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Abstract

Traditional seismic inversion approaches have focused on reducing errors between the data
and the model within a fixed geological scenario. The problem with this approach is that it
either ignores uncertainty related to geological interpretation or requires repeating inversion
for each scenario. In this paper we propose to estimate the probability of all available scenarios
with the given observed data first, by using pattern similarity between seismic data and forward
simulated models.

The proposed workflow is applied to an actual channelized turbidite reservoir with 3D seismic
data with various geological scenarios. The geological scenarios include rockphysics uncertainty,
geometry uncertainty, and spatial distribution uncertainty. In this paper we provide a practical
recipe for applying the proposed workflow to actual reservoir modeling. From studying well
data to modeling reservoir geobodies, all significant geological variations will be discussed and
modeled. Then the resulting distance matrix, calculated from pattern similarity algorithms, is
projected in multi-dimensional scaling (MDS) space to sort out the more likely from the less

likely scenarios with given data.

Introduction

A field in the early development stage has very limited data: a little well data, seismic data, and
some geological observations. Reservoir forecasting in this stage is one of the most important
tasks for future decision making, and modeling spatial variation based on geological
observations and seismic data is a key challenge. However, seismic inversions often fail to
converge while finding the best fit model within time and cost because the applied geological

scenario is wrong. Even worse, we often have to discard the previously matched models due to



a discrepancy with newly obtained data. The discrepancy is mainly caused by a too narrow
range of uncertainty as a result of an incorrect but fixed geological scenario. Thus, modeling
geological scenarios is an essential step before matching data in seismic inversion. To do this we
have to consider various sources of geological uncertainty such as geometry uncertainty, spatial
distribution uncertainty, and rockphysics uncertainty.

This paper focuses on how to test a wide range of geological scenarios from the obtained
seismic data. In this paper, we propose a pattern-based procedure for estimating the
probability of each scenario based on seismic data. First, to compute the distances, we applied
pattern similarity algorithms such as Multiple Point Histogram (MPH, Deutsch and Gringarten,
2000; Lange et al., 2012) and Discrete Wavelet Transform (DWT, Chui, 1992; Daubechies, 1992;
Mallat, 1999) for converting seismic data into a histogram of patterns. Next, a Jansen-Shannon
(JS) divergence algorithm (Kullback, 1983; Cover and Thomas, 1991; Endres and Schindelin,
2003) is applied to calculate the distance between two frequency distributions. Lastly, the
distances are projected in a Multi-Dimensional Scaling (MDS, Borg & Groenen, 1997; Caers,
2011) map for estimating the probability of each scenario given data. As a result, we can
determine more likely geological scenarios or more promising geological parameters which are

close to the data in the MDS map.

In this paper we provide a practical recipe for applying the proposed workflow to actual
reservoir modeling. A turbidite reservoir in Equatorial Guinea, West Africa is used for
verification of the workflow, and the study starts from the beginning stage of reservoir
modeling. Based on a few well logs from one well, a rockphysics relationship is established
which links reservoir property (facies) and elastic properties (P-velocity and density), and it is
used for a seismic forward simulation. After modeling a target canyon in seismic resolution, the
geological scenarios are modeled to identify the more important geological parameters via
sensitivity analysis, and to assess more promising scenarios. With the final results, modelers can
provide a set of models constrained to well data, seismic data, and geological scenario

uncertainty.

Methodology

Distance-based approximation for estimating geological scenario uncertainty

One of geomodelers’ ultimate goals is to create reservoir models by integrating geological
scenarios and obtained data. In a Bayesian framework we can formulate these relationship as

equation (1):
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where S; is the k-th scenario, P(Six|d) is the posterior probability of each geological
scenario given data, P(m,.s| Sk, d) is the data-likelihood given the k-th scenario and models,
and the final posterior probability is calculated by summing all the likelihood values for each
scenario. This paper focuses on quantifying P(S|d), which means the uncertainty of the k-th

geological scenario given particular data (seismic data). We can calculate this via equation (2):
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where P(S),) is the prior probability and the other values are given by geologists. In this paper,
we propose a distance-based approximation method for estimating P(d|S;). The distance-
based approximation assumes that the density function f(d|S;) can be approximated by the
density of samples in a Multi-Dimensional Scaling (MDS) map for each scenario (Park et al.,
2013). Thus,

P(d|S,) = f(d|Sk) =~ f(X]Sk) (3)

where f is the probability density function of samples in the MDS map, and X is the
projection of the observed data indicating a location on the MDS map. The samples in the MDS
map represent forward simulated seismic responses from each model. From the samples of
each scenario, we generate the probability density function of the scenario k, and use the pdf
for estimating f(X|Sy).

To project distances between models and data in a MDS map, we have to build a distance
matrix. Since seismic data is a 2D or 3D image response, a big challenge is how to define
distances between the seismic images. Traditional Euclidean distance is not appropriate for our



goal, because we are interested in patterns of seismic response influenced by various geologic
parameters, not the specific locations of geobodies in seismic data. Therefore the key issues are
how to capture the patterns in seismic responses and how to define differences between them.
To do this we applied pattern similarity algorithms such as MPH or DWT for comparing patterns
in seismic responses, and Jensen-Shannon divergence for defining the distance between two
seismic responses. The proposed workflow details about pattern similarity algorithms are
described in Jeong et al. (2013).

Field application

Field introduction

As an actual field case study, we applied the proposed workflow to a channelized turbidite
reservoir. It is deposited in offshore Equatorial Guinea, West Africa. Figure 1 shows the location
of the study area. The dataset includes a full-stack seismic cube, digital core images, a pilot well
which penetrates the middle of the seismic cube and encounters oil reservoirs, and some
relevant geology studies on this site. Based on core observations, Lowe (2004) confirms that
fining upward signals on well logs of the study area confirms channelized turbidite deposition in
submarine canyons. Daily et al. (2002) point out that the sandstones in this area were
deposited within the submarine canyons. Thus we can infer from these studies that our target
reservoirs may be channelized turbidite infill canyons. Generally submarine canyons are
important containers or conduits of coarse sediments, and these stacked turbidite canyon fills
often constitute significant petroleum reservoirs (Anderson et al., 2006; Normark and Carlson,
2003).

Figure 2 shows our interpretation of the present-day seafloor, mapped from 3D full-stack
seismic data. Jobe et al. (2011) have studied a location in the Benito and Mitemele rivers in
Equatorial Guinea (covering our dataset location) and recognize two types of submarine
canyons (Type | and Type Il) from seafloor data. Based on the seafloor data, the study area is
more likely classified as a Type |l canyon. However, it is hard to conclude which type of canyon
is in our target zone as it’s 1000m deep. The more important task is to model the submarine

canyon as a conduit of sediments and a container of channelized reservoirs.
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Figure 2: Present day seafloor map mterpreted from 3D seismic data.



Modeling a submarine canyon

In seismic resolution, we can model the submarine canyon as a container. Along with the
distinctive seismic reflections, the top and base surfaces are modeled in Figure 3. Note that the
top and bottom surfaces are not generated from only the two slices shown in Figure 3, but from
interpretation of all the 2D seismic sections. As a result, a submarine canyon is built in the
target zone (see Figure 4). Figure 5 shows a thickness map between the top and base surfaces,
and the blue and purple region can be interpreted as a main submarine canyon. Since the
ultimate goal of this paper is to model geological uncertainty from seismic data, it focuses on
uncertainty in sub-seismic resolution of the submarine canyon inside. To model infill geobodies
inside the canyon, we cut the canyon into the target grid (black rectangle) shown in Figure 6.
The original seismic cube in the target zone was 135 x 142 x 100 cells (3.375km x 3.55km x
100m), and the target grid is built of 90 x 40 x 100 cells (2.25km x 1km x 100m).
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Figure 3: 2D seismic sections from Inline 1301 (left) and Xline 950 (right) for modeling the top (green line) and base

(orange line) surfaces. Along the distinctive seismic reflections, both surfaces are interpreted.
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Figure 4: A modeled submarine canyon. Top: The top and base surfaces are shown with their topography in TWT.
Bottom: the seismic amplitudes (bottom picture) are extracted along the canyon boundary. Seismic reflections

inside of the canyon show mixed responses of infill geobodies.
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Figure 5: A thickness map between the top and base surfaces. The contour map, colored in blue and purple, shows

the target canyon from the right corner to the left center.
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Figure 6: Thickness map in 3D (left) and 2D (right). The black rectangle is the target grid for modeling infill

geological scenarios.



Defining geological scenario uncertainty

Hierarchy of geological scenario uncertainty

We establish a hierarchy of geological scenarios from seismic resolution to sub-seismic
resolution, as summarized in Figure 7. In seismic resolution, we build a submarine canyon as a
container, and next we model infill geological scenarios for sub-seismic resolution. Note that
vertical seismic resolution in this field is about 10m. Below the seismic resolution limits, thin
and small geobodies are not clearly detectable. Thus we propose a workflow to build a set of
geological scenarios and test them using a pattern similarity technique. The goal of this
workflow is to sort the uncertain geological scenarios into more likely and less likely ones. All
significant geological scenarios get started from ‘What-if’ ideas based on the observed data and
geological concepts.
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Figure 7: A diagram of geological scenario uncertainty hierarchy.

Rockphysics uncertainty

Rockphysics models which link the reservoir property (facies) and elastic properties (P-wave
velocity, S-wave velocity, and density) are the first key step for seismic forward simulation. If
we use an incorrect rockphysics relationship, final models having similar seismic responses may
predict completely different facies than the real facies. Therefore, establishing a correct
relationship between facies and elastic properties based on the obtained well logs is an

essential process in actual fields. In Figure 8, well X has various well log data, which shows that
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we have oil sand distribution in the well. From 1055m to 1080m in the target zone (marked as
red circles), the facies has low Gamma Ray (GR) values and high resistivity (R) log values, which
are typically good signatures of oil sand. Based on well logs such as GR, Resistivity (AHT10 and
AHT90), Vp (1/DTCO), Vs (1/DTSM), Density (RHOZ), Porosity (Phie), and Vp/Vs ratio, K-means
clustering classifies the target zone from 1050m to 1150m (100m) as the three facies shown in
Figure 9 (a). Digital core images confirm the existence of the facies in the well, and we can use
this model as the first possible rockphysics relationship in the target zone. Further away from
the well, the target zone may have different reservoir fluids such as water instead of oil. Below
the oil water contact (OWC, thick blue line), we can find water sand (or brine sand) distribution
(marked as blue circles in Figure 8), and we can use this to predict the brinesand distribution
away from the well. Figure 9 (b) shows the second rockphysics relationship including the brine

sand information.
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Figure 8: Multiple well log data from well X. Well X is located in the middle of the target grid and encounters oil

sand while drilling. In well X, the target zone from 1050m to 1150m (100m deep) is marked by black lines.
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Figure 9: (a) Rockphysics relationship generated from well X in the target zone. Oilsand (marked by red),
Carbonate-Cemented Oilsand (CCOilSand, marked by blue), and Shale (marked by magenta) facies are classified
from well log information. (b) Rockphysics relationships, including Brinesand distribution (marked by green).
Brinesand distribution is obtained via water sand below the oil-water-contact line in well X. This second

rockphysics model is prepared for geological scenarios having brinesand distributions away from the well.
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Geometry uncertainty

Geometry uncertainty includes all significant geobody parameters. Mayall et al. (2006)
summarized several key elements of turbidite channel reservoirs, such as variability of
sinuosity, proportion (NtoG ratio), width, depth, and stacking patterns. Based on geological
observation in this field, we focus on channel geometry, which includes proportion, width,
width/height ratio, and sinuosity. Note that all the geometry parameters are sampled from a
continuous uniform distribution instead of assigning discrete values from an experimental

design.

To guide the proportion of each facies, we applied a Naive Bayes classifier in the inverted P-
impedance cube. The P-impedance cube is inverted from full stack seismic data by using model-
based inversion in Hampson & Russell Software (HRS). Since impedance histograms of each
facies are overlapped on each other, and the inverted impedance is also a model-based
interpretation result, these classification results are very uncertain and unstable. However, they
are useful to guide the proportion of each facies. Figure 10 shows a classification result from
each rockphysics model. In RP model 1, oil sand was 32% and carbonate-cemented oil sand was
6%, while the remaining background shale was 62%. In RP model 2, brine sand facies is added
and it occupies 37% of the total proportion. Oil sand and carbonate-cemented oil sand
distribution are 37% and 3%, respectively. Due to the brine sand proportion, shale fraction has
decreased to 23%. According to this classification result, we set up a range of proportions
depending on each facies, as summarized in Table 1 (low and high boundaries for each
rockphysics model are displayed) . Figure 11 shows an example of RP 1 and RP 2, respectively.
The RP 1 example in Figure 11(a) is generated from a 10% proportion of oil sand and 3%
proportion of carbonate-cemented sand. This combination is the lowest setting for both oil
sand and carbonate-cemented sand. The RP 2 example in Figure 11(b) shows the largest
proportion setting for all three sand facies: 25% for oil sand, 10% for carbonate-cemented oil
sand, and 25% for brine sand.

The size of the geobody is also an important geometry parameter. Abreu et al, (2003) and
Mayall et al. (2002) note that slope turbidite channels in West Africa are typically classified as
one of two types of channels. Large Channels are typically 1-3km wide, 50-200m thick, confined
by an erosional base, and comprising multiple stacked smaller channels and small infill channels
stacked in a series of high net to gross channels, each of which are typically 100m-500m wide
and 1-10m thick. In this paper, we tested width parameter as a range value sampled from 1/8
to 1/4 of the canyon width (i.e. 125m — 250m), and width/height ratio sampled from 0.5 to 1.5
(it varies from 6.75m to 37.5m deep). Some examples are shown in Figure 12.
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The last key parameter for geometry uncertainty is sinuosity. Most turbidite channels are very
sinuous, and a difference in sinuosity can affect the distribution of reservoir facies. We can
easily observe the sinuosity in our study area from the seafloor image in Figure 2. The sinuosity
can be modeled by the wavelength of the sinusoids. Figure 13 shows a range of sinuosity
variation from 200m to 50m wavelengths. In general, sinuosity arises from several very complex
geological parameters, influenced by the larger scale bending in the canyon and the stacking
patterns of channels (Beydoun et al.,, 2002; Kolla et al., 2001). However, in this paper, we
assume the variation in sinuosity is controlled by wavelength values, generated from a uniform
distribution from 50 to 200.

Canyon Canyon
QilSand
CCOilSand i
| Shale
Shale BrineSand
QilSand CCOilSand

Figure 10: Facies classification results from an inverted P-impedance cube using a Naive Bayes classifier. Depending
on the rockphysics models, facies classification results and their proportions can be very different. These

classification results can be used as a guideline for the proportion of each facies.
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Figure 11: (a) An example of the Earth model based on rockphysics model 1. The minimum values from each

uniform distribution are applied for the example: 10% proportion for oilsand and 3% proportion for carbonate-
cemented oilsand. (b) An example of the Earth model based on rockphysics model 2. The maximum values from a
range of parameters are applied to generate the model: 25% proportion for oilsand. 25% proportion for brine

sand, and 10% proportion for carbonate-cemented oil sand.

(a) (b)

Figure 12: (a) Examples of the width variation. The left model is made from a 125m wide sample while the right
one is generated from with 250m as the width value. (b) Examples of the width/height ratio difference. Within the
same width (250m wide), the left model uses 0.5 (12.5m deep) and right model uses 1.5 (37.5m deep) as the w/h
ratio.
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Figure 13: A set of sinuosity variations from wavelengths 200 to 50. Note the wavelength value means the number
of voxels between two peaks.
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Spatial distribution uncertainty

Spatial distribution uncertainty is mainly about stacking patterns in geological scenarios. A
stacking pattern is also a very important parameter for constructing an effective development
plan. Clark and Pickering (1996) proposed various stacking patterns and geological possibilities
for each. A vertical stacking pattern, which we call a “multi-storey” pattern here (see Figure
14(b)), is produced by focusing on the channel cutting and filling events leading to the
pronounced differential compaction. Conversely, a lateral stacking pattern (“multi-lateral” in
Figure 14(c)) commonly takes the form of systematic stacking in one direction, or alternating on
either side of a pre-existing channel. Additionally, some unconstraint random stacking patterns
can be classified as “isolated,” as shown in Figure 14 (a). Common characteristics of stacking
patterns in turbidite channels are well summarized in Mayall et al. (2002) and Mayall et al.
(2006).
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Figure 14: Spatial distribution uncertamty is modeled as a wide variety of staking patterns. In this paper, we set up
three stacking patterns for a series of turbidite channels: (a) isolated, (b) multi-story, and (c) multi-lateral.

Results

In this paper we propose to assess the consistency of all available scenarios with the given
seismic amplitude data. An example of forward simulated model and the obtained data in the
target grid are shown in Figure 15, respectively. Note that each model is generated by a set of
parameters randomly sampled from the uniform distributions. The input range of uniform
distributions is summarized in Table 1 (marked as gray color). To minimize a possible correlation
between parameters, Latin Hypercube Sampling (LHS) design is applied for parameter sampling
(Iman et al., 1980; Tang, 1993).

We applied the Cluster-based Histograms of Patters (CHP) algorithm (Honarkhah and Caers,
2010) as an improved version of MPH. Since the cluster-based histogram of patterns (CHP) lists
only a few prototypes and their frequencies, instead of recording all patterns, it drastically
reduce computing time and cost. In this case study, the CHP classifies 3 million patterns as 359
prototypes and counts its frequencies as a histogram. Next JS divergence determines a distance
between the histograms recorded by the CHP for all realizations Figure 16 shows a MDS
projection result of the distances calculated by the CHP and JS divergence. Models from
RockPhysics relationship 1 (RP1) and models from RockPhysics relationship 2 (RP2) consist of
distinctive two clouds in MDS map. The data is surrounded by models in RP2. Through the MDS
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plot, we can infer that seismic patterns generated from RP2 are more probable than RP 1
models. Also our target zone and grid may include brine sand distribution away from well.
Based on the distance, we can select a few models close to the data. The selected models are
shown in Figure 17 and the assigned geological parameters for each model are summarized in
Table 1. To select the models, we use the Euclidean distance in MDS map. Since the MDS map
in 2D explains more than 94 % of total distribution of samples, the distance in MDS map can be
used as a guideline of similarity. A cumulative frequency of histogram shown in Figure 18
supports the similarity in MDS map. The histograms of patterns are closer, the cumulative
functions are more similar each other. The selected model in MDS map are marked by red
curves and the data (marked by blue) shows very similar cumulative frequency of histogram to

the red curves.

Due to the randomness of object-based modeling, the input parameters of selected model
cannot perfectly guarantee the exact geological scenario setting in actual data. However, these
can be a good approximation for promising geological scenarios or possible training images for
data matching in seismic inversion process. The goal of this application is to sort the geological
scenarios uncertainty from less likely models to more likely ones. As the result, we could sort
the geological scenarios and reduce a wide range of parameters to a smaller set of parameters.
Now the selected models can be used as training images for seismic inverse modeling. This step

will be discussed in future research.
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Figure 15: A MDS projection of Multiple Point Histogram (MPH) results using 450 models to obtain seismic data.
The data (marked with a black cross) is located in the middle of red clouds, and thus we can infer that rockphysics
model 1 is more likely than rockphysics model 2 in the target grid of the case study.
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Figure 16: A MDS projection of Multiple Point Histogram (MPH) results using 450 models to obtain seismic data.
The data (marked with a black cross) is located in the middle of blue clouds, and thus we can infer that rockphysics
model 2 is more likely than rockphysics model 2 in the target grid of the case study.
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Figure 17: To discover the most promising geological setting, close samples are selected. The models are selected
by their distance from the data in MDS map (marked in red).
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Figure 18: A cumulative frequency of histogram for the CHP result. The histograms of patterns are closer, the
cumulative functions are more similar each other. All prior models are plotted as black curves and the selected
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model in MDS map are marked by red curves. The data (marked by blue) shows very similar cumulative frequency
of histogram with the red curves.

Propl Propl Prop3 Height Wave -m
cCSand) |BrineSand)  YV'¥™" | (WiH ratio)| Lengtn | ST°king

Model-234 13.5% 7.3% 18.5% 220m [13m  3825m  I(lsolated)  0.0045
Model-263 13.9% 4.4% 18.2% 210m 68m  3275m  I(lsolated)  0.0048
Model-3 14 23.7% 2.5% 65%  1525m 79m  3075m 2(MultiStorey)  0.0004

Input-Low(RPI) 10% 3% 0% 125m  25m (0.5)  1250m 1~3

Input-High(RP1) 40% 10% 0% 250m  I5m(1.5)  5000m 1~3

Input-Low(RP2) 10% 2% 5% 125m  25m(0.5)  1250m 1-3

Input-High(RP2) 25% 10% 25% 250m  I5m(1.5)  5000m 1~3

Table 1: Geological parameters of the close models to the obtained data. Based on the result, all models from
rockphysics model 2 are rejected, while a multi-story stacking pattern is promising in this study area. Also, we can
observe that the range of proportion, width, and W/H ratio are relatively narrower than the initial input
distribution.

Conclusions

As the result of actual field case, the proposed approach sort the available geological scenarios
within given seismic data. Measuring pattern similarity based on CHP and JS divergence shows
reasonable distinction in MDS map for two different rockphysics models. Based on the result,
we can infer that seismic patterns generated from RP2 are more similar to the given seismic
data than RP 1. Thus we can reject the models from RP 1. The goal of this workflow is to sort
the geological scenarios uncertainty from less likely models to more likely ones. As the result,
we could sort the geological scenarios and reduce a wide range of parameters to a smaller set
of parameters. The selected models can be used as training images for seismic inverse
modeling.

An important challenge for actual field application is how to embody the geological observation
into the object-based Earth models. Based on previous geological studies, we setup a wide
range of geological parameters for building geological scenarios. As shown in the results, it is
not necessary to be an experimental design using discrete parameter sets but we can use a set
of continuous uniform distributions for discovering more likely geological scenarios. As the
result, we can pick some promising geological scenario and its parameter setting from the
projected MDS map.



21

Acknowledgement

The authors thankfully acknowledge Stanford Center for Reservoir Forecasting (SCRF) sponsors.

References

Abreu, V., Sullivan, M., Pirmez, C., Mohrig, D., 2003, Lateral accretion packages (LAPs): an important reservoir
element in deep water sinuous channels. Marine and Petroleum Geology 20, 631-648.

Anderson, K., Graham, S., and Hubbard, S., 2006, Facies, architecture, and origin of a reservoir-scale sand-rich
succession within submarine canyon fill: insights from Wagon caves rock (Paleocene), Santa Lucia Range,
California, U.S.A: Journal of Sedimentary Research, 76, 819-838.

Borg, |., Groenen, P. 1997. Modern multidimensional scaling: theory and applications, New-York, Springer.
Caers, J., 2011, Modeling uncertainty in the Earth sciences, Wiley-Blackwell.

Clark, J.D., Pickering, K.T., 1996, Architectural elements and growth patterns of submarine channels: applications
to Hydrocarbon exploration. American Association of Petroleum Geologists 80 (2), 194-221.

Cover, T. M., Thomas, J. A., 1991, Elements of information theory, Wiley-Interscience, New York, NY, USA.

Dailly, P., Lowry, P., Goh, K., and Monson, G., 2002, Exploration and development of Ceiba Field, Rio Muni Basin,
Southern Equatorial Guinea: The Leading Edge, 21, 1140-1146.

Deutsch, C., Gringarten, E., 2000, Accounting for multiple-point continuity in geostatistical modeling, In: of
Southern Africa, G. A. (Ed.), 6th International Geostatistics Congress. Vol. 1. Cape Town, South Africa, pp. 156-
165.

Endres, D. M. and Schindelin, J. E., 2003, A new metric for probability distributions, IEEE Transactions on
Information Theory 49 (7), 1858-1860.

Honarkhah, M. and Caers, J. 2010, Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling,
Mathematical Geosciences, 42: 487-517, DOI: 10.1007/s11004-010-9276-7.

Iman, R.L., Davenport, J.M., Zeigler, D.K., 1980, Latin hypercube sampling (program user's guide), OSTI 5571631.

Jeong, C., Scheidt, C., Caers, J. and Mukeriji, T., 2013, Modeling Geological Scenario Uncertainty from Seismic Data
using Pattern Similarity, Annual meeting of Stanford Center for Reservoir Forecasting (SCRF) 26th.

Jobe, Z. R., Lowe, D. R., and Uchvtil, S. J., 2011, Two fundamentally different types of submarine canyons along the
continental margin of Equatorial Guinea, Marine and Petroleum Geology 28: 843-860.

Kullback, S., 1983, Kullback information, Encyclopedia of Statistical Sciences, Vo14, 421-425 New York: Wiley.

Lange, K., Frydendall, J., Cordua, K. S., Hansen, T. M., Melnikova, Y., & Mosegaard, K., 2012, A Frequency Matching
Method: Solving Inverse Problems by Use of Geologically Realistic Prior Information, Mathematical
Geosciences, 44: 783-803, DOI: 10.1007/s11004-012-9417-2.

Lowe, D.R., 2004, Report on core logging, lithofacies, and basic sedimentology of Equitoral Guinea, Hess internal
report.

Mayall, M., O’Byrne, C., 2002, Reservoir Prediction and Development Challenges in Turbidite Slope Channels: OTC
Conference Proceedings, Contribution No. 14029.

Mayall, M., Jones, E., and Casey, M., 2006, Turbidite channel reservoirs — Key elements in faces prediction and
effective development, Marine and Petroleum Geology 23: 821-841.



22

Normak,W.R., and Carlson, P.R., 2003, Giant submarine canyons; is size any clue to their importance in the rock
record?, in Chan, M.A., and Archer, A.W., eds., Extreme Depositional Environments; Mega End Members in
Geological Time: Geological Society of America, Special Chapter 370, p. 175-190.

Park H., Scheidt C., Fenwick, D., Boucher A. and Caers J., 2013, History matching and uncertainty quantification of
facies models with multiple geological interpretations, Computational Geosciences, DOI:  10.1007/s10596-
013-9343-5.

Tang, B., 1993, Orthogonal Array-Based Latin Hypercubes, Journal of the American Statistical Association 88 (424):
1392-1397, doi:10.2307/2291282.

Thomas, E. C., and Stieber, S. J., 1975, The Distribution of Shale in Sandstones and Its Effect Upon Porosity: Trans.
Of the 16th Annual Logging Symposium of the SPWLA paper.



