = GRIDDIMS;

// Create a parameter to store the dimension of the input grid
mwSize dims [3] ;
dims [0] = inputGridDim−>x () ;
dims [1] = inputGridDim−>y () ;
dims [2] = inputGridDim−>z () ;

// Calculate t o t a l number of elements in input array
i n t gridTotalSize = inputGridDim−>x () * inputGridDim−>y () * inputGridDim−>z () ;

// Convert the input property from a c++ array to the matlab array
// f i r s t step i s to a l l o c a t e memory for i t , then memcpy i t over
inputMat = mxCreateNumericArray (numDim, dims , mxSINGLE_CLASS, mxREAL) ;
memcpy(mxGetPr (inputMat) , s t a t i c _ c a s t < f l o a t * >(prop_input−>data ()) ,

gr idTotalSize * s i z e o f (f l o a t)) ;

Likewise, MATLAB scalars are also declared using mxArray, but are filled differently. The
listing below shows how we can convert the radius from an integer in C++ into a parameter
that can be passed into MATLAB.

Listing 9: Declaring MATLAB scalars

// Read the parameter from the XML document
i n t radius = matlabParam [" radius "] . toInt () ;

// Create an array for storing the parameter
// in t h i s case i t i s simply a s c a l a r
mxArray *M = mxCreateDoubleScalar (radius) ;

16

CALLING THE MATLAB FUNCTION Finally, we are ready to actually call the MATLAB function.
Once all the parameters have been set up, a MATLAB array is declared to store the results.
Then the actual function is called. In our case, the MATLAB function is termed mlfDrawSphere,
but obviously, you would replace DrawSphere with your library name. The 1 in the parameters
represents the number of output variables (in our case there is only 1), followed by a pointer
to where to store the output, and then the input parameters in the same order in which they
were declared in the .m file. After, the function has been run, the mxGetData function converts
a MATLAB mxArray object back into a C++ array which can then be written back into the
previously empty realization in SGEMS.

Listing 10: Calling MATLAB functions

// Declare a matlab array for storing the output property
mxArray *V = NULL;

// Cal l the actual drawSphere function
mlfDrawSphere(1 ,&V , inputMat ,M) ;

// Cast the output property from the matlab array back to an C++ array
f l o a t * outputArray = (f l o a t *) mxGetData(V) ;

// Copy the r e s u l t s from a C++ array into the SGEMS property
for (unsigned i n t i = 0 ; i < gridTotalSize ; i ++)

props_[0]−> set_value (outputArray [i] , i) ;

That’s it!

4.4 COMPILING

PLUGIN REGISTRATION Before we start the compilation, we need to tell the SGEMS root
manager that we have created a new plugin. This can be done by adding an extra line to
geostat_init.cpp as follows:�� ��ok = dir->factory(newPlugin().name(),newPlugin::create_new_interface)

where newPlugin is replaced by the name of your new plugin. Obviously, you will need to
include the header for your plugin in geostat_init.cpp.

ADDING SOURCE TO CMAKE To let cmake know about your new class, we first open the
CMakeLists.txt file under the Geostat folder. Under the add_library keyword, insert the source
and header files for our new plugin. For our case, we have:

matlab_drawSphere.cpp

matlab_ccsim.cpp

matlab_drawSphere.h

matlab_ccsim.h

17

We also need to add the import libraries that were generated by the MATLAB compiler. For
our case, this were the two files drawSpherelib.lib and ccsimlib.lib. We should ensure that
they are in the same folder as the other plugin source files. We then add them to the same
CMakeLists.txt file under the keyword target_link_libraries.

Next, we need to add the links for the libraries that all MATLAB plugins need. If MATLAB is
installed on your system, the include folders would usually be under the MATLAB installation.
On my system, I had to add:

link_directories("C:/Program Files/MATLAB/R2013a/extern/lib/win64/microsoft"

"C:/code-dev/ar2gems/ar2gems/geostat/matlab")

include_directories("C:/Program Files/MATLAB/R2013a/extern/include")

to the CMakeLists.txt file in the global ar2gems folder. The import libraries need to be in the
same directory as the source, and the dynamic libraries either need to be in the same folder as
the executable or its path needs to be added to the PATH environmental variable.

For users who want to use MATLAB plugins but not write, the include and linker libraries just
needs to be set to the folder in which the run time library was installed to.

18

