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Abstract 

Uncertainty quantification and history matching have been a challenge in reservoir forecasting, 

especially in naturally fractured reservoirs (NFRs) where the nature of the fractures is unknown 

resulting in large prior uncertainty. Multiple geological scenarios are generated for NFRs and a 

single best fit model is not sufficient for decision-making under large uncertainty. In this report, 

we propose a Neighborhood algorithm (NA) stochastic search method to search for multiple 

models that match the historical production data rather than producing one single best fit 

model. Uncertainty is then quantified by calculating posterior probabilities using the data 

generated from NA. The method is illustrated with an application to a synthetic reservoir model 

analogous to fractured reservoirs in the Middle East. NA is proved to be an efficient and a fast 

way to calculate the posterior probabilities and quantify uncertainty. 

 

Introduction 

Uncertainty quantification in naturally fractured reservoirs (NFR) is a challenging task. Proper 

modeling of NFRs is critical in forecasting their behavior. Early water breakthrough and poor oil 

production are common risks in dealing with NFRs. High uncertainty in natural fractures and 

their properties leads to multiple numbers of possible geological scenarios and hence a large 

prior uncertainty.  

The synthetic fractured reservoir used in this case is obtained from a work done by Andre Jung 

(Jung et al., 2013). In their work, Jung et al. generated discrete fracture network (DFN) models 

of all potential geological scenarios. A total of 156 DFN scenarios were generated utilizing all 

available sources of data about the nature of fractures in the reservoir. Based on the fracture 

connections in each grid cell, DFN models were translated into dual-medium binary training 

images. Only cells with connected fractures were considered as dual-medium cells while the 

rest are considered single-medium cells. In this work, we will continue on the work of Jung and 

define a static similarity distance between all the realizations. Then we will apply NA to explore 

that metric space for multiple models that match the data. From these models we will then 

calculate posterior probabilities of geological scenarios which can be used in further history 

matching or uncertainty quantification studies. 



We will first re-introduce the case study, the prior space of dual medium models constructed by 

Jung et al. Then we will develop the proposed NA method. 

 

Case study description 

A synthetic reservoir model was constructed in analogy to fractured reservoirs in the Middle 

East. The main structure is a North-South anticline with buckle folds on both sides. It extends 

18.6 km in X (East-West) and 15.7 km in Y (North-South). It is represented by 102x86 grid cells 

with 600x600 ft horizontal dimensions. The model consists of one layer with 25 ft thickness. 

Initial oil-water contact is at 6100 ft and there is also pressure support from the underlying 

water aquifer. The reservoir is produced with 27 producers and 18 injectors (peripheral 

waterflooding) as shown in Figure1. Water injection is performed under a constant bottom hole 

pressure of 4000 psi and maximum allowable rate of 5000 stb/day. The total fluid production at 

each well is restricted to 2000 stb/day. Throughout the total production period, the reservoir 

pressure is always above the bubble point pressure and hence no free gas exists. Streamline 

simulator using the dual-porosity single-permeability model is used to calculate the flow 

responses. The porosity and permeability of the matrix are set constant at 10% and 200mD, 

respectively.  

 

 

Figure 1 Reservoir model used in this study (left). Producers and injectors layout (right) 

 

The reservoir is produced in three phases as shown in Figure 2. In this report, the forward 

simulation responses in the NA workflow are generated from phase 1 with 6 producers and 6 

injectors. 

 



 

Figure 2 Three phases of the production plan showing the surface water production and the number of 
producers and injectors in each case 

 

 

DFN generation and translation to dual-medium models  

Multiple geological scenarios are usually associated with naturally fractured reservoirs when 

interpreting different sources of data such as borehole imaging, well logs, seismic and outcrop 

data. In a previous work done by Andre Jung, full factorial design experiment was performed 

taking into account both conceptual and parameter uncertainty leading to 156 possible DFN 

scenarios. Table 1 shows the parameter variations used in the experimental design process. 

  



 

Table 1 Parameter variations used in experimental design resulting in 156 scenarios 

Presence of second fracture set Yes No  

Fracture set 1: size 
(powerlaw distribution of equiv. radius with D = 2, trunc. at 
3,000 ft, aspect ratio 2:1) 
 

400 ft 600 ft  

Fracture set 2: size 
(powerlaw distribution of equiv. radius with D = 2, trunc. at 
3,000 ft, aspect ratio 2:1) 
 

200 ft 400 ft  

Fracture set 1: trend of pole vectors 
(orientation distribution: Fisher with dispersion = 8) 
 

0◦ 45◦  

Fracture set 2: trend of pole vectors 
(orientation distribution: Fisher with dispersion = 8) 
 

30◦ 60◦  

Fracture set 1: intensity correlated with folding 
(curvature) 
 

No Weak Strong 

Fracture set 2: intensity correlated with fracture corridor 
(seismic coherence) 
 

No Weak Strong 

 

DFN models are upscaled to effective properties and then translated into dual-medium 

reservoir models. Cells that do not have sufficient fracture connectivity are considered single-

medium and the rest are dual-medium. Since porosity is highly correlated with fracture 

intensity, a porosity cutoff is used as means of deciding which cells are dual-medium and which 

are single-medium. Dual-medium cells are populated with effective properties of the fractured 

medium (fracture porosity phi, fracture permeabilities (kfx, kfy, kfz), and the shape factor sigma 

which describes the fracture/matrix exchange while single-medium cells are populated with 

only the matrix properties (Figure3). Four realizations were generated for each geological 

scenario leading to a total of 624 realizations. 



 

 

Figure 3 Translation of DFN to dual-medium models b) 4 possible DFNs (left) and 4 binary training images 
associated with them. (adapted from Jung et al., 2013) 

 

 

  

a) 

b) 



Methodology 

Defining the prior space 

We define a prior uncertain space by a distance function. The modified Hausdroff distance 

(MHD) was used as a similarity measure since it is best for matching objects based on their edge 

points (Dubuisson and Jain, 1994). MHD was computed for all the 624 binary realizations. 

Multidimensional scaling (MDS) and K-medoid techniques (Maechler et al., 1994) were then 

applied in order to group the similar scenarios into clusters and select one representative 

scenario for each cluster (Figure4).  

 

Figure 4 MHD is mapped into metric space and 9 representative training images were identified suing MDS and 
k-medoid clustering 

As shown in the Figure 4 above, 9 scenarios were selected and they were confirmed to 

reasonably capture the uncertainty by Jung.  

 

  



Neighborhood Algorithm 

The neighborhood algorithm is a stochastic search method developed initially for seismic 

inverse problems (Sambridge 1999a) and then adapted for reservoir characterization and 

history matching (Demyanov and Subby, 2004). Although it is designed for multi-dimensional 

parameter space, it can be reformulated and applied to a metric space that is defined by a 

distance matrix (Suzuki, 2008). NA explores the prior space for multiple minimums and it 

partition the space into Voronoi cells as the evaluation proceeds (Suzuki, 2008). 

The workflow involves two major phases: 

1- Searching phase which explores the prior space for low misfit models. 
2- Probability estimation phase where posterior probabilities of scenarios are calculated. 

 

Phase 1: searching for low misfit models 

NA follows these steps: 

1. We start with a small number of models separated by large distances in the prior space. 
Flow simulation is then performed for these models and the mismatch with the field 
data is calculated using the following objective function O(mi) 
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Where gk(mi) is the simulation response for model mi at time k and dk is the field data at time k. 

Since we are matching water cut (WC) data, the objective function used consists of two parts; 

the first part is the objective function using breakthrough times and the second part is using WC 

data. The above equation was used for computing both parts of the objective function.   

The parameter space is then partitioned into Voronoi cells by associating the prior models with 

the closest simulated model.  

2. Selection probability is calculated for each cell using the following equation: 
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Where M is the number of prior models in the cell that are not simulated yet and T is 

determined such that the total probabilities over the entire Voronoi diagram equals 1 (Suzuki, 

2008).  One cell is randomly selected based on the calculated selection probability and the next 

model is chosen randomly from that cell. 

3. Flow simulation is performed and objective function is evaluated for the new selected 
model and the selection probabilities are updated for the next trial.  



 

Steps 2 and 3 are repeated until the number of required matched models is obtained. Figure5 

(Suzuki, 2008) is a schematic illustrating the procedure: 

 

Figure 5 A schematic of the Neighborhood algorithm workflow (after Suzuki, 2008) 

 

Phase 2: probability calculations 

The output of NA are a set of models (search from the initial prior set) that are closely matching 

production data. However, NA also produces tessellations in metric space and with each model 

is associated an area in metric space. In this section we introduce a method for calculating the 

posterior probability of the nine scenarios using NA. 

First, we associate with each model evaluated, a likelihood density function calculated from the 

objective function  
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where α is a scaling parameter determined using the T value in the selection probability 

equation. This density is associated with a model within a pologyn, do to calculate probabilities 

from densities, we need to make sure that the densities integrate to one. The total integral is: 

∑         

 

 

 

where M is the total number of simulated models, Ai is the surface area associated with each 

model. The probability for each model is calculated using the following equations: 
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Then, each models is traced back to the cluster that it belongs to and the probabilities of the 9 

training images identified by MDS and K-medois clustering earlier are calculated based on the 

following equation: 
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Results and discussion 

Applying NA to the fractured reservoir described in the case study earlier, the following Voronoi 

diagrams are obtained as the function evaluation proceeds. In Figure 6, low objective function 

regions are represented in red and high objective function regions are represented in blue.  

 

 

 

 

Figure 6 NA partitioning of the prior space into Voronoi cells as it proceeds. The red color indicates low objective function 
while the blue color indicates high objective function. 
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It can be seen from Figure 6 that NA visits (zooms into) the regions with low objective functions 

dividing them into finer cells. Comparing the Voronoi cells diagram at the end of NA with the 

one where all the models are simulated (Figure 7) shows that as NA proceeds, it converges to 

the ‘right’ solution and we can detect areas with low objective functions without simulating all 

the models. 

 

Figure 7 The Voronoi diagram when all the models are simulated (left) and the Voronoi diagram at the end of NA (right). 

 

The figure below shows the matched models with 10% lowest objective functions at the end of 

NA. The black lines are the simulated responses, the red line is the field data and the purple 

lines are the simulated responses for the rest of the 624 models that were not selected during 

NA.  

 

Figure 8 Best matches with the 10% lowest objective function models 

 

 



Probability calculations results 

Posterior probabilities for the 9 training images are shown in Table 2. 

Table 2 Posterior probabilities of the 9 training images (TI) 

TI Probability, % 

1 42.6 

2 0 

3 0 

4 39.2 

5 0 

6 0 

7 0 

8 0 

9 18.2 
 

 

Conclusions 

In this report, a Neighborhood algorithm method was introduced as a relatively fast and an 

efficient way of quantifying uncertainty in naturally fractured reservoirs (NFRs). The nature of 

fractures in NFRs is associated with large uncertainty. The stochastic search method was 

applied to a synthetic NFR model presented by Andre et al. in previous work. In their work, 

Andre et al. generated discrete fracture network (DFN) models and translated them into binary 

dual-medium models (training images). These training images were represented in the prior 

space by Hausdorff distance and NA was applied to search the space for matched models.  

Taking into account all available data, NA efficiently searched the prior space for multiple 

models that honor the historical production data. However in this study we do not focus on 

history matching: using the information generated by NA, posterior probabilities were then 

calculated and fewer scenarios were selected and can be used for further history matching or 

uncertainty quantification studies.  
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