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Abstract In the past decade, the training image has received considerable at-
tention as a source for modeling spatial continuity in geostatistics. In this paper,
the use of such training images in the context of kriging is investigated, in par-
ticular, universal kriging (UK). Traditionally, kriging relies on a random function
model formulation whereby the target variable is decomposed into a trend and
residual component. While the theory is firm and elegant, the actual practice of
UK remains challenging; in particular when data is sparse, and the modeler is
forced to decide what to model as the trend and what as the residual. This paper
juxtaposes this variogram-based universal kriging (UK-v) with a training-image
based universal kriging (UK-TI). It is found that the latter version need not rely
on a random function model formulation, but rather requires the specification of
a training image on which the “universal” conditions are verified. Through illus-
trations with various examples, it is seen that the modeling challenge in UK-TI is
on the training image. Concurrently, UK-TI requires two components: an image
reflecting the variable under study, and an image containing an auxiliary vari-
able which is reflective of trend. A theoretical, methodological, and illustrative
comparison with examples is shown. Using a Monte Carlo study, the statistical
performance of both methods is found to be comparable. Recommendations on
which method to choose, UK-v or UK-TI, based on practical criteria, are also for-
mulated. Additionally, the study provides more insight into the use of the training
image in general, including in multiple-point geostatistics.
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1 Introduction

The use of training images and the development of methodologies and algorithms
for modeling spatial continuity has received considerable attention since the pub-
lication of Strebelle’s seminal 2002 paper in Mathematical Geosciences (Strebelle,
2002). Many application areas beyond subsurface geology have now been reached,
including medical imaging (Pham, 2012), soil sciences (Meerschman et al, 2013),
remote sensing (Atkinson et al, 2008; Jha et al, 2013), climate science (Mari-
ethoz et al, 2012), ecology (Relethford, 2008; Ver Hoef, 2008), and even finance
(Kanevski et al, 2008). Several algorithms have been developed that aim to ex-
tract spatial statistics from these training images, some based on rigorous random
function theory and Markov Random field formulations (Tjelmeland and Besag,
1998; Winkler, 2003; Cressie and Cassie, 1993; Daly, 2005; Stien and Kolbjørnsen,
2011), some inspired by random function theory (Strebelle, 2002; Dimitrakopoulos
et al, 2010; Peredo and Ortiz, 2011)) as well as stochastic computer-aided design
methods that do not rely on random function theory (Zhang et al, 2006; Arpat and
Caers, 2007; Mariethoz et al, 2010; Honarkhah and Caers, 2010; Tahmasebi et al,
2012; Mariethoz and Lefebvre, 2014; Mahmud et al, 2014), Hu and Chugunova
(2008), Daly and Caers (2010) for reviews as well as a recent special issue in this
Journal. While these algorithms represent a diversity of purposes and aims, they
share a common trait: borrowing some statistics from training images instead of
relying on variograms modeled from data.

Due to the growing interest and understanding of training images, there has
been a revival in investigating the link between it and random fields (Ortiz, 2008).
Recently, (Emery and Lantuéjoul, 2013) examined the training image as a substi-
tute for a random field model in the context of geostatistical simulation. In this
paper, the traditional variogram based methods, which have been at the core of
geostatistics since its inception (Matheron, 1969), and the topic of many books
since (e.g. Goovaerts (1997); Delfiner et al (2009); Diggle and Ribeiro (2007)), is
examined. The particular method is universal kriging; an approach formulated by
Matheron based on Random Function (RF) theory, which uses variograms to verify
a universality unbiased condition (herein referred to as UK-v). Specifically, a ver-
sion is proposed that is not dependent on RF theory, but rather relies on a training
image(s) to verify the universality conditions (UK-TI). Journel (1997) propounded
a similar idea, based on Matheron’s schema glissant or repetition process. How-
ever, at the time the level of maturity of training image methods prevented any
practical case studies. The objective of this paper is to link recent advancements
in MPS with a RF-less formulation to perform universal kriging. From a concep-
tual viewpoint, UK-TI relies on a non-parametric approach of interpreting spatial
continuity that is more intuitive to non-experts of geostatistics than parametric
models such as the variograms used by UK-v. UK-TI does not require the ex-
plicit decomposition of the target variable into a trend and residual, and shifts the
modeling emphasis from estimating the residual covariance to the generation of
representative training image, an area that has seen much development in recent
years.

This paper is primarily concerned with the conceptual differences between
these two approaches, as well as examining their practical applications to real
cases. A brief review of UK-v is given followed by a discussion on the challenges
in applying the theory to practice. Next, the UK-TI formulation is developed, and
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the differences from UK-v are explored. In the example section, both methods are
applied to the same case studies, and considerations such as: the size and nature
of the training image, the decomposition of trend versus residual values, and the
problem of sparse datasets, are addressed.

2 A Review of Universal Kriging

2.1 Optimal Predication With Known Covariance

The Universal Kriging (UK) model was introduced by Matheron in Matheron
(1969) as a way to optimally estimate a natural variable in the presence of a sys-
tematic behavior or trend. UK is a random function model where the expectation
m(x) of the random function model Z(x), x ∈ Rd, assumed to model the regional-
ized variable z at stake, is unknown. This is in contrast to simple kriging (SK), and
furthermore, the expectation is allowed to vary spatially. It is assumed to have the
form m(x) =

∑L
l=0 βlfl(x), where the fl are known functions of Rd and the βl are

unknown constant coefficients. In his seminal work (Matheron, 1969), Matheron
introduces UK as the following model:

Z(x) =
L∑
l=0

βlfl(x) + Y (x) (1)

where Y (x) is an independent zero mean second order stationary random function1

with covariance C(x, y) = E(Y (x)Y (y)), often called the residual. As quoted by
Matheron (Matheron, 1969), the UK estimates deserve this qualifier in the sense
that they can be used whatever the value of β, hence the so-called “universality
conditions” designating the non-bias conditions. Indeed, the kriging predictor Z∗

of Z at location x0 is a linear combination of the sampled values:

Z∗(x0) =
n∑
i=1

λiZ(xi) (2)

As it is also unbiased, which gives:

E(Z∗(x0)− Z(x0)) =
n∑
i=1

λi

L∑
l=0

βlfl(xi)−
L∑
l=0

βlfl(x0)

=
L∑
l=0

βl

(
n∑
i=1

λifl(xi)− fl(x0)

)
= 0 (3)

(3) must be true whatever the value of the βl. Hence the ’universality conditions’
that the kriging estimate must verify are:

n∑
i=1

λifl(xi) = fl(x0). (4)

1 In (Matheron, 1969), Matheron allows Y to be an intrinsic random function but shows
that the possible constant term in (1) is indeterminate under this assumption, which is in
accordance with the strict intrinsic hypothesis.
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The next step is to minimize the estimation mean squared error under the condition
stipulated in (4). This gives us:

E(Z∗(x0)− Z(x0))2 = V(Z∗(x0)− Z(x0)) =
n∑
i=1

n∑
j=1

λiλjCij − 2
n∑
i=1

λiCi0 + C00,

(5)
where Cij = C(xi, xj). The condition (4) is enforced by using the method of La-
grange multipliers. This leads to the UK system (for detailed calculations: Delfiner
et al (2009)): 

∑n
j=1 λjCij +

∑L
l=0 µlfl(xi) = Ci0 ∀ i ∈ {1, . . . , n}∑n

i=1 λifl(xi) = fl(x0) ∀ l ∈ {0, . . . , L}
(6)

This system is invertible if and only if the matrix F, whose columns are the func-
tions fl values at (x1, . . . , xn) is of full rank L+1. By denoting β̂ = (F′C−1F)−1F′C−1Z,
the generalized least squares (GLS) estimator of the drift parameters vector, the
UK estimate at x0 takes the following form:

Z∗(x0) =
l∑
l=0

fl(x0)β̂l +
n∑
i=1

λKi

(
Z(xi)−

l∑
l=0

fl(xi)β̂l

)
, (7)

where the λKi are the simple kriging weights computed as if m(x) were known
and subtracted from the data. This illustrates the additivity theorem (Matheron,
1969): the kriging estimate is the sum of the optimal estimate of m(x0), while the
second term corresponds to the simple kriging estimate of the residual term, where
the true mean has been replaced by its optimal estimate. The additivity property
also holds for the UK prediction error variance (e.g. Delfiner et al (2009)).

Usually the first basis function (case i = 0) is the function identically equal
to 1, which guarantees that the residual Y (x) is centered. The others can be any
functions known over the domain of interest. In particular, explanatory variables,
when available, can be taken into account in the model (1). This is frequently the
case in environmental applications, e.g. (De Fouquet et al, 2007) (Romary et al,
2011).

UK is sometimes referred to as in (1) where the (fi(x))i=0,...,p are monomi-
als, while the term external drift kriging is used the fi are any other functions,
including auxiliary variables. This distinction (e.g. Delfiner et al (2009)) is made
especially to discriminate between the cases where higher order intrinsic random
functions (IRF) could be used (monomials) instead of UK, where the drift com-
ponents are filtered out, and the more general settings of any function known over
the domain of study. While getting rid of the burden of estimating the parameters
βi, IRF-k modelling implies the use of the more restrictive generalized covariance
models (Delfiner et al, 2009) comparatively to the numerous classes of stationary
covariance functions available.

2.2 Practical Considerations of UK-v

Application of UK-v using the aforementioned procedure requires knowledge of the
covariance matrix C, which in practice is almost never the case. The estimation of
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the covariance parameters is a difficult exercise, and a wide variety of approaches
such as moments method or maximum-likelihood method under a Gaussian hy-
pothesis have been proposed. Furthermore, UK-v is generally performed using
moving neighborhoods, which can result in discontinuities in the resulting kriging
map.

Covariance Estimation

Traditional geostatistics infers the covariance model parameters through variogram
fitting, to avoid any distribution assumption and to allow fast computation. In the
UK settings (1), the empirical variogram of the residual is required. However, the
true residuals cannot be observed, as the drift is unknown. Therefore, estimated
residuals have to be computed from an estimated drift. It has also been shown
(Matheron (1969); Armstrong (1984)) that the empirical variogram of the residuals
always present a negative bias, (Beckers and Bogaert, 1998) contains a detailed
study of the bias. Furthermore, even if the true covariance is known, and the drift
is estimated (commonly using Ordinary Least Squares(OLS) or Generalized Least
Squares (GLS)), the empirical variogram of the residuals would still be biased,
and is unfortunately unavoidable. See Appendix A for a treatment of the residual
bias. In practice, OLS is generally used to estimate the residuals as a first guess.
If F is the matrix of predictors, and Z be matrix of target variables, then:

β̂OLS = (F ′F )−1F ′Z (8)

ĈOLS can then be constructed by fitting a covariance to ûi where:

ûi = (Z− F β̂OLS)i (9)

The OLS estimate of the drift parameters is suboptimal, though unbiased. Conse-
quently, the empirical variogram computed from the OLS-based estimated resid-
uals will also be rather imprecise and with a large bias. Several guidelines can be
found in the literature. Diggle and Ribeiro (2007) argues that ’the discrepancy
between observed and true residuals would be less marked in a larger data-set,
and the negative bias in the sample variogram consequently smaller’, propose to
estimate the variogram from OLS based residuals. Their statement is backed up by
the asymptotic study conducted in Lahiri et al (2002). The variogram estimation
from the residuals can also be conducted in an iterative manner as proposed in
Gelfand et al (2010). The estimated GLS is computed as:

β̂GLS = (F′Ĉ−1
OLSF)

−1F′Ĉ−1
OLSZ (10)

The covariance ĈGLS can be constructed in the same manner as Equations 9 and
9. The authors note that ’One may even iterate between mean estimation and
semivariogram estimation several times, but, in practice, this procedure usually
stops with the first EGLS fit’. There is no evidence for such an iterative scheme
to converge towards an acceptable solution as the issue of the bias is not tackled
out. Finally, one can adopt the bias correction technique proposed in Beckers and
Bogaert (1998).

Maximum likelihood methods have also been developed for this problem as
they allow, at least theoretically, to fit both drift and covariance parameters of the
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model (1) simultaneously, Mardia and Marshall (1984). These methods are not
exempt from issues however that can be addressed by different variants, Pardo-
Iguzquiza and Dowd (1998); Stein (1999); Gelfand et al (2010) among others for
reviews. The most important issue with likelihood-based methods is of course
the Gaussian assumption. As quoted by Stein (1999), “this is a highly restrictive
assumption”. To ensure that this assumption is tenable, normality tests can be
conducted on the estimated residuals. It is however, seldom applicable to natural
variables.

Continuous Kriging

In practice, UK-v is performed with local neighborhoods, and hence as the tar-
get point moves, the data within the local neighborhood are suddenly removed
from the neighborhood. This causes the weights of such data to immediately di-
minish, and causes discontinuities within the kriging map. Rivoirard and Romary
(2011) proposed a method to ameliorate such issues, based on the penalization of
boundary data points. This can be implemented by modifying Equation 6 as:λiVi +

∑n
j=1 λjCij +

∑L
l=0 µlfl(xi) = Ci0 ∀ i ∈ {1, . . . , n}∑n

i=1 λifl(xi) = fl(x0) ∀ l ∈ {0, . . . , L}
(11)

The penalty term Vi can be chosen to be equal to 0 for data close to data points,
and increasing towards infinity as the data point approaches the boundary of the
neighborhood. Refer to (Rivoirard and Romary, 2011) for a detailed discussion on
the selection.

2.3 Discussion

While UK has been widely used for the past forty years, it is still controversial since
its formulation (1), of combining a deterministic drift and a correlated residual,
hides technical difficulties in its implementation. The numerous different existing
estimation methods all have their drawbacks: variogram-based methods suffer from
bias while likelihood-based methods may not be appropriate when the distribution
of the residuals departs from the Gaussian assumption. In particular, though the
statistical notion of degrees of freedom is not adapted in the spatial framework, the
number of drift functions should be small enough so as to leave enough degrees of
freedom for the estimation of the covariance structure. Perhaps the most important
point concerns the separation of scales that should exist between the structures
of the drift functions and of the residual. Indeed, the more separated the two
components are, the lower will be the bias. It is in the philosophy of the UK model
that the drift functions capture the large scale fluctuations while the residual
structure govern the smaller ones. The difficulty lies in the separation between
these two components, which is left to the practitioner and should be guided by
the data. There is still a fair amount of choice in the practice of UK (Matheron,
1989) but still remains an active domain of research (Paciorek, 2010).
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3 Universal Kriging With Training Images

3.1 Formulation

In this section, a radically different approach that does not rely on the notion of
random functions is reviewed and further developed. The ideas presented here were
first proposed by Matheron (1978) as “schéma glissant” and later further suggested
as “deterministic geostatistics” in Journel (1997), although neither author provided
any practical case studies. The main contribution in this paper will be on providing
links with recent developments in geostatistics that rely on training images instead
of variogram models to specify spatial continuity. Assuming at least one training
image to be available on a gridded domain denoted as:

zTI = {zTI(x), x ∈ DTI} (12)

In the same way as done for universal kriging, an “estimator” for Z at location
x0 is required. This is denoted as z#, a notation used to distinguish it from the
random-function based estimator Z? in (2) :

z#(x0) =
n∑
i=1

λiz(xi) (13)

Note the choice of lower case notation, as random variables are not used to
derive equations for the weights. The data event in (12) has a data configuration
denoted as:

cf = {x0 + h1, x0 + h2, ..., x0 + hn} (14)
Equivalent to unbiasedness in (3), a condition is introduced as follows:

Zero Error Sum Condition:
If estimation was to be performed over the training image, using the same data
configuration as the data in (14), then the sum of the differences between the esti-
mators and the actual values equals zero.

Mathematically this can be written as:∑
x∈TIcf

(
z#TI(x)− zTI(x)

)
= 0 (15)

The summing cannot be specified over the entire training image, instead goes
over an area eroded with the data configuration cf. The erosion is one of two funda-
mental operations in mathematical morphology (a field co-invented by Matheron
and Serra (Serra, 1983)). TIcf denotes this eroded area.

TIcf = {x0|x0 + hj ∈ TI,∀i = 1. . . n} (16)

That is to say, for a given data configuration, the eroded image represents the set
of locations on the training image that the given data configuration would be valid
at. The zero error-sum condition is further developed as follows:∑

x∈TIcf

(
z#TI(x)− zTI(x)

)
=

∑
x∈TIcf

(
n∑
i=1

λiz(xi)− zTI(x)

)
= 0
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⇒
n∑
i=1

λi
∑

x∈TIcf

z(x+ hi) =
∑

x∈TIcf

zTI(x)

⇒
∑
i=1

λi

 1

nTIcf

∑
x∈TIcf

(zTI(x+ hi))

 =
1

nTIcf

∑
x∈TIcf

zTI(x) (17)

nTIcf is the number of grid cells or locations x in the eroded TI. It appears now
two averages are present. The first is the average of the z-values in the TI eroded
by cf.

avTIcf =
1

nTIcf

∑
x∈TIcf

zTI(x) (18)

The second is the average of the z-values in the TI, first eroded by the cf, then
translated by −h.

avTIcf (hi) =
1

nTIcf

∑
x∈TIcf

zTI(x+ hi) (19)

The zero error-sum condition is then written as:

n∑
i=1

λi avTIcf (hi) = avTIcf (20)

Equivalent to the second condition in kriging, the following loss condition is spec-
ified:

Minimum sum of square error condition:
If estimation was to be performed over the training image, using the same data
configuration, then the sum of the squared differences between the (linear) estima-
tors and the actual values are smallest possible.

Mathematically this translates to :

min
∑

x∈TIcf

(z#TI(x)− zTI(x))
2 (21)
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The sum of squares can be further developed as:

sse =
∑

x∈TIcf

(z#TI(x)− zTI(x))
2

=
∑

x∈TIcf

(
n∑
i=1

(λizTI(x+ hi)− zTI(x)

)2

=
∑

x∈TIcf

(
n∑
i=1

n∑
j=1

λiλjzTI(x+ hi)zTI(x+ hj)

− 2
n∑
i=1

λizTI(x+ hi)zTI(x) + z2TI(x)

)

=
n∑
i=1

n∑
j=1

λiλj
∑

x∈TIcf

zTI(x+ hi)zTI(x+ hj)

− 2
n∑
i=1

λi
∑

x∈TIcf

zTI(x+ hi)zTI(x) +
∑

x∈TIcf

z2TI(x) (22)

The notation for the various sums of products is denoted sop:

sopTI(hi, hj) =
1

nTIcf

∑
x∈TIcf

zTI(x+ hi)zTI(x+ hj) (23)

Hence, the sse in (22) can be expressed as:

sse
nTIcf

=
n∑
i=1

n∑
j=1

λiλjsopTI(hi, hj)− 2
n∑
i=1

λi sopTI(hi, 0) + sopTI(0, 0) (24)

The notation sop is used to emphasize that the notation of covariance (re-
quiring expectation) is not used here. Minimization of the sse under the linear
constraint proceeds in the exact same way as for kriging and results in the follow-
ing normal system of equations:

n∑
j=1

λj sopTI(hi, hj) + µ avTIcf (hi) = sopTI(hi, 0) i = 1..n

n∑
i=1

λi avTIcf (hi) = avTIcf (25)

Note that the sum of products must be computed over the eroded training im-
age for the system to be consistent. Refer to Appendix B for a detailed treatment.
The minimum achieved by solving this problem is then the error variance under
this procedure and is expressed as:

ssemin = sopTI(0, 0)−
n∑
i=1

sopTI(hi, 0)− µ avTIcf (26)
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3.2 Practical Considerations of UK-TI

Training Image

Obviously, the largest hurdle for practical application of UK-TI is the availability
of a training image that is representative of the primary domain. Specifically, the
training image should be reflective of the spatial continuity, and presence of any
patterns or features of the domain in question. Quite often, this is not available,
but rather a training image that is on a different domain, and potentially a differ-
ent trend that is not indicative of the primary domain, is available. In TI literature,
this trend is commonly referred to as the auxiliary variable (Hu and Chugunova,
2008). The auxiliary variable can be obtained from a variety of sources (for in-
stance remote sensing, or subsurface seismic). A variety of approaches in MPS have
been developed to generate non-stationary models such as DISPAT (Honarkhah
and Caers, 2010), SIMPAT (Arpat and Caers, 2007), or Direct Sampling (Mari-
ethoz et al, 2010) that still have the characteristics of the original training image,
but with this local trend. This procedure is also not limited to a single auxiliary
variable. Even if auxiliary data on the primary domain is not available, one can
still attempt to generate a local training image through conditional simulation by
using the data on the primary domain as the conditioning data. In Section 4, both
situations using the Direct Sampling method will be illustrated.

Finite Domain Artifacts

Another practical consideration that may arise when applying UK-TI is that due
to the finite physical size of the training image, only local search neighborhoods
can be used. An implicit assumption of kriging in general is that the study area is
infinite, which can cause large kriging weights to be assigned to the boundary data
points in a given data configuration (Babak and Deutsch, 2008). This is analogous
to the string effect described in (Deutsch, 1993), and is a direct consequence of the
dimension change of the eroded image (Eqn 16), at local neighborhood boundaries.
This causes the cross SOP terms in Equation 25 to fluctuate, causing artifacts. A
remedy for this issue is suggested in (Deutsch, 1994), by progressing increasing the
search neighborhood, solving the kriging system, and averaging the kriging weights.
This is referred to as the finite domain kriging correction. A second tactic that
can be used in conjunction is to set a minimum number of data points that each
search neighborhood must encompass; this is especially important when dealing
with sparse data sets.

3.3 Discussion

Before presenting case examples in which both approaches are compared practi-
cally, the main methodological differences are emphasized.

Modeling effort: One of the most important differences lies on where the ef-
fort in modeling takes place. UK-v often calls for a parametric approach of fitting
parametric functions to the data of the domain. Training image methods rely on
the availability of images that are reflective of spatial variability of the domain
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but are not calculated from data as is the case for variograms. As a result, UK-TI
separates conditioning from spatial model specification. Because training images
are borrowed from elsewhere, a potentially important issue, in cases of more dense
data, is the consistency between the training image and the actual data. This issue
is currently an important area of research in multiple-point geostatistics as well.

Scale Separation: UK-v relies on a decomposition into trend and residual in
the modeling domain (see above discussion) while UK-TI relies on a decomposi-
tion in the training image domain. In UK-TI, if trend is present, then the training
image needs to contain this trend and modeling of any trend takes place in that
domain. The topic of constructing non-stationary training image is therefore par-
ticularly relevant to make the UK-TI method applicable in real cases. The single
’universality condition’ (4) applies regardless of the nature of the training image. If
any trend is present in the training image then this trend will be reflected through
the eroded average (18) and (19).

Neighborhood: UK-v can employ both a local and global neighborhood. For
practical reasons, due to the often limited size of the TI, UK-TI can be used with
local neighborhoods only. This is the direct consequence of using a random func-
tion model vs using a finite training image. The random function concept, in terms
of macro-ergodicity (Matheron, 1978), relies on the notion that the model domain
itself is part of an infinitely large area; as a result, the global neighborhood is
in fact a local neighborhood. UK-TI does not rely on the property of ergodicity
of random function theory, hence one is required to specify models using a local
neighborhood. The latter is true also for any of the MPS methods.
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4 Case Studies

In this section, a comparison of the two approaches is presented by their application
to different examples. Three cases are considered: a zero drift case, a simple drift
case, and a complex drift case. Using these examples, the effects of training image
size, decomposition of trend versus residual, and sparse data sets is discussed.

4.1 Zero Drift Case

The zero drift case is first considered, where both the reference image (Fig 1a),
and the training image (Fig 1b) are generated using a multi-variate Gaussian
distribution. The modeling domain is selected to be 150x150 while the training
image is 250x250 From this reference map, 100 points are randomly sampled to
serve as hard conditioning points for performing kriging estimation.

(a) Reference (b) Training Image

Fig. 1: Reference map and training image for stationary case, generated using a
multivariate Gaussian distribution with zero mean and isotropic spherical vari-
ogram of range 25

4.1.1 UK-v

Initially, the true variogram is assumed to be known; this reflects a reasonable
scenario since an experimental variogram can be calculated from the training image
(Fig 1b), and used to fit a variogram model. Since a fairly sparse data set of
100 points is used for the estimation, it is possible to use a global neighborhood
for computing kriging; this is referred to as Global kriging (GK). For sake of
comparison, kriging with a local search window with radius 30 is also computed.
In the latter case, discontinuities due to this local neighborhood arise, and thus
the Continuous kriging (CK) correction described in Section 2.2 is applied. CK
yields the estimate and variances shown in Figure 3. Upon visual inspection, GK
and CK yielded similar estimates, and variances, with only a few differing regions.
A more detailed comparison will be presented in Section 4.1.3.
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(a) Kriging estimate (b) Kriging variance

Fig. 2: UK-v performed with a global search window. This is typically only an
option with sparse data sets due to computational issues.

(a) Kriging estimate (b) Kriging variance

Fig. 3: UK-v performed with a local search window of radius 30. To mitigate any
potential discontinuities due to the moving local window, the Continuous kriging
correction described in Section 2.2 was applied.

4.1.2 UK-TI

To illustrate UK-TI, the training image (Fig 1a) is used directly in the estimation.
A flexible search radius is used; that is a minimum set of 12 data points is used
at each location for estimation. This still produces a few discontinuities shown in
Figure 4, and is expected for the reasons outlined in Section 3.2. The previously
mentioned Finite kriging approach is applied, generating the results shown in
Figure 5.
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(a) Kriging estimate (b) Kriging variance

Fig. 4: UK-TI applied using a flexible search radius; the estimate at each point
used at least 12 data points. Note that some artifacts occur at the boundaries of
neighborhood regions.

(a) Kriging estimate (b) Kriging variance

Fig. 5: UK-TI applied with the finite kriging correction described in Section 3.2
to the scenario in Figure 4.

4.1.3 Performance

To assess the performance of UK-TI versus UK-v, a Monte Carlo study is per-
formed, in which hard data sample sizes are varied to include 25, 50, 100 and 200
points randomly sampled from the reference image. This is repeated 100 times for
each sample size, and each approach is applied for each data set. For assessing
the error, the relative mean square error (ReMSE) between the resulting kriging
estimates and the reference is used.

ReMSE =
1

Nσ2

N∑
i=1

(Z(xi)− Z∗(xi))2 (27)
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The average over all 100 drawings is tabulated in Table 1. For this stationary case,
σ2 = 1.

Table 1: ReMSE with varying number of sampled points for the stationary case.
100 random samples were drawn for each sample size and the ReMSE shown is
computed as the mean over all runs

# Sampled Data Pts 25 50 100 200

CK 1.13 0.84 0.61 0.42
GK 0.91 0.77 0.59 0.42
UK-TI 1.05 0.86 0.63 0.41
UK-TI Finite 1.01 0.82 0.61 0.41

As expected, the ReMSE decreases as the number of sampled data points
increases for all methods. As the number of sampled points increases, the ReMSE
for all four methods seem to converge towards the same value. This portends
that for denser data sets the two methods may give increasingly similar results.
Conversely, at sparse data sets such as 25 or 50 points, UK-TI with finite kriging
appears to outperform UK-v with continuous kriging. Since GK considers all data
points simultaneously, it understandably achieves the lowest ReMSE.

4.1.4 Discussion

Training Image Dimension

An important issue to consider is the size of the training image. Previously, a single
training image size had been used (250x250). Varying sizes of TIs (150×150,200×200,
and 250×250) are generated using the same Gaussian distribution and variogram
as Figure 1a, then used for UK-TI. For each of the three training image sizes, the
resulting kriging variances are plotted against the kriging variance computed from
Global Kriging in Figure 6. It can be observed that the kriging variances from
UK-TI tend towards that of the global kriging variance with increasing TI size,
but remains below the first bisectrix in average. This indicates that UK-TI may
tend to underestimate the estimation variance.

As is the case with MPS algorithms, the size of the training image is clearly
an important factor in performing UK-TI. Generally, the relative size of the TI
compared to the largest features in the domain must be considered. This size con-
sideration is required under the principle of ergodicity (Caers and Zhang, 2004).
Too small of a training image will lead to undesirably large fluctuations of long
range correlations, and hence can cause artifacts in the resulting kriging map. The
authors recommend at least the same size of the modeling domain was required
to minimize artifacts.

Training Image Consistency
One potential risk of any training image based approach is selecting a training im-
age that may not be consistent with the modeling domain. To demonstrate such
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Fig. 6: Kriging variance of estimate computed using UK-TI with varying training
image size versus kriging variance from global kriging.

a case, consider the reference image given in Figure 7a, and 100 points uniformed
sampled from it (Fig 7b). This synthetic example is generated using a sequential
Gaussian simulation, and ideally, a training image should also share common char-
acteristics such as Figure 8a. Conversely, a a second training image is generated
using a cookie cutter approach, such that it contain distinct disks of higher value
than the rest of the map (Fig 8b). This alternate TI is visually different from
that of the reference image, but still maintain certain similar characteristics. For
instance, their histograms (not shown) are both standard normal. Furthermore,
their variograms (Fig 9) show a close resemblance. When UK-TI is performed us-
ing these two training images, the kriging maps in Figure 10 are obtained. From a
visual inspection, the two maps look very similar, and a correlation analysis of the
two estimates, indicates a Pearson coefficient of 0.9634. This suggests that sim-
ple checks such as the histogram and variogram are indeed verified, that UK-TI
with even visually different training images can still provide appropriate kriging
estimates.
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(a) Reference map (b) Sampled Points

Fig. 7: A stationary reference map generated using a multivariate Gaussian dis-
tribution with zero mean and isotropic spherical variogram of range 35. 100 data
points were randomly sampled and used as the hard conditioning for performing
kriging estimation.

(a) Training image 1 (b) Training image 2

Fig. 8: Two visually dissimilar training images for applying UK-TI on Figure 7a.
Training image 1 (Fig 8a) was generated using a single Guassian simulation while
training image 2 (Fig 8b) was generated two Gaussian simulations combined using
a cookie cutter approach.
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(a) Training image 1 variogram

(b) Training image 2 variogram

Fig. 9: Omnidirectional empirical variogram for the two training images along with
fitted variogram using RGeoS. Both have nugget 0, range of approximately 35, and
sill of 0.95.

(a) Training image 1 estimate (b) Training image 2 estimate

Fig. 10: Kriging estimate using UK-TI and the two visually dissimilar training
images.
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4.2 Simple Drift Case

To examine the case of a simple drift case, the following function function is used
to generate a reference image:

Z(x) =
y

200
+ σ2R(x) (28)

R is a stationary Gaussian field with zero mean, unit variance, an exponential
variogram with range equal to 25 and σ2 = 0.05. A 200x100 modeling domain was
chosen, which results in a trend that varies linearly from 0 to 1 from bottom to top.
A single realization was generated from Equation 28, and used as the reference (Fig
11b). This unknown truth is then used to extract 100 hard conditioning points.

(a) True Trend (b) Reference map

Fig. 11: Reference map for non-stationary case, generated using trend in a) and
expression (28)

4.2.1 UK-v

To apply UK-v, a decomposition of the modeling variable into a trend and a
residual is required, using either ordinary least squares, generalized least squares,
or some combination of the two such the method described in Section 2.1 (Cressie
and Cassie, 1993). Three commonly used techniques for estimating the trend in
UK-v are applied. The first uses OLS to compute the trend directly using the
conditioning data. The second assumes knowledge of the true covariance, and
GLS is used to find the trend, while the third method uses the iterative two step
method from Section 2.1 to estimate the covariance before finding the trend. This
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is denoted as GLSestim. The variogram of the residuals for all three cases is then
fitted automatically (Fig 12b), where only the nugget and exponential modeling
with the automatic model fitting function of the R package RGeoS (Renard, 2013)
and (Desassis and Renard, 2013). Note that due to the regularity of the trend

(a) Data variogram (b) Residual variogram

Fig. 12: The empirical raw and residual variograms computed for the non-
stationary case. The automatic variogram fitting function in RGeoS was applied.

function with respect to that of the covariance, the bias of the estimated residual
variogram, can be considered negligible. The raw variogram (Fig 12a) shows the
parabolic behavior of the empirical variogram, which is indicative of the presence
of a trend. This reinforces the necessity of the decomposition. UK-v is applied
using the three methods to produce the kriging maps shown in Figure 13. In this
particular simple case, the trend is actually linear, thus OLS/GLS can be used
to provide an apt description. However, due to the sparseness of the data, the
estimated drift from all three methods have some horizontal variation, while the
true drift (Fig 11a), is strictly vertically varying. Furthermore, all three approaches
appear to give very similar estimates. This will be quantitatively explored further
in Section 4.2.3.

4.2.2 UK-TI

To illustrate UK-TI, the availability of a training image indicative of the spatial
variation of the modeling domain, but is itself on a different domain, is assumed.
The training image is shown in Figure 14, which shows a realization that is similar
to the reference Figure 11b, but has different dimensions, and has a trend that
is oriented in the EW direction instead of NS. This mimics a situation where the
training image has features characteristic of the domain but rotated in a different
direction, which is common in both subsurface and remote sensing applications
(Caers and Zhang, 2004). In this case, the trend is simply a scalar that is summed
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(a) OLS (b) GLS (c) GLSestim

Fig. 13: Kriging estimates for UK-v, where the trend has been estimated using
three different methods.

to a stationary Gaussian field as described in Equation 28, but in reality could be
any variable related to the drift. In training image literature, this is also commonly
referred to as the auxiliary function or variable, and its flexibility is a major
strength of TIs (Hu and Chugunova, 2008).

(a) Training image (b) Training image trend

Fig. 14: Training image and trend for non-stationary case where both trend and
TI are similar to domain but rotated.

As discussed earlier, UK-TI requires a training image on a domain that is compara-
ble to the modeling domain. Consequently, advances in MPS are used to generate
such a training image, specifically the Direct Sampling method that was briefly
outlined in Section 3.2. An auxiliary variable on the modeling domain is needed to
proceed. In most applications, this can come from some other source of information
(e.g. seismic or stress fields in subsurface). However, for the sake of illustration,
the same OLS estimated trend from UK-v has used as the auxiliary variable (Fig
15a). Based off this auxiliary variable, a non-stationary training image with the
same size as the modeling domain is generated using Direct Sampling (Mariethoz
et al, 2010) (Fig 15b). These new TIs do not need to be conditioned to the hard
conditioning data. Note that this new training image retains the spatial variability
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(a) OLS Trend (b) Training image (c) UK-TI estimate

Fig. 15: When auxiliary data is not given on the modeling domain, OLS training
images generated using Direct Sampling (DS) for non-stationary case.

of the original training image (Fig 14), but is on the same domain as the condition-
ing domain. When UK-TI is performed with the this image, the resulting kriging
map (Fig 15c) is produced.

4.2.3 Performance

The Monte Carlo study is repeated for the trend case by once again computing the
the ReMSE using (27), and σ2 = 0.05. 100 sets of data points were randomly sam-
pled for each sample size, and UK-TI was applied to each of them. The averaged
ReMSE values for all 5 methods are shown in Table 2.

Table 2: ReMSE with varying number of sampled points for Stationary case. 100
random samples were drawn for each sample size and the ReMSE shown is com-
puted as the mean over all runs

# Hard Data Pts 25 50 100 200

OLS 0.88 0.77 0.65 0.64
GLS 0.89 0.78 0.66 0.54
GLSest 0.91 0.81 0.69 0.57
UK-TI 1.07 0.92 0.84 0.73
UK-TI Finite 0.95 0.83 0.72 0.60

OLS appears to produce the lowest ReMSE, which is somewhat surprising,
given that OLS uses a biased estimate of the trend. GLSestim yields the worse re-
sults for the UK-v methods due to the variability induced by the variogram fitting.
The UK-TI results remain very close to those obtained by the UK-v methods, and
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as with the zero drift case, all methods produce similar ReMSE values as the data
set becomes denser.

4.2.4 Discussion

The simple drift case illustrates the implementation of the two methods when there
is a non-zero drift. In this particular case, the drift is linear in nature, and thus
can be decently delineated using OLS/GLS, thus allowing both UK-v, and UK-TI
to provide comparable kriging maps. In the UK-TI case, the common situation
where the given training image is on a different domain than the modeling domain
is studied, and thus MPS algorithms such as DS can be used to produce appropri-
ate training images. While in this particular example, the auxiliary variable was
obtained in a similar fashion as UK-v, any variable that describes the drift can be
used.
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4.3 Complex Drift Case

In actual cases, drift expressions may fall short in capturing complex trend varia-
tions. For that reason, the celebrated Walker Lake dataset (Isaaks and Srivastava,
1989), given as a 260x300 digital elevation model (DEM) (Fig 16), is examined.
This case is particularly challenging due to the complex nature of the trend (the
alternation of highly variable mountain topography with flat lakebeds), and the
sparsity of data (100 data points are randomly sampled from the reference). A
histogram transformation on the DEM data into a uniform distribution from 0 to
1 is first performed.

Fig. 16: Reference map for Walker Lake. A transformation was applied to the
original DEM to produce a map that is U[0, 1]

4.3.1 UK-v

Walker Lake presents a complex trend that cannot accurately be described us-
ing ordinary least squares. Instead, interpolation was performed on the sampled
data points (Fig 17a) to estimate the trend. A variety of different interpolation
techniques can be used (e.g. bicubic (Keys, 1981), thin plate splines (Duchon,
1977), and biharmonic (Sandwell, 1987)) can be performed (Fig 17b). Both the
biharmonic and thin plate splines gave similar results. For the latter case, the
TPS function in the software package fields (Furrer et al, 2006) was used. The
smoothing parameter has been set so that a residual correlation structure could
be fitted. Note that this value was significantly lower than the one selected by
cross-validation. The resulting residuals can then be fitted using the automatic
variogram fitting function in RGeoS to yield Figure 18a. The resulting variogram
along with the interpolated trend is used by UK-v to generate the kriging map
shown in Figure 18b.
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(a) 100 points sampled from reference (b) Biharmonal interpolation

Fig. 17: 100 sampled data points from Walker Lake are interpolated to produce an
estimate of trend. Ordinary least squares is clearly not appropriate in this case,
necessitating the use of methods such as biharmonal interpolation or thin plate
splines.

(a) Residual variogram from Walker Lake (b) Kriging map generated by UK-v

Fig. 18: An experimental variogram can be fitted on the residuals, and used along
with the estimated trend to perform UK-v.

4.3.2 UK-TI

To demonstrate UK-TI, consider the situation where a DEM of a neighboring re-
gion available. Ideally, this neighboring DEM shares similar characteristics such as
mountains and lake-beds. Furthermore, the spatial variation within these moun-
tains and lake-beds on this training image should be similar to those within the
same structures found in Walker Lake. For illustration purposes, a synthetic train-
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(a) TI (b) Auxiliary Variable

Fig. 19: Synthetic Training Image that would be representative of a neighbouring
region around Walker Lake. An auxiliary variable can be constructed by taking a
moving average.

(a) Local training image (b) Kriging map

Fig. 20: Local training image for Walker Lake simulated using Direct Sampling,
and used with UK-TI to produce kriging map

ing image is generated with mountain ranges and flat lakes like Walker lake, but
with differing size (400x400) and distribution of features (Fig 19). A simple moving
average is used as the auxiliary variable of the TI. The Direct Sampling method
is used (Mariethoz et al, 2010) along with the auxiliary data on the modeling do-
main to simulate local training images such as Figure 20a. UK-TI can be performed
using this training image to generate the kriging map in Figure 20b.

4.3.3 Performance

For the complex drift case, a qualitative assessment of both method’s performance
is considered. That is, how closely does method produce a kriging map that resem-
bles a smoothed version of the reference. By examining the UK-v kriging map (Fig
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18b), large deviations in kriging values around hard data points cause a bulls-eye
effect. This is expected because the residual variogram does contain a significant
nugget. Furthermore, it is hard to differentiate large scale features in the kriging
map such as the mountains and the lakes. Again, this can be seen as a direct result
of the variogram fitting procedure, as large range correlations which are important
in discerning these large scale features, lie beyond the range, and are smoothed
out. On the other hand, the kriging map generated by UK-TI (Fig 20b) does not
contain bulls-eyes, and describes the lakes and mountains more clearly than the
UK-v map. If the density of the data set by increasing the number of data points

(a) UK-v (b) UK-TI

Fig. 21: Local training image for Walker Lake simulated using Direct Sampling,
and used with UK-TI to produce kriging map

from 100 to 1000, the kriging maps shown in Figures 21a and 21b are obtained.
As expected, both methods produce kriging maps that look similar both to the
reference image, but also to each other. Upon closer examination, one can see
bulls-eyes in both images, but are still featured more prevalent in the UK-v map.

4.3.4 Discussion

The Walker Lake case has illustrated the difficulties that arise from separating the
target variable into a trend and residual, and how UK-TI can side step this issue
through Direct Sampling with auxiliary variables. Moreover, in the scenario where
no auxiliary variable are given on the modeling domain, the hard data can be
used as conditioning points for Direct Sampling to simulate a training image. The
resulting training image is shown in Figure 22a. It should be noted that overall,
this training image does not resemble the reference image, as large scale features
are mostly fragmented (i.e. the large continuous mountain range appears to be
broken up into smaller constituent regions). However, when this training image
is used for UK-TI, the resulting kriging map (Fig 22b) closely resembles that of
Figure 20b.
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(a) Training image (b) Kriging map

Fig. 22: A TI can be produced by using the hard data points as conditioning data
and jointly simulating both the z and auxiliary data. This TI is then used as an
input for UK-TI
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5 Discussion

The main difference lies in the focus of modeling. In UK-v, the goal is to obtain
a variogram of a residual through parametric modeling. This requires the separa-
tion of scales; that is the identification of what is trend and what is residual. This
requires a decision on the part of the modeler, since it cannot be calculated from
data, because only z-data are available. Ad-hoc approaches of separating trend
from residual may lead to biases, which can be resolved via iteration, but still
remain challenging for complex trend examples such as Walker Lake. Conversely,
UK-TI shifts the modeling effort to obtaining a training image reflective of the do-
main’s spatial continuity. Consequently, any decisions related to trend and residual
need to be made in the training image domain, and as a consequence are made
largely independent of data. Developments in training image algorithms such as
the use of auxiliary have helped increase the flexibility of this approach. However,
this does come at a risk of inconsistency as the modeled local image may not be
reflective of the actual data. This inconsistency risk will increase with an increas-
ing amount of data. Simple checks could consist of comparing the experimental
univariate distribution (histogram) and variogram of the sample data and training
image.

Note that there is a considerable difference between 1) using the UK-TI approach
and 2) calculating an experimental variogram from the training image and then
modelling it in the UK-v approach. The latter still relies on a decomposition of
trend and residual (as required by the UK-v system of equations), while the former
does not; the UK-TI systems of equations deal only with the z-variable. The UK-TI
does not require any modelling: the statistics (in terms of the sum of products and
eroded averages) are directly lifted from the training images without modelling or
filtering. Any image filtering will need to be performed prior to solving the UK-TI
system, in the same sense as any variogram modelling in UK-v will require filter-
ing experimental variograms through parametric modelling. The difference is that
the image provides a direct visual appreciation of the model, while the variogram
provide a parametric one.

UK-v allows for a global neighborhood, while UK-TI does not. The result may
be that UK-v has greater accuracy because more data is used in the estimates,
although from the example studies, it is not clear if accuracy gain is significant,
especially in dense data sets. The local neighborhood approaches allow for more
flexibility, which is needed in practical case studies, but comes at a cost of consis-
tency when such local estimates are presented in a global kriging map.

In the end, the results concur with Matheron’s perspective of estimating and
choosing (Matheron, 1978), namely that the decision between using these two
approaches comes down to a choice. This choice should be motivated from the
practical field data and situation primordially. At least theoretically, these two
approaches compare well and the example studies show they also compare well
in terms of the resulting maps. A broad recommendation would be to use UK-v
when sufficient data is available to infer variograms and trend information and to
use UK-TI when there is a lack of such data and one needs to rely on auxiliary
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in formation. The condition is that such auxiliary information is expressed in an
image.
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Appendix A: UK-V Variogram Bias

It can be shown that even if true covariance is known, and the drift estimated by
GLS, the empirical variogram of the residuals would still be biased. This bias is
unfortunately unavoidable. This arises due to the fact that the covariance of Y
and the f have virtually no chance to be algebraically orthogonal, though Y is
supposed to be independent from F in (1), e.g. Matheron (1970). Indeed, if Y ∗

is the vector of the estimated residuals, i, j ∈ {1, . . . , n}, the expectation of the
variogram at two points xi and xj of the (GLS) estimated residuals is:

E[
1

2
(Y ∗(xi)− Y ∗(xj))2] =

1

2
E[(Z(xi)−m∗(xi)− (Z(xj)−m∗(xj)))2]

=
1

2
E[((Z(xi)−m(xi)− (Z(xj)−m(xj)))

+ (m(xi)−m∗(xi))− (m(xj)−m∗(xj)))2]

=
1

2
E[(Z(xi)−m(xi)− (Z(xj)−m(xj)))

2]

+
1

2
E[(m(xi)−m∗(xi))− (m(xj)−m∗(xj))2]

−E[(Z(xi)−m(xi)− (Z(xj)−m(xj)))

· ((m(xi)−m∗(xi))− (m(xj)−m∗(xj)))]

= γ(h)− 1

2

L∑
l=0

L∑
m=0

(fl(xi)− fl(xj))alm(fm(xi)− fm(xj))

(29)

where m∗(x) is the drift estimate at location x, and alm is the general term of
the matrix (F′C−1F)−1. Note that these matrices are positive definite. The bias
is therefore negative.

For the OLS estimate, the expectation of the variogram takes the following
form:

E[
1

2
(Y ∗(xi)− Y ∗(xj))2] = γ(h) +

1

2

L∑
l=0

L∑
m=0

(fl(xi)− fl(xj))blm(fm(xi)− fm(xj))

L∑
l=0

L∑
m=0

n∑
k=1

(fl(xi)− fl(xj))clmfm(xk)(C(xi, xk)− C(xj , xk)) (30)

where blm is the general term of (F′F)−1F′CF(F′F)−1 and clm is the general
term of (F′F)−1.

The bias can be interpreted as a measure of the colinearity between the drift
functions and the covariance used: if F and C were orthogonal, this bias would be
null. This emphasizes the importance of the scale separation between the drift and
the residuals. The drift is meant to capture the most continuous and large scale
fluctuations of the regionalized variable while the residual accounts for smaller scale
fluctuations. Indeed, as can be seen in (29) that the bias is stronger for distances
where the variations of the fl are more important. Consequently, in general, the
bias is low at short distances and increases with the distance.
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Appendix B: Proof of Positive Definiteness of UK-TI System

Solution of the system in Equation 25 requires that the matrix of sum of prod-
ucts values is positive definite. It is logical and intuitive that any experimental
statistics properly eroded over an existing (real) image will provide such system.
In similar sense, the experimental covariance carries the same property. A formal
mathematical proof can also be giving, noting that by definition:

1

nTIcf

∑
x∈TIcf

(Z#
TI(x))

2 ≥ 0 (31)

As a consequence, this leads to:

1

nTIcf

∑
x∈TIcf

n∑
α=1

n∑
β=1

zTI(x+ hα)zTI(x+ hβ) ≥ 0 (32)

Equivalently:
n∑
α=1

n∑
β=1

sopTI(hα, hβ) ≥ 0,∀λα, λβ (33)

Hence the matrix of sum of products is positive definite and hence only one solu-
tion.
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