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Introduction 
 
In geostatistics or spatial statistics, stochastic simulation aims at building multiple three-
dimensional models, each representing possible alternative representations or realizations 
of the spatial variability of an actual true field under study. These models generally carry 
two important properties: (1) they match some local or global data and (2) they reflect the 
believed spatial variability of the variable under investigation. This paper will focus on 
the latter. 
 
We consider the modeling of a spatial variable of certain support on a grid, either regular 
or irregular. In modeling such variables, the random function concept is used, which is 
fully characterized by its spatial law, defining the joint probability in terms of a 
probability mass function (pmf) for a discrete variable 
 

1 2 3 N 1 1 2 2 1 3 N NP(a ,a ,a , ,a ) Pr(A a ,A a ,A a , ,A a )= = = = =� �       (1) 
 
where Ai is a discrete random variable at location i with outcome ai, or, in the continuous 
case, the joint cumulative distribution function (cdf), 
 

1 2 3 N 1 1 2 2 3 3 N NF(z ,z ,z , ,z ) Pr(Z z ,Z z ,Z z , ,Z z )= ≤ ≤ ≤ ≤� �  
 
The approach advocated in statistical circles consists of defining these joint distributions 
analytically or at least somewhat explicitly, then estimate the distribution parameters 
from data, finally, sample realizations using either direct or iterative sampling 
procedures. For this purpose, in the continuous case, one spatial law is particularly 
convenient and fully analytically known, namely the multi-Gaussian law. The multi-
Gaussian pdf after normal score transform is fully defined by its first two moments, mean 
m and covariance matrix C: 
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where Yi is a normal score transform of variable Zi. Sampling from this law can be done 
without approximation either through LU decomposition or through eigenvalue 
decomposition of the covariance matrix C. Since this is prohibitive on large 3D grid, 
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good approximations exist through sequential simulation or iterative McMC sampling. In 
such approximation, the actual spatial law sampled depends additionally on the particular 
algorithmic implementation, usually requiring the definition of certain tuning parameters 
θθθθ (e.g. search neighborhood in sequential simulation or stopping criterion in iterative 
sampling). Hence, the actual spatial law sampled is not multi-Gaussian, only an 
approximation thereof: 
 

1 2 3 N 1 2 3 Nf (y , y , y , , y , ,C, ) f (y , y , y , , y , ,C)m � m� � �        (2) 
 
From a practical point of view this is not a major problem, since the limited data never 
allows one to check or test if the multi-Gaussian really applies. The multi-Gaussian 
framework is only useful in the sense that it ensures reproduction of the spatial 
covariance C, which in the best case can be statistically inferred from data. Moreover, 
real spatial data are never univariate Gaussian, let alone multi-Gaussian. If such data is 
used as conditioning information, then the resulting conditional spatial law  
 

1 2 3 Nf (y , y , y , , y , ,C | local data)m�  
 
will not be multi-Gaussian even if exact algorithms were applied. However, the problem 
with the multi-Gaussian law does not lie so much in the approximation given by (2), it 
lies in the fact that the resulting realizations do no reflect any realistic spatial variability 
mimicking that observed in nature. Consider the reason why: choosing a multi-Gaussian 
law results in all higher moments being uniquely defined by the spatial covariance C. 
There exist many different consistent sets of higher moments that share a similar spatial 
covariance. The multi-Gaussian model provides one such consistent set, but its 
realizations have minimal structure1 beyond the given spatial covariance (maximum 
entropy property). 
 
As a solution, a new field in spatial modeling has been recently introduced, termed 
multiple-point statistics. While a minimal amount of statistical/structural1 information is 
required in a multi-Gaussian framework (mean and covariance only), the mp-
geostatistical approach lies near the other spectrum, requiring one to provide most higher-
order statistics explicitly. The latter are inferred explicitly or implicitly through a training 
image. A training image is a fully explicit 3D realization of the believed spatial 
variability. It can be regarded as a database from which several higher order or multi-
point statistics can be extracted. To define spatial laws based on a training image two 
approaches exists.  
 
The first approach relies on the explicit definition of a spatial law, termed Markov 
random field. A Markov random field is defined by a fully explicit (up to normalization 
constant) parametric pmf as a model for (1). Any conditional pmf is thus explicitly 
known up to a normalization constant. The parameters can be estimated from the training 

                                                 
1 The word “structural” does not refer to a fault or horizon structure. It is geostatistical jargon for any prior 
statistical information, such as a variogram, describing the spatial variability of the field of study. 
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image statistics, and realizations are drawn using McMC simulation. Both parameter 
inference and sampling can be tedious and CPU demanding. 
 
The second approach does not rely on a prior definition of a parametric joint or 
conditional pmf. Instead, an algorithmic approach is taken by means of sequential 
simulation. Any sequential simulation calls for the modeling of the conditional 
distribution of a variable Ai given all previously simulated variables. Such conditional 
distributions/statistics can be directly scanned from the training image, no prior modeling 
need to take place. In case conditional statistics are not present in the training image, the 
number if conditioning data is reduced, e.g. previously simulated values are omitted, until 
inference from the training image is possible. For this reason, one requires training 
images to be as large as possible, containing a rich and varied set of higher order 
statistics. 
 
The Achilles’ heal of this approach lies in the prerequisite to have available a 3D training 
image, which may be impossible in many practical applications. Hence, the multi-point 
statistical approach is often dropped for a traditional two-point (spatial covariance 
approach). Currently, one has to decide between these two extremes. In many Earth 
Science applications, particularly in subsurface modeling, structural information comes 
only in parts, such as along a vertical direction (from wells), along a vertical cross section 
such as from analog outcrops, or, along a horizontal plane such as from seismic on 
shallower analogs or from aerial photos. In space-time modeling a similar situation 
arises: structural information comes from a well-informed time-component and a well-
informed spatial component, a fully 4D (space-time) training image would be difficult to 
create. The problem of constructing full 3D/4D spatial laws when only partial and lower-
dimensional structural information is available is tackled in this paper. 
 
 
Methodology 
 
From joint to conditionals 
 
Consider for reasons of presentation only the case of a binary spatial variable A, which 
has outcome ‘1’ or ‘0’. The proposed method relies on the following sequential 
decomposition of a joint pmf of the type (1) 
 

1 1 2 2 1 3 N N 1 1 2 2 1

N n n 1 1

Pr(A a ,A a ,A a , ,A a ) Pr(A a ) Pr(A a | a )

                                                                                       Pr(A a | a , a )−

= = = = = = × = ×
× =

� �

�
 (3a) 

 
This decomposition is exact. The spatial law is fully defined, if each conditional pmf is 
fully defined. Each conditional pmf is denoted as, 
 

j j j 1 j 2 1 j jPr(A a | a ,a , a ) Pr(A a | ( j 1))− −= = = −�          (3b) 
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In a spatial covariance approach one relies on the joint statistical modeling of all two-
point conditionals Pr(Aj|Ai) through indicator variograms, then use this partial 
information to define the full conditional probability of the type (3b) through indicator 
kriging.  
 
 

( )
j 1

*
j j j 1 j 2 1 j j i i i

i 1

Pr (A a | a ,a , a ) Pr(A a ) a Pr(A a )
−

− − α
=

= − = = λ − =��  

 
The * indicated that this is a model/estimate for (3b). Indicator kriging calls for the 
indicator covariance between any two events Ai and Aj, which is equivalent to calling for 
the conditionals Pr(Aj|Ai). Indeed, consider the dual indicator kriging expression 
 

( )

j 1
*

j j 1 j 2 1 j i j i
i 1

j i i j i j

Pr (A 1 | a ,a , a ) Pr(A 1) d Cov(A ,A )

where Cov(A ,A ) Pr(A 1) Pr(A 1 | A 1) Pr(A 1)

−

− −
=

= − = =

= = × = = − =

��

       (4) 

 
The indicator kriging takes into account the redundancy of information between any two 
data Ai and Ak on determining Aj. The dual kriging weights di can be seen as weights 
given to each partial conditional Pr(Aj|Ai). Since the probability in (4) is modeled through 
covariance functions, restrictions need to be set on these functions to make the 
probabilities licit. This often leads to a tedious fitting exercise. 
 
In a multiple-point approach, the probability of type (3b) is directly inferred from the 
training image, no tedious modeling of covariance functions is required. This is achieved 
by considering Bayes’ rule 
 

j j 1 j 2 1
j j j 1 j 2 1

j 1 j 2 1

j j 1 j 2 1

j j 1 j 2 1 j j 1 j 2 1
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#events {a 0,a ,a , ,a } #events {a 1,a ,a , ,a }

− −
− −
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= =

= + =

�
�

�

�
�
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where the # events {aj=0,aj-1,aj-2,…a1} and # events {aj=1,aj-1,aj-2,…a1} can be obtained 
directly by scanning the training image for replicates of {aj-1,aj-2,…a1} and counting the 
number of times {aj=1} occurs. In cases when the conditioning event {aj-1,aj-2,…a1} 
cannot be found in the training image, then, a selected set of values ak are dropped from 
{aj-1,aj-2,…a1} until enough replicates are found in the training image. The implicit 
assumption made is that the values ak dropped are conditionally independent of aj given 
the remaining ai. 
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Modeling with partial information 
 
The multiple-point approach requires one to have information on the frequency of the full 
3D conditioned event {aj | aj-1,aj-2,…a1}, which may not be available in practice. Instead, 
one may have partial information in the form of a set of M probabilities 
 

j j mPr(A a |{a} ), m 1, , M= = �  
 
where {a}m denotes any subset of the conditioning event (j-1)={aj,aj-1,aj-2,…a1}. We 
assume that M Pr(Aj=aj | {a}m) such probabilities are available. In other word M different 
sources of partial spatial continuity data are available.  The union of all {a}m need not 
equal (j-1), which means that the total sum of all partial information may not provide a 
full and unique 3D quantification of spatial variability. Also, some conditioning values ak 
may be shared by multiple several {a}m.  
 
A realistic case that may arise in subsurface modeling is that an indicator variogram 
along a vertical direction may be known from vertical well data, which provides the 
probabilities Pr(Aj=aj|ak) for any single k with the location k lying along the vertical of 
location j, see Figure 1. A training image may available in the horizontal direction from 
outcrop or shallow seismic surveys, from which one can obtain by scanning 
Pr(Aj=aj|{a}h) with {a}h being the set of all data lying in the same horizontal plane as 
location j, see Figure 1. All other values a neighboring location j will have to be ignored. 
 
In a space-time context, one may have a 2D training image of the variable over 
geographical area and a 1D training image for time, providing two probabilities 
conditioned on two different data subsets. 
 
Next, we need to consider the non-trivial challenge of combining all partial conditionals 
into one single conditional distribution model for Aj. The traditional kriging approach 
would call for the modeling of redundancy between any two data sets {a}k and {a}� in 
predicting Aj by means of their covariance. However, such modeling would be tedious 
for many reasons, first and foremost, there may not be any replicate of the pair of datasets 
{a}k and {a}� available that such modeling would call for. 
 
In this paper, we therefore propose to avoid explicit modeling of data events redundancy 
by building that redundancy into the 3D spatial law itself. More precisely, we will 
employ Journel’s tau model to combine partial conditionals into a full conditional. The 
tau parameters model the data redundancy of these subsets. The tau model can be written 
as follows 
 

1 2 M

*
j j j 1 1 j j 1 M

j j m j j1 2 M
m 0

0 0 0 0 j j m j j

1
Pr (A a | a , ,a ) Pr(A a |{a} , ,{a} )  with 

1 x

1- Pr(A a |{a} ) 1- Pr(A a )x x x x
       where:   x ,  x

x x x x Pr(A a |{a} ) Pr(A a )

−

τ τ τ

= = = =
+

= =� � � � � �
= = =� � � � � � = =� � � � � �

� �

�
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To understand the usefulness of this parametric redundancy model consider the same 
equation under log-form 
 

M

0 m m o
m 1

log x log x (log x log x )
=

− = τ −�  

which is similar to the IK of (3). Consider the simple case where each  
 

m m{a} a , m 1, j 1= = −�  
 
Knowing the indicator covariance means that all Pr(Aj=aj | {a}m} = Pr(Aj=aj |ai) are 
known, then solving the system (5) with Kriging would require knowledge of the spatial 
covariance. 
 
In a full 3D multiple-point geostatistical approach, the inference of such redundancy is 
avoided since the full conditional can be directly read from the 3D training image, in 
other words, the training image itself is a redundancy model for the data A1…Aj-1. 
 
Another important property to consider is the closure of the tau model. This property 
states that if all information A1…Aj-1 is used to predict A (no values are dropped) then the 
tau model is capable of modeling any probability distribution governing the unknown and 
the data. In other words, there exists a set of tau values for which one can combine the 
partial conditionals into a full conditional that will equal the full conditional directly 
inferred by considering all data A1,…Aj-1 jointly. In other words, any 3D spatial law can 
be reconstructed from lower dimensional information, if all information available is used 
and if the correct redundancy between the lower dimensional information is assessed. 
The latter is a non-trivial exercise because one would need 3D information to assess such 
redundancy, a case that is not considered in this paper. 
 
Interpretation of the tau values 
 
Before defining the particular algorithm for constructing 3D spatial models from partial 
spatial continuity information, it is instructive to review the interpretation of the tau 
values as provided by Krishnan (2004). Consider the case of two data sources {a}1 and 
{a}2 and set the τ1=1, hence 
 

1 2

0 0 0

x x x
     

x x x

τ
� �

= � �
� �

    (6) 

 
Then it is shown in Krishnan (2005) that τ = 1 leads to  
 
 

2 j 1 2 j 1

2 j 2 j

Pr({a} | A 1- a ,{a} ) Pr({a} | A a ,{a} )
constant

Pr({a} | A 1- a ) Pr({a} | A a )

= =
= =

= =
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One possibility to achieve this is 
 
 

2 j 1 2 j

2 j 1 2 j

Pr({a} | A 1- a ,{a} ) Pr({a} | A 1- a )    and   

Pr({a} | A a ,{a} ) Pr({a} | A a )

= = =

= = =
 

 
which means that datum {a}2 is conditionally independent of datum {a}1 given Aj. 
 
τ >1 implies that the sensitivity of data set {a}2 to a change in Aj is amplified by 
knowledge of dataset {a}1, the larger τ, the larger that sensitivity. The reverse is true 
when τ < 1. τ = 0 means that dataset {a}2 carries no information on A. 
 
 
Sequential data redundancy 
 
For given structural information and given redundancy parameters tau, the spatial model 
in (3a) is now fully defined. Simulating from such spatial law proceeds by sequential 
simulation as follows:  
 

(1) A random location j is selected 
(2) For that location, the partial information {a}m, m=1,…,M from hard data and 

previously simulated nodes is gathered 
(3) The partial conditionals Pr(Aj | {a}m) m=1,…,M are calculated from the partial 

structural information 
(4) The partial conditionals are combined with the tau model into a full conditional 
(5) A simulated value is drawn 
(6) Repeat (1) to (5) for all locations 

 
This algorithm requires setting as many tau values as there are variables Aj to be 
simulated, which may be difficult as there are currently no methods available to 
determine these tau weights, nor do we have any data to do so. Note that in all rigor the 
tau values should be dependent on the unknown and the partial information. Instead of 
estimating the tau-values, the sequence of visits can be arranged such that a certain type 
of redundancy is expected, for example conditional independence (tau’s=1). We will rely 
on the concept of sequential data redundancy to achieve this. Sequential data redundancy 
is a general concept referring to the sequential updating of information on an unknown by 
a series of ordered or ranked data sources. It lends itself particularly well to sequential 
simulation, where some variable Aj to be simulated depends on the sequence of 
previously simulated values. Values in this sequence can be grouped into one set (one 
data source), and given the structural information, some form of redundancy can be 
expected between these data sources. Consider the following example as illustration of 
this concept, see Figures 2 and 3. 
 
Consider that we have a 2D training image as a model for the horizontal variability of the 
variable under study. Suppose this training image shows strong curvilinear, connected 
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highly non-Gaussian spatial patterns. In addition, a vertical variogram is available. The 
variable being simulated is a binary variable A(i,j,k) on a regular grid indexed by i,j and 
k. 
 
To make use of sequential data redundancy, one simulates first all values that lie in the 
same plane using the 2D horizontal training image. Any plane k can be selected. This 
simulation would not call for any redundancy modeling, since a full 2D training image 
(2D redundancy model) is available. Next, one moves to another horizontal plane k�. The 
first node A(i,j,k�) visited in the second horizontal plane is simulated conditional to the 
value A(i,j,k) that lies in the previously horizontal plane, since no other conditioning 
information is available in plane k�. To maximally constrain the simulation of A(i,j,k) to 
the data in the previously simulated plane, the best choice for (i,j) would be to take the 
(i,j) location of the last simulated value in plane k, since this value is conditional to all 
previously simulated values in plane k. Hence in simulating A(i,j,k) an implicit 
conditional independence assumption is made 
 

Pr(A(i, j, k ) |{a(i, j,k)} i, j) Pr(A(i, j,k ) | a(i, j, k))′ ′∀ =  
 
Note that one cannot avoid making this assumption, due to the limited structural 
information available. 
 
To simulate a second location (i�,j�,k�) in plane k�, one needs to condition to two data, the 
simulated values a(i�,j�,k) and a(i,j,k�). The horizontal training image is used to determine 
Pr(A(i�,j�,k�)=1| a(i,j,k�)), the indicator variogram is used to determine Pr(A(i�,j�,k�)=1| 
a(i�,j�,k)). The tau model is used to combine both into the joint conditional Pr(A(i�,j�,k�)=1| 
a(i�,j�,k), a(i,j,k�)). One can argue that setting both tau values to one is a plausible 
assumption in this case. Setting τ1=τ2=1 amounts to making the following assumptions 
 

Pr(A(i , j , k) | A(i , j ,k ) 1,A(i, j,k )) Pr(A(i , j , k) | A(i , j , k ) 1)     and
Pr(A(i , j , k) | A(i , j ,k ) 0,A(i, j, k )) Pr(A(i , j , k) | A(i , j , k ) 0)  

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= = =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= = =

    (7) 

 
In other words: information along the vertical screens information along the horizontal. 
(This does not mean information along the horizontal is not used (full independence), it 
just states some form of independence exists (tau’s=1)). Suppose k�=k+1 or k�=k-1, then 
one can argue that this is a plausible assumption for this particular case, where more 
prominent spatial variability in the horizontal exist, compared to the vertical. To 
understand this better visually consider the situation in Figure 3 (a picture of 3D channel 
meandering). In case the true (unknown) 3D spatial variability is that of channel 
meandering, then knowing that a location along the vertical is inside/outside a channel 
makes information along the horizontal greatly (not fully) redundant, particularly if 
channel meandering is strongly sinuous. Eq (7) also motivates simulating the variable one 
horizontal plane after another, rather than the alternative which would be simulating 
along series of vertical lines. A conditional independence would not hold in such case 
since  
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Pr(A(i , j ,k) | A(i , j ,k ),A(i, j, k ) 1) Pr(A(i , j ,k) | A(i, j,k ) 1)     and
Pr(A(i , j ,k) | A(i , j ,k ),A(i, j, k ) 0) Pr(A(i , j ,k) | A(i, j, k ) 0))  

′ ′ ′ ′ ′ ′ ′ ′ ′= = =
′ ′ ′ ′ ′ ′ ′ ′ ′= = =

 

 
would not be true for the situation in Figure 3 (channel meanders). 
 
 
Examples 
 
Case 1: horizontal XY training image (250x250), Figure 4, and 2D vertical YZ 
variogram. Consider the case where a horizontal training image is available as well as a 
variogram model describing variability in a cross-section. This cross-section is 
orthogonal to the channel meanders. The variogram is isotropic spherical with a range of 
10 units. The range is taken the same as the channel width. A 3D model will be 
constructed by successively generating horizontal slices. 
 
Figure 5A shows the first horizontal slice generated using the 2D horizontal training 
image. Figure 5B shows the map of conditional probabilities Pr(A(i,j,2)=1|{a(i,j,1) ∀i}), 
i.e. the conditional probability of A(i,j,2), given information from the previously 
simulated horizontal plane. However, since in the vertical direction only the variogram in 
a 2D YZ section is available, only values a(i,j,2) with the same j-index can be retained to 
derive such vertical conditional probabilities. These vertical conditional are combined 
with the horizontal conditional Pr(A(i,j,2)=1|{a(i,j,2) ∀i,j previously simulated}) to form 
the full conditional from which a values is simulated. In case one would have chosen a 
range of 2 (less vertical correlation), the map of vertical probabilities in Figure 5C would 
have been obtained. Figure 5C shows more uncertainty (due to lesser correlation) than 
Figure 5B. 
 
The full 3D model of dimension 50x100x50 is shown in Figure 6 for various tau values 
(Eq. (7) is used where x2 related to the vertical variogram information). For each 3D 
model a 2D YZ variogram was calculated of which the Y and Z-directions are shown in 
Figure 7. Figure 8 shows the case when tau=1.2. In the latter case, the variogram is well 
reproduced. Variogram reproduction could be used a criterion to set the tau-value. 
 
Case 2: horizontal XY training image (250x250), Figure 4, and 1D vertical Z-variogram. 
In this case we consider that only a 1D variogram is available. Several values of tau were 
tried, the results gathered in Figure 9. Again, we find that a value of tau close to 1 
provides a satisfactory variogram reproduction. 
 
Case 3: Figure 10 shows the case where the XY continuity is provided by a complex 
system of braided channels, while the YZ plane continuity is simply a stacking of such 
channel bodies as represented by a vertical 2D training image generated with GSLIB 
program ellipsim. Using a parameter tau=1 the results in Figure 11 are obtained showing 
good reproduction of the braiding as well as stacking of the channels in 3D. 
 
Case 4: Another useful application of this method lies in the reproduction of 3D pore 
space from 2D cross-section. The reconstruction of 3D pore space from 2D thin section 
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photos is useful in many applications of multiphase flow through porous media, such as 
in the determination of reservoir permeability and relative permeability, studying the 
behavior of capillary pressure as function of saturation (Blunt et al, 2002, Chen and 
Doolen, 1998). A paper by Okabe and Blunt (2005) presents a multiple-point 
geostatistical method for generating such 3D pore space from 2D section, relying on a 
much simpler model than the tau-model. In fact they use a simple weighted average of 
the various partial conditional distributions. While this has some evident theoretical 
limitations (no compounding possible), the resulting models seemed to reproduce well 
the statistical information from each section. 
 
The data used for this study consists of a micro CT scanning of the Fontainebleau 
sandstone, see Figure 12. From this 3D reference model an XY and YZ section was 
extracted, to be used as input to our method. 
 
First, a standard variogram approach was used, whereby first the variogram in several 
directions was calculated. As seen in Figure 13, the variogram is basically isotropic with 
a range of 8 cells. An assumption of isotropy was then made fro the 3D variogram. This 
3D variogram is used in S-GEMS program sisim to simulate in 3D the pore space, see 
Figure 14. The proportion (porosity) was taken the same as the reference (=22%).  
 
Next, the above proposed method is used to simulate the 3D pore space, with tau=0.8 by 
(1) simulating consecutive horizontal slices, see Figure 15, (2) consecutive vertical slices, 
see Figure 16. At least visually the results are very similar: this is to be expected since the 
medium appears fairly isotropic, i.e. the patterns in both training images are similar. 
However, compared to the sisim model, it appears visually that the narrow pore throat 
pattern is much better reproduced. Future work will investigate what the difference in 
permeability and other flow-related properties between the multi-point and two-point 
models are. 
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Conclusions 
 
Building 3D models using a geostatistical estimation or simulation method calls for a full 
3D model of spatial continuity, whether implicit or explicitly stated.  A 3D training 
provides one way to explicitly disclose 3D spatial information. However, in many 
practical cases, 3D spatial continuity may not be immediately or explicitly available, 
hence models are required to combine all spatial continuity information, typically of 
lower dimension (1D or 2D) into a full 3D model. This paper provides a method for 
combining lower dimensional information into a full 3D model. This 3D model can then 
be used as training image for further stochastic simulation and data integration. Further 
application and extensions to non-binary problems will need to be investigated to explore 
the limits of applicability and gain more insight into when this method can be used. 
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Figure 9: Case 2, with 1D vertical variogram only, several tau-values
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Braided system in New Zealand (from Ph. Renard)

generated with ellipsim

Figure 10: XY continuity provided by braided river system, YZ continuity 

generated by ellipsim representing stacking of channel bodies



400x400x35 (z-scaling = 2x)

XY sections

YZ sections

Figure 11: Single 3D model
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3D pore structure from tomography
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Data from Tapan Mukerji, SRB

Figure 12: Fontainebleau sandstone cross sections and 3D view of pore space
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Figure 13: Variograms calculated over several directions in each
section
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“filled” pore

Figure 14: sisim simulation of the 3D pore space



75x75x75

Horizontal slice
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Figure 15: simulation of the 3D pore space using mp-statistics, 
simulation of stacked horizontal slices



Horizontal XY slice

Tau = 0.8

Figure 16: simulation of the 3D pore space using mp-statistics, 
simulation of tiled vertical slices


