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Abstract

A variety of approaches for gridding and upscaling of detailed geocellular models
for flow simulation are reviewed. Local, extended local, global and quasi global
techniques for the calculation of equivalent permeability and transmissibility are
discussed. Specialized procedures for permeability upscaling in the vicinity of wells
are also described. Flow-based grid generation techniques, in which a curvilinear
grid is introduced to resolve the effects of permeability connectivity, are described
along with procedures for computing upscaled properties for such grids. Coarse
scale simulation results generated using many of these upscaling techniques are
presented. These results illustrate the capabilities of existing upscaling procedures
and demonstrate the levels of accuracy attainable using the various approaches.

1 Introduction

Typical reservoir simulators can handle on the order of 105 − 106 simulation cells.
The exact number will vary considerably depending on the type of simulation to be
performed (dead oil, black oil, compositional) and the available computer hardware.
For many types of models, production version simulations with over 106 cells are still
not performed routinely. Geological characterizations, by contrast, typically contain
on the order of 107−108 cells. These models, which are referred to as fine grid models,
geostatistical models or simply geocellular models, represent geological variation on
very fine scales vertically, though their areal resolution is still relatively coarse. For
example, a typical geostatistical model might contain layering of thickness 1 ft or
less, though cell sizes in the areal direction might be about 50 - 100 ft. Thus, fine
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grid geological descriptions can be expected to grow further, so the need for reliable
upscaling techniques will continue.

Another issue of considerable importance is the need for the assessment of risk
and uncertainty in reservoir performance. Nearly every aspect of the reservoir char-
acterization contains some degree of uncertainty, so predictions are necessarily of
a statistical character. The uncertainty in reservoir performance can be gauged by
simulating a number of different geological realizations or scenarios. Thousands of
such runs may be required to cover the range of parameter variation. It is not
computationally feasible (or desirable) to perform these simulations on the fine grid
model. Significantly upscaled models are required if a full assessment of project risk
and uncertainty is to be accomplished. These models should ideally be even coarser
than the O(105−106) grid block models referred to above. In addition, if thousands
of coarse models are to be simulated, the upscaling must be highly automated.

Different upscaling procedures are appropriate in different situations. The ideal
procedure to use on a particular problem depends on the simulation question being
addressed, the production mechanism, and the level of detail that can be accommo-
dated in the coarse model. For a problem involving primary production with only
oil being produced, the coarse model should correctly capture the effects of near-
well heterogeneity as well as the general large scale flow response of the reservoir.
For scenarios involving displacement of oil by water or gas, it may be important to
accurately capture the effects of key flow paths between injection and production
wells. This may require the use of specialized gridding procedures.

Following the description of the governing equations below, we classify upscaling
techniques in terms of the types of parameters that are upscaled (single or two-
phase flow parameter upscaling). For moderate degrees of coarsening, single-phase
upscaling techniques often provide acceptable results, particularly when used in con-
junction with specialized (flow-based) coarse grids. At higher degrees of coarsening,
some type of relative permeability upscaling is also generally required. In order to
maintain focus, this review will cover only techniques for single-phase upscaling and
for the generation of coarse grids. The calculation of upscaled relative permeabilities
is an important topic that has been addressed in several recent reviews and com-
parison studies; see for example Christie [18], Barker and Thibeau [8], Barker and
Dupouy [7], Darman et al. [20] and Gerritsen and Durlofsky [40]. Recent reviews
on upscaling with a focus closer to that of this review include those by Wen and
Gómez-Hernández [90], Renard and de Marsily [78] and Farmer [37]. Our empha-
sis here will be on methods implemented for structured grids, though many of the
methods discussed could be readily adapted to unstructured grids.

This review proceeds as follows. In §2 we present the equations governing single
and two-phase flow on the fine scale and then describe some ways in which upscal-
ing procedures can be classified. We present the coarse scale pressure equation and
introduce the upscaled permeability tensor k∗ in §3. Analytical upscaling proce-
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dures are then briefly considered. In §4 we discuss numerical methods for the local
calculation of k∗ or upscaled transmissibility T ∗. We consider various boundary
conditions for these calculations and describe different post-processing procedures
for computing k∗ from the local solutions. Next, we describe extended local upscal-
ing techniques (e.g., the use of border regions) and the determination of k∗ and T ∗

for irregular coarse grid control volumes. Upscaling in the vicinity of wells (which
also requires the calculation of an upscaled well index) is also considered. In §5 we
discuss global and quasi global coarsening procedures. These include the recently
developed local-global techniques, in which global coarse scale solutions are used to
guide the local upscaling calculations. Flow-based and elliptic grid generation pro-
cedures are considered in §6. We briefly discuss approaches for assessing the quality
of the upscaled model in §6.3. In §7, numerical results for many of the procedures
described in previous sections are presented. Results using local, extended local and
local-global techniques are included. We also present results using near-well upscal-
ing and flow-based gridding. We conclude in §8 with a summary and a discussion of
potential future directions for research in the area of upscaling. We note that this
review represents an update of an earlier paper presented at the 7th International
Forum on Reservoir Simulation in 2003 (Durlofsky [25]).

2 Fine scale equations and classifications of

upscaling procedures

We now consider the equations describing single and two-phase flow on the fine
scale. These equations are strictly appropriate for use with a fully resolved or fine
scale geocellular model; i.e., one in which no upscaling has been performed.

2.1 Single-phase flow equations

The equation governing single-phase flow in the absence of gravity is formed by
combining Darcy’s law

u = − 1

µ
k · ∇p, (1)

with a statement of mass conservation

∂

∂t
(φρ) +∇ · (ρu) + m̃ = 0. (2)

The resulting equation, referred to as the pressure equation, is given by:

∂

∂t
(φρ)−∇ ·

(
ρ

µ
k · ∇p

)
+ m̃ = 0. (3)
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In Eqs. (1)-(3), u is the Darcy velocity, µ is viscosity, k is the (symmetric positive
definite) permeability tensor, p is pressure, t is time, φ is porosity, ρ is density and
m̃ is the source/sink term (positive for production) expressed as a mass flow rate
per unit volume.

Upscaling procedures are generally formulated based on a simplified form of
Eq. (3). Specifically, if we assume that the fluid and rock are incompressible (i.e.,
ρ does not vary in space or time and ∂φ/∂t = 0), we obtain a simplified pressure
equation:

∇ ·
(

1

µ
k · ∇p

)
= q̃, (4)

where q̃ = m̃/ρ is the volumetric source term. The equations above can be modified
to account for the effects of gravity by replacing p with the potential Φ = p− ρgz,
where g is the gravitational acceleration and the z axis points vertically downwards
(in the direction of gravity), as is the convention for most reservoir simulators.

2.2 Two-phase flow equations

The equations describing two-phase flow on the fine scale can again be formed by
combining Darcy’s law with a statement of mass conservation. In this case, in the
absence of gravity, Darcy’s law can be expressed as:

uj = −krj

µj

k · ∇pj, (5)

where the subscript j refers to the phase (j = w for water and j = o for oil) and krj

is the relative permeability to phase j. Mass conservation is given by:

∂

∂t
(φρjSj) +∇ · (ρjuj) + m̃j = 0, (6)

where Sj is the saturation (volume fraction) of phase j. If we assume that ∂φ/∂t = 0,
that ρj does not vary in time or space, and that capillary pressure (pc) is negligible;
i.e., pc(Sw) = po − pw = 0, we obtain:

∇ · ut = −q̃t, (7)

where q̃j = m̃j/ρj and the total volumetric source term is q̃t = q̃w + q̃o. The total
Darcy velocity ut is given by:

ut = uw + uo = −k

(
krw

µw

+
kro

µo

)
· ∇p. (8)

The water velocity uw can now be expressed as uw = f(Sw)ut where f(Sw) is the
usual Buckley-Leverett fractional flow function. Inserting this form for uw in Eq. (6),
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we can write the water saturation equation as:

φ
∂Sw

∂t
+∇ · [utf(Sw)] = −q̃w. (9)

The corresponding pressure equation can be formed by introducing the expression
for ut (Eq. (8) into Eq. (7)):

∇ · (kλt(Sw) · ∇p) = q̃t, (10)

where we have introduced the total mobility λt, defined via:

λt = λw + λo =
krw

µw

+
kro

µo

. (11)

The pressure and saturation equations describe the flow of two immiscible fluids.
The pressure equation (10) is very similar to the single-phase pressure equation
(4) except the λt term replaces 1/µ. The single-phase limit is recovered if the two
phases have identical properties and do not interfere. For such a system, krw = Sw,
kro = So = 1 − Sw, and µw = µo, giving λt = 1/µw = 1/µo and f(Sw) = Sw (in
Eq. (9)). In this case, the system is of unit mobility ratio.

More general models for two-phase flow include the effects of compressibility,
gravity and capillary pressure. The representation of the system in terms of pressure
and saturation equations is still possible; see Peaceman [69] and Aziz and Settari [6]
for details.

Many of the upscaling techniques described below compute upscaled transmissi-
bility rather than permeability. Transmissibility is an interblock (numerical) quan-
tity defined at cell interfaces that relates the flow from one block to an adja-
cent block in terms of the pressure difference between the blocks; i.e., qi+1/2 =
(Tx)i+1/2 (pi−pi+1), where q is flow rate, Tx is transmissibility in the x direction and
subscripts designate grid block (i or i+1) or interface (i+1/2). The transmissibility
in x between grid blocks i and i + 1 is given by:

(Tx)i+1/2 =
2(kx)i+1/2∆y∆z

∆xi+1 + ∆xi

, (12)

where ∆x, ∆y and ∆z are grid block sizes and (kx)i+1/2 is the weighted harmonic
average of the x component of permeability in blocks i and i + 1:

(kx)i+1/2 =
(∆xi + ∆xi+1)(kx)i(kx)i+1

∆xi+1(kx)i + ∆xi(kx)i+1

. (13)

Transmissibilities and interface permeabilities in the y and z directions are anal-
ogous. The formulation above is for the case of a two-point flux approximation.
Multipoint flux approximations are significantly more complex; see [2, 35, 59] for
details.
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2.3 Classifications of upscaling procedures

There are several different ways in which upscaling techniques can be classified.
Here we will classify the various methods in terms of the types of parameters that
are upscaled (single or two-phase flow parameters) and the way in which these
parameters are computed (e.g., using local or global calculations). We first consider
classification by the types of parameters that are upscaled.

For single-phase flow involving a single component, the only parameters to be
upscaled are porosity and the absolute permeability or transmissibility. In the more
general case of two-phase flow, the absolute permeability (or transmissibility) and
porosity as well as the relative permeability can be upscaled. However, in many
cases it is possible to develop reasonably accurate coarse scale models for two-phase
flow with only the absolute permeability or transmissibility and porosity upscaled,
particularly when accurate upscaling is used in conjunction with flow-based grid
generation. In models of this type, the geocellular scale relative permeabilities are
used directly on the coarse scale. Thus, even for two (or three) phase flow systems,
we can still generate coarse scale models with only absolute permeability or trans-
missibility and porosity upscaled in some cases. We refer to this type of approach
as “single-phase parameter upscaling” or “single-phase upscaling,” with the under-
standing that it can be used for both single and two-phase (or multiphase) flow
problems. Such approaches can be further classified as permeability or transmissi-
bility upscaling procedures.

In other cases, the two-phase flow parameters (e.g., krj and pc) are also upscaled.
We refer to this type of approach as a “two-phase parameter upscaling” or simply
“two-phase upscaling.” Another way to view this classification is in terms of the
governing pressure and saturation equations. In single-phase upscaling, the pres-
sure equation is modified but the saturation equation appears essentially the same
(though φ is upscaled). In two-phase upscaling, by contrast, parameters in both
equations are modified.

The second type of classification is related to the way in which upscaled para-
meters (single or two-phase) are computed. In all cases the intent of the upscaling
procedure is to replace the fine model with a coarse model. In a purely local pro-
cedure, coarse scale parameters are computed by considering only the fine scale
region corresponding to the target coarse block. No additional fine scale informa-
tion is included in the upscaling calculation. In a global upscaling technique, the
entire fine scale model is simulated for the calculation of the coarse scale parameters.
The assumption here is that the coarse scale parameters will be applicable to other
(related) flow scenarios.

There are several important variants of the purely local and global approaches.
Of interest to us will be “extended local” and “quasi global” upscaling techniques. In
extended local procedures, coarse scale parameters are computed by considering the
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region corresponding to the target coarse block plus a fine scale “border region” or
skin around this region. Coarse scale quantities are generally computed by averaging
the fine scale solution (e.g., pressure and velocity) only over the region corresponding
to the target coarse block. In quasi global methods, global flow data informs the
upscaling technique but this information is only approximate. For example, in the
case of a quasi global two-phase parameter upscaling, the global flow field might
be estimated from a single solution of the single-phase pressure equation rather
than by a more computationally expensive transient solution of the two-phase flow
equations. We will discuss local, extended local, global and quasi global upscaling
techniques later in this review.

The single-phase upscaling procedures described here all require some amount
of computation, and this represents an overhead for the reservoir simulation. The
time required for most of the methods is, however, very small compared to the cost
of the fine scale multiphase flow simulation (it is usually also small compared to
the cost of the coarse scale multiphase simulation). For further discussion of these
timing issues, see [87, 16].

2.4 Multiscale methods

Another important class of upscaling procedures are multiscale finite element and
finite volume approaches. Within the context of reservoir simulation, for exam-
ple, Hou and Wu [49] and Arbogast and Bryant [4] developed finite element based
approaches, while Jenny et al. [50] developed an approach based on a full tensor
flux-continuous finite volume procedure. These methods have the benefit that the
fine scale permeability information enters into the global solution in a systematic
way. To date, these procedures have mainly been applied to the pressure equation;
transport calculations have generally been performed by reconstructing the fine scale
velocity field. This reconstruction, which can also be accomplished using other pro-
cedures (see, e.g., [77, 43, 39, 16]), entails the use of the fine grid for the solution of
the saturation equation.

Dual grid approaches (e.g., [77, 43, 39]) are also related to multiscale methods.
In these procedures, different grids are defined and reconstruction techniques are
applied to determine fine scale variables from the global coarse scale solution. These
methods can provide accurate results in many cases, though they, like multiscale
procedures, require that the fine scale permeability information be stored and used
during the global solution. For a more detailed discussion of multiscale methods
and their relationship to upscaling procedures, see [40].

7



3 Coarse scale pressure equation and

analytical upscaling methods

We now consider the upscaling of absolute permeability. As indicated above, even
for many two-phase flow problems, particularly when the overall level of coarsening
is not excessive (e.g., 1-2 order of magnitude reduction in the total number of cells
for a typical problem), this has been found to be a reasonable approach. Some
theoretical justification for neglecting the upscaling of relative permeability, in the
context of moderately coarsened models and flow-based grids, is offered by Durlofsky
[27]. As the degree of coarsening becomes very high, however, upscaled two-phase
flow functions will generally be required.

3.1 Fine and coarse scale pressure equations

For now we consider steady, single-phase incompressible flow with no source terms
(Eq. (4) with q̃ = 0). We introduce a conceptual two-scale model for permeability;
i.e., permeability varies on two distinct scales referred to as x and y. The x scale
is a slow scale, meaning that variations in x are relatively gradual. The y scale, by
contrast, is a fast scale, and captures the fine scale variation of permeability. With
this k(x,y) representation, the dimensionless pressure equation is written as follows:

∇ · (k(x,y) · ∇p) = 0. (14)

Eq. (14) is the pressure equation with the permeability field fully resolved. Homoge-
nization procedures, as applied by Bourgeat [10] and Saez et al. [81], among others,
allow Eq. (14) to be replaced with an analogous equation in which variations need
only be resolved on the x (slow) scale. The pressure equation in this case can be
written as:

∇ · (k∗(x) · ∇pc) = 0, (15)

where k∗ is referred to as the effective permeability tensor and pc is the coarse scale
pressure. Note that k∗ is defined on the scale of x; y-scale variations, which exist
in k, have been homogenized or averaged. This means that, in solving Eq. (15), we
need not resolve effects on the scale of y, which leads to significant computational
savings.

The upscaling of k(x,y) to k∗(x), and the replacement of Eq. (14) by Eq. (15), is
mathematically valid only in certain circumstances [10, 81]. Specifically, the region
over which k∗ is computed must be large relative to the fast (y) scale of variation
(e.g., the correlation length of the heterogeneity field). In addition, Eq. (15) is
technically not applicable near boundaries or sources. However, even though there
is often not a clear theoretical justification for replacing Eq. (14) by Eq. (15), there
is a large body of numerical evidence justifying this procedure. The coarse scale
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permeability in these more general cases is properly referred to as the equivalent
grid block permeability tensor rather than an effective permeability. See Durlofsky
[26] for more discussion of this point. A wide variety of techniques for computing
these grid block permeabilities is available, as we shall discuss.

3.2 Power averaging procedures

The simplest techniques for computing grid block permeabilities are power averaging
procedures, introduced by Deutsch [21] (see also discussion in Wen and Gómez-
Hernández [90]). These approaches do not require any numerical solutions so they
are very efficient computationally. The basic approach entails computing upscaled
permeability components, here designated k∗i , via:

k∗i =

(
1

Vb

∫

Vb

[ki(y)]ωi dV

)1/ωi

, (16)

where Vb is the coarse block bulk volume and both the fine scale permeability k(y)
and the upscaled permeability k∗ are considered to be diagonal tensors, with i
designating a diagonal component. The power averaging exponent ωi can vary with
direction i. This type of averaging procedure can be readily applied to coarse grid
cells of any shape, so it is suitable for use with irregular grids.

The power averaging exponent ωi is constrained to lie between −1 and 1. The
extremes correspond to layered systems: for flow parallel to the layers ω = 1 (arith-
metic average), while for flow perpendicular to the layers ω = −1 (harmonic aver-
age). The geometric mean corresponds to the limit ω → 0. In this case, Eq. (16)
becomes:

k∗i = exp

(
1

Vb

∫

Vb

log [ki(y)] dV

)
. (17)

Power averaging can also be applied using a combination of two different values of ω.
For example, for a structured, approximately layered system in the x− z coordinate
system, k∗x might be computed by harmonically averaging along each layer in x and
then arithmetically averaging these layer averages. The use of this type of procedure
provides power averaging approaches with a higher degree of applicability. Power
averaging exponents may be determined in practice by tuning against numerical
upscaling results. The assumption then is that the same ωi can be used for models
with similar permeability distributions.

The fact that ωi can vary with direction leads to the general observation that
the upscaled permeability can be anisotropic even when the underlying permeability
field k(y) is everywhere isotropic. For the power averaging approach described here,
the upscaled permeability is still a diagonal tensor. However, for the more general
numerical methods described below, the upscaled permeability is typically a full
tensor quantity.
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Other analytical procedures for permeability upscaling include the renormaliza-
tion approach of King [55] and the full tensor averaging technique of Kasap and Lake
[52]. Both of these approaches are very efficient and have been shown to perform
well for some classes of problems. Like power averaging techniques, however, they
lack the generality of the numerical procedures described below.

3.3 Upscaling of porosity

Porosity on the coarse scale, designated φ∗, is computed such that pore volume is
exactly conserved between the fine and coarse scales. Specifically, φ∗ is computed
via:

φ∗ =
1

Vb

∫

Vb

φ(y) dV, (18)

where Vb again designates bulk volume.

4 Purely local and extended local numerical

procedures to compute k∗ and T ∗

The more robust and accurate procedures for computing k∗ and T ∗ require the so-
lution of the fine scale pressure equation over the target coarse region. As discussed
below, in some cases it is beneficial to use an extended local approach in order to
include the effects of neighboring regions in these calculations. Global and quasi
global procedures can also be applied, as described in §5. We now consider a va-
riety of approaches, beginning with the simplest purely local techniques. Much of
the description below is for two-dimensional systems. The three-dimensional proce-
dures have, in most cases, also been implemented and are typically straightforward
generalizations of the two-dimensional methods.

Different upscaling techniques force agreement in different quantities. For exam-
ple, Zijl and Trykozko [94] describe approaches for computing upscaled permeabili-
ties using pressure-flux averaging, pressure-dissipation averaging, or flux-dissipation
averaging. The relative advantages and disadvantages of the various approaches are
also discussed. When periodic boundary conditions are applied (discussed below),
the upscaled permeability is the same in all cases. In the discussion here we do
not consider all of these approaches for upscaling but focus instead on the use of
pressure and velocity (or flux) averaging. It is possible that alternate procedures
may provide improved results in some cases.

In all of the procedures described below, finite volume (often referred to as
finite difference) methods are applied for the numerical solutions. If the fine scale
permeability is a diagonal tensor and the grid is orthogonal, the standard two-
point flux approximation (using harmonic averages of the appropriate permeability
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component, as in Eq. (13)) can be used. In this case a five point finite difference
stencil is obtained in two dimensions and a seven point stencil in three dimensions.
In cases in which permeability is a full tensor and/or the grid is nonorthogonal,
multipoint flux techniques, as described in [2, 35, 59], are technically required. In
some cases, however, the error from using a two-point flux approximation for such
systems may be small. This will be illustrated in some of the examples below.

4.1 Fixed pressure boundary conditions

In computing equivalent grid block permeabilities or transmissibilities, we solve
Eq. (14) over the fine scale region corresponding to the target coarse block or in-
terface. A significant issue in any local or extended local upscaling technique is
the choice of boundary conditions to be imposed. Because the actual conditions
imposed on the region during the course of a flow simulation are not known a priori
and will in general vary, there is always some ambiguity in specifying the boundary
conditions in the upscaling procedure. There is additionally some freedom in how
the upscaled k∗ or T ∗ is computed from the local fine grid solution. We now discuss
these issues in turn.

Upscaling methodologies will first be discussed within the context of a structured,
rectangular grid. The extension of these approaches to more general control volumes
will then be described. Consider the rectangular domain illustrated in Fig. 1. This
domain corresponds to a single coarse grid block. The fine grid permeability field
(on the y-scale) is not shown. Our intent is to solve Eq. (14) over this domain
and then use this solution to compute the equivalent grid block permeability tensor.
Permeability upscaling is considered first. We discuss the boundary conditions for
this problem and then describe how to compute k∗ from the fine grid solution.

The simplest and in many ways the most intuitive boundary conditions for this
problem might be a constant pressure - no flow boundary specification. For the
system shown in Fig. 1, these boundary conditions require us to solve Eq. (14)
twice. In the first solution we set

p(0, y2) = 1, (19a)

p(L1, y2) = 0, (19b)

u(y1, 0) · n1 = u(y1, L2) · n2 = 0, (19c)

while in the second solution the pressure difference is specified to be in the y2

direction. From these two solutions we can compute total flow rates through the
faces of the region; i.e., from the first solution:

q1 = ∆y3

∫ L2

0

u(L1, y2) · n4 dy2 =

Nf∑

l=1

(ul · n4) Al, (20)
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Figure 1: Schematic of rectangular local solution domain.

where the sum is over cells on edge ∂D4 (Fig. 1), Nf is the number of fine cells in
the y2 direction and Al = (∆y2)l ∆y3, where ∆y3 is the (constant) thickness in the
third dimension. Similarly, q2 can be computed from the second solution. Then,
the upscaled permeability can be computed by equating the total flow rate from
the local fine scale solution with the flow rate that would result for a homogeneous
region of permeability k∗1 subject to the same boundary conditions. This gives:

k∗1 =
q1L1

L2∆y3∆p
, (21)

where ∆p = 1 from Eqs. (19). The quantity k∗2 is computed in a similar manner.

In many cases, the k∗1 and k∗2 computed in this way provide reasonably accurate
coarse block permeabilities. However, the boundary conditions and method for
computing k∗ from the local fine grid solution in this case preclude the calculation
of the cross terms of k∗. These terms can be significant in cases where the grid is
not locally K-orthogonal (by K-orthogonality we mean that the grid geometry and
permeability can be represented in terms of two-point fluxes in the finite volume
discretization). Therefore, procedures for computing a full tensor k∗ are required
for some cases.

One approach for generating full tensor coarse block permeabilities is to post-
process the fine grid solution in a manner different to that used in Eqs. (20) and
(21). Because the no flow boundary conditions do not permit the calculation of
a full tensor k∗ via integration over boundaries, we instead compute volume aver-
aged velocities and pressure gradients over the entire flow domain (e.g., [80, 93]).

12



Specifically, we compute

〈u〉j =
1

Vb

∫

V

uj dV =
1

Vb

Nt∑

l=1

ulVl, (22a)

〈∇p〉j =
1

Vb

∫

V

(∇p)j dV =
1

Vb

Nt∑

l=1

(∇p)lVl, (22b)

where j = 1, 2 indicates the flow solution (i.e., j = 1 denotes the solution with the
pressure difference in the y1 direction; j = 2 the solution with the pressure difference
in the y2 direction) and the sums are over all Nt fine blocks comprising the target
region (Vl designates the bulk volume of fine scale cell l). Because both 〈u〉 and
〈∇p〉 have two components (for a two-dimensional problem), and because we solve
two flow problems, four components of k∗ can be calculated from these two flow
solutions. Specifically, we can write:

〈u〉11 = −(k∗11〈∇p〉11 + k∗12〈∇p〉12), (23a)

〈u〉12 = −(k∗21〈∇p〉11 + k∗22〈∇p〉12), (23b)

〈u〉21 = −(k∗11〈∇p〉21 + k∗12〈∇p〉22), (23c)

〈u〉22 = −(k∗21〈∇p〉21 + k∗22〈∇p〉22), (23d)

where the subscript on 〈u〉 and 〈∇p〉 designates the vector component and the
superscript the flow problem. This set of equations can be rearranged to give a
matrix equation:




〈∇p〉11 〈∇p〉12 0 0
0 0 〈∇p〉11 〈∇p〉12

〈∇p〉21 〈∇p〉22 0 0
0 0 〈∇p〉21 〈∇p〉22







k∗11

k∗12

k∗21

k∗22


 = −




〈u〉11
〈u〉12
〈u〉21
〈u〉22


 , (24)

which can now be solved to determine the components of k∗.

With the boundary conditions described by Eqs. (19), the k∗ computed via
Eq. (24) will not in general be symmetric. Various procedures can be applied to
enforce symmetry; the simplest approach is to set each of the cross terms equal
to (k∗12 + k∗21)/2. A better approach to ensure symmetry is to solve a least square
problem rather than Eq. (24). In this case we enforce symmetry by adding an
equation of the form k∗12 − k∗21 = 0. The resulting set of equations is now given by:




〈∇p〉11 〈∇p〉12 0 0
0 0 〈∇p〉11 〈∇p〉12

〈∇p〉21 〈∇p〉22 0 0
0 0 〈∇p〉21 〈∇p〉22
0 1 −1 0







k∗11

k∗12

k∗21

k∗22


 = −




〈u〉11
〈u〉12
〈u〉21
〈u〉22
0




. (25)
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The last equation can be rescaled if necessary so these matrix elements are of the
same magnitude as the other terms.

In addition to symmetry, we also require that k∗ be positive definite (i.e., have
positive eigenvalues). In two dimensions this requires that k∗11 > 0, k∗22 > 0 and
k∗11k

∗
22 > (k∗12)

2. This requirement is generally satisfied by the methods described
here. In the few cases when this is not satisfied, k∗ can be recomputed using outlet
averaging (in which case k∗12 is undetermined) or using periodic boundary conditions
(described below).

The pressure - no flow boundary conditions just discussed are not the most gen-
eral boundary conditions that can be used. Another alternative is to use boundary
conditions that specify a linear pressure variation along the sides parallel to the
direction of the pressure gradient (e.g., King et al. [53, 54]). Then, rather than the
boundary conditions of Eqs. (19), the boundary conditions for the first flow problem
are:

p(0, y2) = 1, (26a)

p(L1, y2) = 0, (26b)

p(y1, 0) = p(y1, L2) = 1− y1/L1. (26c)

Unlike the pressure - no flow specification, these boundary conditions do al-
low for flow out of the domain in a direction transverse to the pressure difference.
Thus, a full tensor k∗ can be computed from the integrated flow rates through the
boundaries. For example, from the solution of Eq. (14) subject to Eqs. (26), we can
compute

q1
1 = ∆y3

∫ L2

0

u1(L1, y2) · n4 dy2, q1
2 = ∆y3

∫ L1

0

u1(y1, L2) · n2 dy1. (27)

Then,

k∗11 =
q1
1L1

L2∆y3∆p
, k∗21 =

q1
2

∆y3∆p
, (28)

where again ∆p = 1 in this case. The other two components of k∗ can be computed
from the second solution (pressure difference in y2 direction). The tensor computed
in this manner will again not be symmetric in general.

The solution using linear pressure boundary conditions can also be used to com-
pute k∗ within the volume averaging context described via Eqs. (22) to (25). The k∗

thus computed will in general differ from the k∗ computed via Eqs. (27) and (28).
It is not clear from previous work which of these approaches is the more accurate –
it is likely that the method of choice will be case dependent.
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4.2 Periodic boundary conditions

We next describe the use of periodic boundary conditions for the calculation of k∗.
This boundary specification eliminates some of the ambiguity of the other methods
in that it provides the same result for either method of post-processing of the fine
grid solution. Periodic boundary conditions have been applied and analyzed by a
number of investigators including Durlofsky [26], Boe [9], Pickup et al. [72] and Wen
et al. [89, 88]. These boundary conditions again require that two local fine scale
problems be solved. The specific form of the boundary conditions derives from the
assumption that the system is replicated periodically in space and that the global
pressure (on the scale of x) can be approximated as p = p0 + G · (x − x0), where
G = G1i1 + G2i2 is a constant vector. These are both reasonable approximations
in many cases, though inaccuracy can result when the assumption of periodicity
disrupts larger scale permeability connectivity.

With reference to Fig. 1, periodic boundary conditions can be specified via:

p(y1, 0) = p(y1, L2)−G2L2 on ∂D1 and ∂D2, (29a)

p(0, y2) = p(L1, y2)−G1L1 on ∂D3 and ∂D4, (29b)

u(y1, 0) · n1 = −u(y1, L2) · n2 on ∂D1 and ∂D2, (29c)

u(0, y2) · n3 = −u(L1, y2) · n4 on ∂D3 and ∂D4. (29d)

By selecting two linearly independent pairs of (G1, G2), and by solving Eq. (14)
subject to Eqs. (29), we can compute k∗ using either Eqs. (22) to (24) or Eqs. (27)
and (28), with identical results. In practice, in the first problem we set G1 = 1 and
G2 = 0 and in the second problem G1 = 0 and G2 = 1.

Periodic boundary conditions have several useful features. They guarantee that
the resulting k∗ will be symmetric and positive definite. Thus, no post-processing
of the result is necessary to ensure that these two criteria are met. In a study
comparing the use of several different boundary conditions for the calculation of
k∗, Pickup et al. [72] demonstrated that periodic boundary conditions performed
reliably in the example problems considered. However, they did demonstrate that
in many cases the differences between the various methods were slight.

4.3 Transmissibility upscaling

In the descriptions above, we considered boundary specifications and averaging pro-
cedures for the calculation of upscaled permeability tensors. These approaches can
also be applied to the direct calculation of upscaled transmissibility. This provides
more accurate coarse scale models in many cases because it eliminates the additional
approximations that result when transmissibility is calculated from the grid block
k∗ (via the weighted harmonic averaging indicated in Eq. (13)). Illustrations and
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discussion of the enhanced accuracy of transmissibility upscaling in some cases can
be found in [79, 3, 16].

We consider a two-dimensional system in the y1 − y2 plane (of thickness ∆y3)
with permeability everywhere diagonal (k12 = k21 = 0). Directional permeabilities
will be referred to as k1 and k2. The purely local problem, shown in Fig. 2, now
includes the fine scale region corresponding to the two coarse blocks (designated i
and i + 1) that share the target interface i + 1/2 (indicated in bold in Fig. 2). Note
that it is possible to use an even smaller region, containing only the two half-cells on
either side of the target interface. Any of the boundary conditions discussed above
can be applied to the local problem illustrated in Fig. 2. Following the solution of
the fine scale pressure equation subject to these boundary conditions, we compute
the average pressure over the region corresponding to coarse block i

〈p〉i =
1

Vb

Nt∑

l=1

plVl, (30)

where all quantities are as defined earlier. A similar expression gives 〈p〉i+1. The
flow rate across the interface, designated (q1)i+1/2, is given by:

(q1)i+1/2 =

Nf∑

l=1

(ul · n) Al, (31)

where Nf is the number of fine cells along the interface i+1/2. From these quantities,
the upscaled transmissibility in the y1 direction (T ∗

1 ) can be computed via:

(T ∗
1 )i+1/2 =

(q1)i+1/2

〈p〉i − 〈p〉i+1

, (32)

For the calculation of T ∗
2 , a local problem centered on the interface with normal i2 is

solved. An expression similar to Eq. (32) provides T ∗
2 . The T ∗ computed as described

here are applicable for a two-point flux approximation. If full-tensor effects or grid
nonorthogonality are important, a multipoint flux approximation may be required.
In this case transmissibility upscaling could be extended to a multipoint flux context
through use of an approach along the lines of that developed by Jenny et al. [50].

4.4 Extended local procedures: use of border regions

It has been observed by a number of authors that improved accuracy in k∗ and
T ∗ can be achieved if a larger local problem is solved (see, e.g., Gómez-Hernández
and Journel [42]; Holden and Lia [46]; Hou and Wu [49]; Wu et al. [93]; Wen
et al. [89, 87, 88]). By including neighboring regions in the calculation of k∗ or
T ∗ for a particular coarse block or interface, the effects of large scale permeability
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y1

y2

Figure 2: Schematic of local solution domain for transmissibility upscaling.

connectivity (or lack of connectivity) can be better captured, particularly when the
permeability field contains features that are not oriented with the grid. A “border
region,” containing the fine scale permeability field corresponding to a single ring of
coarse blocks around the target coarse block, is shown in Fig. 3. In the figure, the
finer lines represent the fine grid, the heavier lines the coarse grid, and the shaded
block is the target cell for which k∗ is to be computed. We quantify the size of
the extended local region via the parameter r, which defines the number of rings of
coarse cells that comprise the border region (extended local solutions include all of
the fine cells corresponding to the target cell plus border regions). The region shown
in Fig. 3, which corresponds to r = 1, is appropriate for permeability upscaling; the
extended local region would be centered around the target interface in the case of
transmissibility upscaling. Any of the boundary conditions discussed above can now
be applied on the expanded domain shown in the figure.

For the computation of k∗, because we now wish to compute the upscaled quantity
for only a portion of the fine scale domain over which Eq. (14) is solved (the target
coarse block), we apply the volume averaging procedure described above rather than
the integration over boundaries. Specifically, using Eqs. (22), we compute 〈u〉 and
〈∇p〉 over the shaded region in Fig. 3 and then apply Eq. (24) or (25) to form k∗.
We note that, even if periodic boundary conditions are applied, the k∗ computed
using Eq. (24) will not in general be symmetric. This is because the symmetry
provided by periodic boundary conditions for purely local upscaling is lost when
border regions are applied. Symmetry can be approximately recovered through use
of the least square technique (Eq. (25)). For the case of transmissibility upscaling,
the averaging is performed as described above for the purely local problem (again
only over the target cells and interface).

It is reasonable to expect that the effect of the boundary specification on the
computed k∗ or T ∗ will be less when border regions are used and that results using
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Figure 3: Fine and coarse grids with border region (target cell in center).

different boundary conditions will tend to converge. In limited tests, some of which
we will describe below, this did in fact appear to be the case [88]. We note addi-
tionally that, again in limited tests, the use of one bordering ring surrounding the
target cell (r = 1) appears to suffice. Relatively little improvement was observed
when a two-ring region was applied [89, 88].

4.5 Irregular coarse grid control volumes

Up to this point, we have considered upscaling procedures applicable for structured
grids comprised of rectangular blocks. The procedures described can readily be
extended to three dimensions, so they are equally applicable to brick-shaped control
volumes. We now discuss the generalization of these approaches to irregular control
volumes.

We assume for the present discussion that the underlying geocellular grid is
structured and is comprised of rectangular cells. In general, the irregular coarse
scale cell will not be “aligned” with respect to the fine grid. By this we mean that
the vertices of the coarse cell will not coincide with the corner points of the fine
geocellular grid. This case is illustrated in Fig. 4. Nine coarse blocks are shown in
the figure, as is the underlying fine grid. The central coarse cell is the target coarse
cell; i.e., the one for which we wish to compute k∗. Techniques for upscaling with
general quadrilaterals when the fine and coarse grids are aligned were developed by
Edwards [32] and Eek-Jensen et al. [36].

The border region approach described above lends itself quite naturally to this
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Figure 4: Non-aligned fine and coarse grids with border region (r = 1).

calculation. We define the local solution domain as the rectangular region containing
the coarse cell corner points plus a number of additional fine grid cells corresponding
to the dimensions of the target coarse cell. For example, for the case where the coarse
cell corner points fall within a 6 × 4 rectangle of fine cells (as in Fig. 4), the local
problem will be expanded by 6 cells in the −y1 and +y1 directions and by 4 cells in
the −y2 and +y2 directions. In this case, the local solution will contain 18× 12 fine
cells (the entire domain shown in Fig. 4).

In the case of a triangular or polygonal coarse scale control volume, the local
solution domain could be defined to include all fine scale blocks whose centroids
fall within a prescribed distance of the centroid of the target cell. This distance
could be specified in terms of a typical linear dimension of the target cell. Thus,
regardless of the shape of the coarse cell, a rectangular domain containing fine scale
cells corresponding to the neighbors of the target cell can be established.

We then solve Eq. (14) subject to boundary conditions to determine the fine
scale solution over the domain of Fig. 4. Following the solution of the local fine
scale problem, we compute 〈u〉 and 〈∇p〉 over the coarse cell region and then apply
Eq. (24) or (25) to form k∗. Some care is needed in computing these averages since
the fine and coarse grids are not aligned.

The simplest approach is to include in the averaging only those fine cells whose
centers fall within the boundaries of the coarse cell. This approach is illustrated
in Fig. 4, where the fine blocks indicated by shading (the blocks falling within the
coarse cell) are the cells contributing to the calculation of 〈u〉 and 〈∇p〉. Another
approach, which might offer better accuracy in some cases, would be to apply an
area weighting using all fine scale blocks that have some portion of their area within
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the coarse cell. For transmissibility upscaling (within a two-point flux context), we
apply Eqs. (30)-(32) to determine T ∗. The summation in Eq. (30) is again only over
the cells whose centers fall within the target cell. The flux calculation accounts for
the fact that the fine grid and the coarse grid interface are non-aligned through the
ul · n term in Eq. (31). This approach for computing T ∗ will in general incur some
error in cases when the system is not K-orthogonal.

In a number of test cases, the procedure described above was shown to provide
coarse scale flow results of reasonable accuracy (Wen et al. [87]). However, it is
possible that an improved treatment of the coarse cell geometry may be required
for some types of problems. This can be accomplished through use of a triangle
based finite element method for the solution of the local fine grid problem. Such an
approach was developed by He et al. [45], in which a non-conforming finite element
method (which is very similar to a mixed finite element method for this problem)
was applied. This enables the detailed resolution of grid block boundaries and fine
scale permeability variation as well as the accurate solution of the governing pressure
equation. See [45, 44, 25] for further description and illustrations of the performance
of this approach.

4.6 Upscaling in the near-well region

The basic assumption in all of the local and extended local procedures considered
above is that the flow can be described locally as essentially linear; i.e., the large
scale pressure gradient ∇p is approximately constant over the target region. This
assumption is not applicable in the near-well region, as the steady state pressure in
the vicinity of a well away from boundaries varies as log r, where r is radial distance.
We now describe an approach for near-well upscaling which can be classified as an
extended local technique, though the local problem is driven by a well rather than
by a large scale linear pressure field.

Wells are represented in reservoir simulators through use of a well index, here
designated by Wi, which relates the wellbore pressure in block i (pw

i ) to the grid
block pressure pi and well flow rate qw

i via:

qw
i = Wi(pi − pw

i ), (33)

in dimensionless terms. In an (x, y, z) coordinate system, the default well index W d
i

for a fully penetrating vertical well in block i is given by the Peaceman expression
[70]:

W d
i =

(
2π

√
kxky ∆z

log rw

ro

)

i

, (34)
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where

r0 = 0.28

√√
ky

kx
∆x2 +

√
kx

ky
∆y2

4

√
ky

kx
+ 4

√
kx

ky

. (35)

Here permeability is again assumed to be diagonal. Expressions similar to Eqs. (34)
and (35) are used for horizontal or deviated wells.

If no near-well upscaling is applied, the well index can be computed using
Eqs. (34)-(35), but with the upscaled permeability components k∗x and k∗y replac-
ing kx and ky. We refer to this well index as Wi(k

∗). This approach can provide
acceptable results in cases where the system is not very heterogeneous or where
permeability is of high correlation length in the plane normal to the well trajectory
in the near-well region.

With more highly heterogeneous permeability fields, the simple Wi(k
∗) treat-

ment described above can lead to considerable error. In such cases, it is necessary
to compute upscaled well indices and, for additional accuracy, near-well transmissi-
bilities between the well block and adjacent blocks. The first such near-well upscal-
ing procedure was presented by Ding [24]. Subsequent approaches were presented
in [30, 62, 66]. We now describe the basic ideas behind these near-well upscaling
techniques.

We define a local problem with r = 1 (where r again designates the number of
bordering rings of coarse block regions) with the well block in the center, as shown
in Fig. 5. Rather than impose boundary conditions that lead to an approximately
linear flow, we solve the dimensionless fine scale pressure equation with a well source
term qw in the central block:

∇ · (k · ∇p) = qw. (36)

In the discretized form of this equation, qw
i is represented using Eq. (33). We specify

a wellbore pressure of pw
i = 1 and a pressure on the outer boundary of p = 0. The

solution of Eq. (36) can then be computed to determine pressure and velocity in all
of the fine grid blocks in the extended local problem.

Following this fine grid solution, we estimate the coarse grid well index, desig-
nated W ∗

i , and coarse scale well block transmissibilities (i.e., transmissibilities link-
ing the well block to adjacent blocks), designated T ∗

w, as follows. We first compute
the volume averaged pressure 〈p〉i in the well block and each of its four neighbors via
application of Eq. (30). The flow rates through each of the four interfaces linking
the well block to adjacent blocks (designated q1 - q4) are computed using Eq. (31).
We can then calculate the coarse scale parameters W ∗

i and T ∗
w via:

W ∗
i =

qw

〈p〉i − pw
i

, (37)
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and
(T ∗

w)i+1/2 =
q1

〈p〉i − 〈p〉i+1

, (38)

where qw = q1 + q2 + q3 + q4. In two dimensions, four T ∗
w are computed - one

corresponding to each connection between the well block and neighboring blocks (in
three dimensions there are six T ∗

w).

The use of these parameters in many cases provides significantly improved coarse
scale representations of well performance. In some cases, it has proved useful [62] to
introduce coarse scale iteration to force the fluxes computed from the local coarse
scale problem to agree with the integrated fine scale fluxes q1 - q4. This is accom-
plished by iterating on the coarse scale parameters W ∗

i and T ∗
w until an objective

function based on the mismatch in flux between the fine and coarse problems is min-
imized. This minimization was achieved in [62]using a Gauss-Newton procedure.

5 Global and quasi global upscaling procedures

The methods described in §4 – local and extended local procedures – all require
the specification of (assumed) boundary conditions on the local problem. In global
upscaling methods, by contrast, the intent is to solve a global flow problem and to
use this solution to extract coarse scale quantities.

5.1 Global upscaling techniques

Some examples of global upscaling methods are those presented by White and Horne
[92], Pickup et al. [71], Nielsen and Tveito [67], Holden and Nielsen [47] and Aarnes
[1]. Most of these methods apply transmissibility upscaling for the calculation of
coarse grid quantities. From the fine grid solution, transmissibilities are computed
by averaging over coarse block regions and then applying Eq. (32). This gives a first
estimate for all of the T ∗. In highly heterogeneous models, a significant fraction of
these transmissibilities may be negative. Iteration is therefore performed until all
of the transmissibilities are positive and a sufficient level of agreement between the
fine and coarse solutions is achieved [47]. Various quantities (pressure, velocity, flux)
can be considered during these iterations and different approaches focus on different
variables.

Global upscaling methods can provide very accurate results for a particular set
of wells and boundary conditions. In many cases the model developed in this way
can be used for other (sufficiently similar) flow scenarios. However, it is also possible
that the model may lack robustness with respect to other boundary conditions or
well arrangements (see, e.g., Holden et al. [48] and Chen and Durlofsky [15] for
some results addressing this issue).
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A technique that shares some similarities with global upscaling methods is multi-
grid upscaling [65]. In multigrid upscaling, coarse scale parameters are determined
at a specified level from the multigrid solution algorithm. It will be of interest
to compare multigrid and global upscaling techniques in detail to obtain a better
understanding of the commonalities and differences between the two approaches.

5.2 Local-global (quasi global) upscaling

Quasi global upscaling methods attempt to estimate the effects of the global flow
without actually solving a global fine scale problem. Here we will briefly outline the
quasi global procedures developed by Chen et al. [16], Chen and Durlofsky [15] and
Wen et al. [86], referred to as local-global approaches. The idea of these methods
is to use global coarse scale simulations to estimate the boundary conditions to
use in the extended local calculation of T ∗ (we will describe the method within
the context of T ∗ upscaling, though it is also applicable for k∗ upscaling). The
procedure is iterated until the upscaled quantity is consistent with the global flow
(i.e., self-consistency is enforced).

Two variants of the general local-global approach have been developed. In the
coupled local-global approach of Chen et al. [16], generic global boundary conditions
are employed (i.e., pressure boundary conditions are applied to drive flow across the
entire domain). In [15] and [86], by contrast, an “adaptive local-global” procedure, in
which flow is driven by specific global boundary conditions and/or wells, is applied.
With this approach, the upscaled model is adapted to a particular global flow.
Near-well upscaling, as described in §4.6, is automatically incorporated into the
calculations. The adaptive local-global upscaling method includes a thresholding
procedure which assures that local calculations are only performed for a portion
of coarse blocks during the iterations. This leads to computational efficiency and
eliminates (or significantly reduces) the appearance of anomalous (e.g., negative or
extremely large) T ∗ values.

The coupled local-global and adaptive local-global techniques share many sim-
ilarities, though the adaptive procedure, because it provides upscaled quantities
tuned for a particular well configuration, is the more accurate. The adaptive proce-
dure does, however, require that a portion of the upscaled quantities be recomputed
if well locations change. Our description here is for the adaptive local-global tech-
nique, though the basic procedure is similar for the coupled approach. The technique
is illustrated schematically in Fig. 6. The first step is the local or extended local cal-
culation of T ∗ using any of the boundary conditions discussed above (e.g., pressure
- no flow or periodic). This provides the initial estimate of the upscaled quantities.
Using the coarse scale model generated in this way, a global simulation is then per-
formed to provide the global coarse scale pressure field (designated via the ×’s in
Fig. 6a). This pressure field is then used to set boundary conditions for the extended
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p = 0

pi
w = 1

Figure 5: Schematic for near-well upscaling showing fine (finer lines) and coarse
(heavier lines) grids in the near-well region (r = 1).

(a)

(b)

(c)

x

y

cp1
cp2

Figure 6: Schematic of adaptive local-global upscaling showing (a) coarse scale global
domain with global flow driven by wells, (b) fine scale local near-well region, and
(c) fine scale local region away from wells. The ×’s represent coarse pressures (from
[15]).
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local problems for the calculation of T ∗ (and W ∗ for well blocks). These extended
local calculations are illustrated in Figs. 6b and c. Iteration proceeds in this way
until the upscaled quantities no longer change with iteration, at which point the
global flow field and T ∗ are consistent.

In order to actually solve the extended local problems at each iteration, the coarse
global pressure field must be interpolated to provide local boundary conditions on
the fine grid. This is accomplished via a simple linear interpolation. As with any
extended local, quasi global or global approach, this procedure can on occasion
provide negative T ∗. In order to minimize (or eliminate) the appearance of such
anomalous T ∗, a thresholding procedure is applied during the iterations. Specifically,
T ∗ is recomputed only for interfaces subject to coarse scale flow rates that exceed
εqmax

c , where qmax
c is the global maximum flow rate for similarly oriented interfaces

and ε is an algorithmic parameter.

The three-dimensional implementation of adaptive local-global upscaling de-
scribed in [86] employs reduced border regions, which leads to substantial gains
in computational efficiency. Specifically, in [86] it is shown that the use of purely
local upscaling for the initial T ∗ estimate, in conjunction with the use of border
regions comprised of two rings of fine cells during the iterations, provides results in
close agreement with those from the “full” adaptive local-global procedure (the full
procedure includes border regions comprised of all of the fine cells contained within
a ring of coarse cells around the target cell or interface). Three-dimensional results
using the reduced border region implementation will be presented below.

6 Flow-based gridding techniques

Until this point we have considered the calculation of the upscaled parameters k∗,
T ∗ and W ∗. The accuracy of the upscaled model can often be improved consider-
ably through the use of specialized gridding techniques. In particular, the use of
flow-based gridding in conjunction with accurate upscaling procedures represents a
powerful approach for the generation of coarse scale models that retain the geologi-
cal realism of the fine grid description. The basic goal of these methodologies is the
introduction of higher levels of grid refinement in high flow regions of the model and
coarser descriptions in lower flow regions. This allows the coarsened model to cap-
ture many important effects of the fine scale permeability field without retaining a
uniformly fine grid. Grid generation techniques can also be use to capture geological
features (such as faults) or to better resolve well trajectories.

Flow-based gridding procedures have been developed by a variety of investiga-
tors, both within Cartesian and curvilinear grid frameworks. Durlofsky et al. [28, 29]
presented a nonuniform coarsening technique that selectively removes fine scale grid
lines in a manner that retains important high flow regions. This approach, applied
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in both two and three dimensions, is appropriate within the context of Cartesian
or stratigraphic grids. However, it is limited because the coarse grid is constrained
to be aligned with (i.e., overlay) the fine grid. More general flow-based gridding
procedures are not constrained in this way because they allow the coarse grid to be
non-aligned with respect to the underlying fine (geocellular) grid.

Within the context of reservoir simulation, a number of procedures for flow-
based grid generation have been presented. Verma and Aziz [85], Edwards et al.
[34], Portella and Hewett [73], Castellini et al. [13, 12], Wen et al. [87] and He [44]
presented techniques based on the use of streamlines computed from a single-phase
flow solution of the fine scale problem. An alternate gridding procedure, based on
the grouping of cells of similar permeability, was suggested by Garcia et al. [38].
These researchers introduced the concept of an “elastic grid,” in which the grid is
adjusted to minimize the variance of permeability within coarse grid cells. Other
investigations along these lines include the work of Ebrahimi and Sahimi [31] and
earlier papers discussed by Farmer [37]. In related work by Tran [84] and Wen and
Gómez-Hernández [91], the general approach of Garcia et al. [38] was combined
with flow information to generate flow-based grids.

Many of the previous techniques for flow-based grid generation were limited to
two-dimensional systems. Of the work cited here, only Castellini et al. [13, 12] and
He [44] developed procedures for curvilinear grid generation in three-dimensional
systems.

The generation of flow-based grids has also been addressed within the context of
groundwater hydrology. In this setting, flow-based grids may be applied either for
the solution of the contaminant transport equation or for the efficient solution of the
pressure equation. Relevant papers along these lines include Cirpka et al. [19] and
Cao and Kitanidis [11]. Cirpka et al. applied flow-based grids for the solution of
the contaminant transport equation, while Cao and Kitanidis developed an unstruc-
tured flow-based gridding procedure for the solution of the pressure equation. Their
procedure entails the use of an a posteriori error estimate to guide grid refinement.
Within an unstructured grid context, there have been a number of other flow-based
grid generation procedures. These include the PEBI windowing techniques of Mlac-
nik et al. [64, 63] as well as the triangle-based procedure developed by Edwards
[33]. Flow-based gridding for fully unstructured models in three dimensions was
considered by Prevost et al. [74, 76].

Grid generation is a very broad area, with applications in many areas of scientific
and engineering computing. Extensive discussions of the general area can be found
in the books by Thompson et al. [83] and Knupp and Steinberg [58]. Elliptic and
optimization-based grid generation techniques, such as those described by Knupp
and coworkers [56, 57], can make use of flow information and have the potential to
provide coarse grids with a relatively high degree of control on internal grid geometry.
In recent work, He [44] explored the application of these more general procedures
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to reservoir simulation problems. This work is discussed below in §6.2.

6.1 Streamline-based gridding procedures

Methods based directly on the use of streamline information may provide grids with
an extremely high concentration of grid lines in high flow regions, particularly in
highly heterogeneous systems. Here we describe flow-based grid generation tech-
niques that use streamline information, though a grid-smoothing step is introduced
to provide more control over the local grid density, which acts to improve grid qual-
ity. This capability introduces a higher degree of flexibility into the overall grid
generation procedure.

The description here follows the presentation in Wen et al. [87]. The first
step in the flow-based grid generation procedure is the solution of the single-phase
incompressible pressure equation over the fine grid region. The pressure equation,
repeated here,

∇ · (k · ∇p) = 0 , (39)

can be solved over either the entire geocellular model or over only some portion of
it. In the latter case, the global problem must first be decomposed into a number of
sub-domains or modules. Although the fine grid permeability field can be described
on any type of grid, it is commonly defined on a Cartesian or stratigraphic grid. The
fine grid permeability may be isotropic, a diagonal tensor or a full tensor quantity.
The coarse grid models will here be characterized by irregular quadrilateral (in two
dimensions) or hexahedral (in three dimensions) cells and full tensor permeabilities
in the general case.

Although the generation of a flow-based grid requires the solution of a fine scale
problem, this calculation often represents a fairly small computational cost relative
to the solution of the two-phase (or multiphase) system on either the fine or coarse
scale. This is because Eq. (39) is only solved once, while the two-phase flow prob-
lem requires the solution of the pressure equation at every time step. If the fine
scale solution of Eq. (39) over the entire flow domain is prohibitive, then the grid
generation can be accomplished in a modular fashion. Following the generation of
the grid in each module, the modules can be recombined into either a single globally
structured grid or a multiblock (or modular) grid (see Jenny et al. [51] for examples
of grids of this type). Here we describe the basic grid generation procedure for a
single domain.

The basic idea of the grid generation procedure is to use streamlines to define
the high flow paths and to introduce refinement in these areas. Although the grid
is determined using flow-based information from a single fine grid solution, it is
usually appropriate for use in a variety of related flow problems. We describe the
grid generation procedure with reference to a two-dimensional flow domain in an
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x − y coordinate system. The flow-based grid is formed by first solving Eq. (39)
subject to p = 1 on the left face (x = 0), p = 0 on the right face (x = Lx)
and no flow on the y = 0 and y = Ly boundaries, where Lx and Ly denote the
system lengths in the x and y directions. Following this solution, streamlines can
be generated through either a particle tracking technique (Thiele et al. [82]) or
through the contouring of the streamfunction Ψ. The particle tracking technique
is more general, in that it can be applied in two and three dimensions, while the
streamfunction technique is only appropriate in two dimensions. However, when the
flow is driven by boundary conditions (rather than by wells), as is the case here, the
two-dimensional streamfunction can be easily computed from the velocity field in a
post-processing step using:

∆Ψ =

∫

l

u · n dl , (40)

where ∆Ψ is the increment in streamfunction between two cell corners and l is the cell
edge connecting the two nodes. Because the quantity u ·n is known accurately (and
conservatively) along cell edges from the flux-continuous finite volume solution, this
is a viable approach for determining streamfunction. Streamlines are then generated
as lines of constant Ψ. Some number of streamlines is then selected to provide one
set of coordinate lines.

The other coordinate lines can be obtained from isopotentials (contours of con-
stant pressure) or from streamlines generated from a complementary flow problem
(e.g., flow from y = 0 to y = Ly with no flow on x = 0 and x = Lx). Another
approach is to divide each of the streamline coordinate lines into a specified number
of segments of equal arc length and to simply connect these segments.

Grids generated directly from streamlines introduce high levels of resolution in
regions of high flow. This approach can result in grids with highly distorted cells
and an overly high concentration of grid lines in high flow regions (and very few
grid lines in lower flow regions). This can present difficulties if the grid is applied
to problems that differ from that used to define the streamlines. For example, if
the grid is to be used to study the effects of well placement, then the grid must
be applicable for a variety of different flow problems. To provide grids with more
uniformity, it is useful to apply some amount of grid smoothing.

The basic idea of grid smoothing is to control the level of grid line concentration
throughout the domain. The procedure described here is relatively simple, though
more complex variants can be readily defined. Following the solution of Eq. (39)
on the fine scale in an x− y coordinate system and the determination of the initial
coordinate lines, the x and y locations of all of the grid line intersections can be
determined. These intersections, designated xi,j and yi,j, provide the locations of
the corner points of each coarse cell.

The grid smoothing now entails some number of Laplacian-type iterations of the
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form:
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where (xk
i,j, y

k
i,j) with k = 1 designates the initial grid, (xk+1

i,j , yk+1
i,j ) designates subse-

quent (smoothed) grids and ω is a relaxation parameter (0 < ω ≤ 1). For clarity, we
here use two subscripts for the grid block index. In the two dimensional examples
below, we used anywhere from 2-5 iterations of Eqs. (41) with ω = 0.6.

We now present an example illustrating the smoothing procedure. The perme-
ability field for a channel system is depicted in Fig. 7 (this permeability field is
from [61]). The initial coordinate lines, generated as described above, are shown in
Fig. 8. The grid is clearly highly concentrated in some regions and very coarse in
other regions. A more uniform grid, generated using two smoothing iterations, is
displayed in Fig. 9.

Figure 7: Permeability field for fluvial reservoir.

This grid is better suited for flow calculations. The final step in the grid gen-
eration procedure is to upscale the geocellular permeabilities to the cells of the
flow-based grid. This can be accomplished using the procedure described in §4.5.

Flow-based grids in three dimensions can be constructed using a similar ap-
proach to that described above. A streamline-based coordinate system is again
established as the initial grid, though the procedure is more involved in three di-
mensions. Smoothing is again applied to improve grid quality if necessary. Two
related but distinct techniques for three-dimensional streamline-based grid genera-
tion are presented by Castellini et al. [13, 12] and He [44].
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Figure 8: Initial flow-based grid for permeability field of Fig. 7 (from [87]).

Figure 9: Final flow-based grid after smoothing (from [87]).
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6.2 Elliptic grid generation techniques

Elliptic grid generation techniques entail the solution of nonlinear elliptic equations
for the determination of the mapping from logical space to physical space. In this
context, logical space can be thought of as a unit cube (in three dimensions), while
physical space refers to the actual simulation model. The description here closely
follows that of He [44].

The grid generation process provides the transformation

x(ξ) : ξn → xn, (42)

where n is the dimensionality, x represents the coordinates in physical space and ξ
represents the coordinates in logical space. Elliptic grid generation methods solve el-
liptic equations with x as the dependent variables and ξ as the independent variables
to obtain this transformation numerically. Boundary points are usually specified,
meaning that Dirichlet boundary conditions are prescribed for the elliptic solutions.

The mapping in Eq. (42) can be quantified in terms of the Jacobian matrix of
the transformation J . In the simple case of planar grids in two dimensions, the
Jacobian matrix is defined as:

J =

[ J11 J12

J21 J22

]
=

[
xξ xη

yξ yη

]
, (43)

where xξ = ∂x/∂ξ, etc. The determinant of J is referred to as the Jacobian J of
the mapping (J = detJ = xξyη − xηyξ). The Jacobian matrix in general varies
with location over the domain. In order to obtain one-to-one mappings, J 6= 0 is
required. In discrete form, J is proportional to the area of a cell. This mapping can
also be expressed through the so-called metric tensor G, which is directly related
to the Jacobian matrix via G = J TJ . The determinant of G is referred to as the
metric g, with g = J2 = (xξyη − xηyξ)

2 or J =
√

g.

The grid generation techniques applied here are based on the concept of “refer-
ence Jacobian matrices” or simply “reference Jacobians,” designated Jref . The idea
here is that we have a set of Jref (as a function of position) that we want the grid
to honor. These reference Jacobians might derive from flow information in some
portions of the domain (e.g., they can be determined from a streamline-based grid
generated as described previously) or they might be prescribed in such a way as to
resolve key geometric features (such as a well or fault). We can then construct a grid
that fits these Jacobian matrices in a “least-square” sense. Because the mapping
involves a least-square fit, some inconsistencies in the Jref are permitted.

Starting from the variational principle, an elliptic grid generation procedure
based on reference Jacobians is derived by Knupp [56]. The equations to be solved
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in two dimensions are

g22xξξ − 2g12xξη + g11xηη = −√gJR, (44)

where g11, g12 and g22 are the components of G and

R =

[
(S11)ξyη − (S12)ξxη − (S11)ηyξ + (S12)ηxξ

(S21)ξyη − (S22)ξxη − (S21)ηyξ + (S22)ηxξ

]
(45)

with S = J −1
ref . For further details on the method (in two and three dimensions)

and the numerical implementation, see [44].

We can use the elliptic grid generation method to combine different kinds of
information. As an example, we combine flow and geological information, as shown
in Fig. 10. The plot in the upper left shows a grid generated by a streamline-based
method while that in the lower left shows a fault resolved using the Jacobian-based
method. Starting from the upper left grid (which is used to define Jref over most of
the domain), and modifying the Jref in the region near the feature (as in the lower
left plot in Fig. 10), we solve Eq. (44) to obtain a grid that combines the two types
of information, as shown in the grid on the right in Fig. 10. We can also apply this
procedure to generate grids that combine information from multiple flow scenarios
in order to form grids that are less dependent on one particular flow.

6.3 Assessing the quality of the upscaled model

In this section we will assume that the upscaled model is defined by the flow-based
grid and the cell k∗ or T ∗, computed using the methods described earlier. The
upscaled model is intended to capture, to the extent possible, the effects of key
geological and geometric features. Because the fine scale multiphase flow model
may be overly time consuming to actually simulate even once, it is often difficult
to assess the quality of the coarse scale description. We now briefly discuss some
strategies for assessing the accuracy of the coarse model and describe an approach for
model iteration. In assessing the upscaled model, the idea is to simulate a problem
that is representative of the fine scale problem without simulating the actual fine
scale model. One means of accomplishing this is to simulate unit mobility ratio
displacements, as described in [29].

In a unit mobility ratio displacement, the displacing phase has properties iden-
tical to those of the displaced phase. This model is much faster to run than an
actual two or three-phase flow problem because the pressure and velocity fields do
not change during the course of the simulation. Thus, the pressure equation need be
solved only once on the fine scale. The unit mobility ratio case can be recovered from
the two-phase equations by setting the oil viscosity equal to the water viscosity and
the relative permeabilities equal to the phase saturation; i.e., krw = S, kro = 1− S,
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Figure 10: Combining flow information and feature resolution using a Jacobian-
based grid generation method (from [44]).
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where S is water saturation. In this case, the dimensionless pressure equation is
identical to Eq. (39). The equation describing the movement of the individual phase
fronts within the reservoir, the saturation equation, is then given by:

∂S

∂t
+∇ · (uS) = 0 , (46)

where φ is assumed to be constant. Because the velocity field does not vary in
time, this equation can be solved very efficiently and accurately by integrating along
streamlines (e.g., Prevost et al. [75]). The Darcy velocity must first be computed
by applying Darcy’s law to the pressure field (u = −k · ∇p).

The solutions of Eqs. (39) and (46) can be used as “diagnostics” to assess the
accuracy of the upscaled model. Although these equations differ from the actual flow
equations, they do capture many important aspects of two-phase (or multiphase)
flow problems. Specifically, the effects of heterogeneity are often similar in the unit
mobility and two-phase flow problems.

Various quantities can be compared between the fine and coarse scale solutions
of Eqs. (39) and (46). The two that are perhaps the most representative of the
general level of accuracy of the upscaled model are the global (overall) flow rate and
the fractional flow of displaced fluid (e.g., oil cut) at the outlet (or production well)
as a function of pore volume injected. The global flow rate through the model can
be quantified in terms of the global equivalent permeability, Kg. For global flow in
the x direction, driven by pressure boundary conditions at x = 0 and x = Lx, this
quantity is given by:

Kg,x =
QxLx

LyLz∆p
, (47)

where ∆p is the difference in pressure between x = 0 and x = Lx and Qx is the
total flow rate through the system in the x direction. For global flow in the y or z
directions, similar expressions can be obtained. The grid structure can be iterated
until the agreement in these two (or similar) quantities is acceptable. A number of
different coarse grid structures can be compared to the fine grid solution relatively
efficiently since the fine grid solution of Eq. (39) need only be computed once.

The overall gridding, upscaling and diagnostic procedure described above is il-
lustrated schematically in Fig. 11 for a two-dimensional system. The first step here
is the solution of a single-phase fine grid flow problem. This solution is used both
as the reference solution (against which coarse scale simulation results will be com-
pared) and in the grid generation procedure. Next, a grid is formed and k∗ or T ∗

is computed for the coarse scale cells (using any of the methods discussed above).
Following this, a global coarse scale flow problem is solved and the result compared
to the fine scale reference solution. Iteration on the grid structure can be used to
improve the agreement with the fine scale solution.
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3. Compute coarse grid     
properties  (k*, φ*)

Fine grid model (k, φ)
1. Perform fine grid single phase
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grid flow results

2. Form coarse grid structure

Iterate through steps 
2-4 if necessary

Figure 11: Schematic illustrating iterative grid generation procedure and use of flow
diagnostics.
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These diagnostics are computationally inexpensive within the context of flow-
based gridding procedures since fine scale flows are already computed in the grid
generation step. The ability to perform an efficient and accurate assessment of
the coarse scale model represents a significant advantage for flow-based gridding
techniques over other grid generation procedures that are not based on fine scale
flow solutions. As a final check on the accuracy of the coarse model, it is useful
to perform a multiphase flow simulation of a portion of the fine scale model and
compare this solution to that for the corresponding region of the coarse scale model.
This provides an assessment of the accuracy of the coarse scale model in terms of
multiphase flow effects.

7 Numerical upscaling results

We now present upscaling results for a number of systems. In several of these ex-
amples we use the North Sea channelized system presented in Christie and Blunt
[17]. In other cases we use geostatistical models generated using GSLIB algorithms
(Deutsch and Journel [22]). Most of the results discussed in this section were pre-
sented previously in recent papers and theses (e.g., [62, 87, 88, 44, 86]). The results
presented here are not intended to be exhaustive but rather illustrative of the per-
formance of the various techniques for different geological models. Some of these
results are presented in terms of total flow rate through the system for a prescribed
pressure difference (i.e., Q or Kg,x, as defined in Eq. (47)).

7.1 Local and extended local upscaling for highly
heterogeneous systems

In the case of two-point geostatistical models (e.g., spherical variogram models),
when the permeability correlation directions are oriented with the simulation grid,
purely local upscaling techniques have been shown to perform well in terms of main-
taining the total flow through the model. For example, for two-dimensional systems
of this type, if we upscale by about a factor of 5 in each coordinate direction (giving
a coarse grid with a factor of 25 fewer grid blocks than the fine grid), Kg,x computed
from the coarse model will typically show errors of less than 10% relative to the
reference fine scale calculation (see results in [29, 89, 45]). In these cases, the use of
extended local procedures (i.e., border regions, as described in §4.4) does not appear
to lead to significantly improved coarse scale results [89]. For models of this type,
improved transport results (e.g., oil cut), relative to those obtained using uniformly
coarsened grids, can be achieved using flow-based nonuniform grid coarsening within
a Cartesian grid framework [29, 28]. The observations that border regions do not of-
fer much improvement but that Cartesian-based nonuniform coarsening procedures
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do provide enhanced accuracy for transport are both related to the fact that the
correlation structure of the permeability field is aligned with the simulation grid.

Figure 12: Continuous and channelized layers from North Sea reservoir (model from
[17]).

Border regions often do provide enhanced accuracy when the correlation struc-
ture of the permeability field is not aligned with the grid or when the permeability
field is characterized by multipoint geostatistics. We illustrate the potential improve-
ment in coarse model accuracy offered through the use of border regions with results
from [88]. These calculations use the model of [17]. This model is of dimensions
60×220×85. The upper 35 layers display a somewhat continuous permeability field,
while the lower 50 layers are highly channelized (representative layers are shown in
Fig. 12). We illustrate the impact of border regions by considering each layer to
be a two-dimensional system, of dimensions 220× 60, which is upscaled to 22× 20
(note that the x and y directions are now switched relative to that specified in [17]
such that the longer dimension is here the x direction). Results are presented as
scatter plots, with Kg,x for each coarsened layer plotted against Kg,x for the same
layer simulated using the fine scale permeability field. A perfect upscaling would
give all of the points on the 45◦ line.

In the first set of results, the models are upscaled using a purely local procedure
(r = 0) and periodic boundary conditions. Very similar results were obtained using
pressure - no flow boundary conditions, so the effect of the boundary conditions in
this case is small [88]. From Fig. 13, we see that the coarse scale results for the layers
with the continuous permeability fields, indicated by open circles on the figure, are
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Figure 13: Cross plot of Kg,x from coarse model (r = 0) against Kg,x from fine
model. Open circles correspond to continuous layers, solid circles to channelized
layers (from [88]).

in close agreement with the fine scale results. Errors for the lower layers, designated
by solid circles, are by contrast quite substantial. For all of the data in Fig. 13, the
average relative error is 46%.

Fig. 14 displays results using the extended local upscaling (r = 1) using periodic
boundary conditions (though again very similar results were obtained using pressure
- no flow boundary conditions). We see considerable improvement in the coarse scale
results for the channelized layers. The average relative error for all of the data is
reduced to 27% in this case. This error is still significant, though it does represent
a clear improvement over that of Fig. 13.

Part of the error in the coarse scale results in Figs. 13 and 14 is due to numerical
discretization effects rather than upscaling effects. We can gauge the relative mag-
nitudes of these two effects by refining the grid (back to 220 × 60) in the upscaled
models while retaining the 22×20 coarse scale permeability field (i.e., we project the
coarse scale permeability field onto the fine grid). Results for 220×60 models of this
type with the coarse permeability field generated using r = 1 are shown in Fig. 15.
The error here is reduced considerably relative to that in Fig. 14 (average relative
error is here 16%). This illustrates that a significant portion of what is considered
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Figure 14: Cross plot of Kg,x from coarse model (r = 1) against Kg,x from fine model
(from [88]).

to be “upscaling error” may really be due to numerical discretization effects rather
than to inaccuracy introduced in the calculation of k∗.

We note finally that transmissibility upscaling (using an extended local proce-
dure) was found to provide better overall accuracy than permeability upscaling for
the difficult channelized cases in [17]. This may be because transmissibility upscal-
ing avoids the additional approximations introduced in computing transmissibilities
from k∗ via Eq. (13). The local-global procedure illustrated below applies transmis-
sibility upscaling for this reason.

7.2 Near-well upscaling

We illustrate the potential impact of near-well heterogeneity, and the importance
of capturing these effects in coarse scale models, through an example from [62].
This example involves a horizontal well in a complex three dimensional sand-shale
reservoir containing an oil zone, an aquifer and a gas cap. This case was considered
previously by Aziz et al. [5] who used this system to illustrate the effects of fine
scale heterogeneity on horizontal well performance.
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Figure 15: Cross plot of Kg,x computed on 220×60 grid using k∗ from coarse model
(r = 1) against Kg,x from fine model (from [88]).

The fine scale reservoir model contains 100 × 50 × 32 cells and is described in
[5]. The coarse model, of dimensions 25× 25× 12, was generated through a uniform
coarsening of the fine scale model using a local upscaling method, with an additional
layer retained in both the aquifer and gas cap. The single horizontal producer was
specified to produce at a target rate of 5000 bbl/day, with a minimum bottom hole
pressure constraint of 1500 psi.

Results for oil rate for the fine model, the coarse model using a well index com-
puted directly from the upscaled permeability (i.e., Wi(k

∗) using the terminology
of §4.6) and the coarse model with near-well upscaling (W ∗

i and T ∗
w) are shown in

Fig. 16. The coarse results without the near-well treatment are clearly in consid-
erable error relative to the reference fine scale results. This is mainly due to the
fact that the coarse model in this case continues to produce at the target rate for
a period of time that is 10 times too long. The coarse model with the near-well
upscaling, by contrast, provides a much more accurate pressure response and, as
a result, switches to bottom hole pressure control at about the correct time. This
behavior is evident from the pressure profiles shown in Fig. 17. The upscaled model
with the near-well treatment also provides accurate results for water cut. Results
for GOR, though much more accurate than coarse scale results without near-well
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Figure 16: Oil production rate (three-phase flow) for sand - shale system (from [62]).

upscaling, are not as accurate. Results for both water cut and GOR are presented
in [62].

7.3 Adaptive local-global upscaling

We next illustrate the improvement in results that can be attained using the adap-
tive local-global upscaling procedure described in §5.2. Extensive numerical results
are presented in [16, 15, 86, 14]; the results shown here represent a small sample.
We consider channelized systems from the model in [17], as discussed above. The
examples presented here are from Wen et al. [86].

The first example involves a two-dimensional system. The permeability field,
shown in Fig. 18a, is layer 73 (of dimensions 220×60) from [17]. Pressure boundary
conditions are imposed at the lower left and upper right of the model, over regions
indicated by the heavy lines in Fig. 18a. The total flow rate Q through the fine scale
model is 11.02 (in dimensionless terms). The fine scale model is upscaled uniformly
to 22 × 6. Shown in Figs. 18b - 18d are comparisons between fine scale and coarse
scale results for pressure. The fine scale results, shown in Fig. 18b, are first averaged
onto the coarse grid and then contoured.
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Figure 17: Wellbore pressure for sand - shale system (from [62]).

The pressure field determined from a coarse scale model generated using extended
local T ∗ upscaling (with constant pressure - no flow local boundary conditions) is
shown in Fig. 18c. Because local upscaling is unable to capture the effects of large
scale permeability connectivity for this system, the upscaled result shows consid-
erable error relative to the fine scale solution. The total flow rate computed from
this model is 4.60, an error of 58%. Results using adaptive local-global upscaling
(with two iterations) are shown in Fig. 18d. These results are very close to the
averaged fine scale results and clearly represent a significant improvement over ex-
tended local T ∗ upscaling. In terms of total flow rate, the model generated using
adaptive local-global upscaling gives Q = 10.77, which is within 2.3% of the fine
scale solution.

We next consider a three-dimensional system and illustrate the performance of
“reduced” adaptive local-global upscaling (in which no border regions are used in
the initial T ∗ calculation and border regions containing two rings of fine cells are
used during the iterations). This system contains the 50 channelized layers from
the model considered above (from [17]) and is of dimension 60 × 220 × 50 (in this
example, the x and y directions are now as specified in [17]). The coarsened model
is 12× 44× 10 (upscaling ratio of 125).

Using the well arrangement specified in [17], errors in well flow rates using all of
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Figure 18: Permeability field (from [17]) and pressure profiles for fine and coarsened
models (from [86]).

the upscaling techniques were relatively small. We therefore employ a different well
arrangement than was specified in the original problem. Specifically, an injection
well I is located at (5, 216), production well P1 is located at (55, 6) and production
well P2 is located at (5, 46). The permeability field and well locations are shown in
Fig. 19.

Results for well flow rates computed using models upscaled with different proce-
dures are shown in Table 1. Flow rates are normalized with respect to the injection
rate in the fine model. For this case, errors using both extended local k∗ upscal-
ing (r = 1, no near-well upscaling) and extended local T ∗ upscaling (r = 1, with
near-well upscaling) are large. Specifically, errors in injection rate are 46% and 24%
respectively and errors in P2 are 79% and 47%. The use of full adaptive local-global
(ALG) upscaling (with r = 1) decreases the errors substantially - error in injection
rate is now 4.2% and the error in P2 is 5.8%. The use of the reduced adaptive local-
global procedure provides a similarly high degree of accuracy. Using ALG (reduced),
the maximum flow rate error is actually decreased relative to the full adaptive local-
global procedure, presumably due to the effects of random errors (maximum error is
now 1.8%). The accuracy of these results and those in the two-dimensional example
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Figure 19: Permeability field and well locations for channelized system (model
adapted from [17]).

(Fig. 18) demonstrate that high degrees of accuracy can be obtained even though
a two-point flux approximation is used in local-global upscaling. This highlights
the fact that, although technically a multipoint flux approximation is required (due
to full-tensor effects), the more efficient two-point approximation suffices in many
cases.

The last column in Table 1 displays timings for the various upscaling proce-
dures. These timings are normalized with respect to the timing for the full adaptive
local-global upscaling procedure. It is apparent from the table that ALG (reduced)
requires less computation than any of the other methods (all of which incorporate all
of the fine cells corresponding to a ring of coarse cells around the target region) and
is of comparable accuracy to ALG (full). This suggests that the reduced adaptive
local-global upscaling procedure may represent an accurate and efficient technique
for practical reservoir simulation problems.

Table 1: Flow results for permeability field and well configuration of Fig. 19.

Model I P1 P2 CPU

Fine 1 0.395 0.605 –

k∗ only 0.543 0.413 0.130 0.64

T ∗ + nwsu 0.759 0.438 0.321 0.65

ALG (full) 1.042 0.402 0.640 1

ALG (reduced) 0.990 0.396 0.594 0.24

7.4 Flow-based gridding and upscaling

We illustrate flow-based gridding and upscaling with an example from Wen et al.
[87]. This case involves a permeability field with oriented layers, generated using
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Gaussian sequential simulation [22]. The permeability field is of dimensions 100×100
and displays layering (and principal axes of permeability) oriented at an angle θ
of 30◦ relative to the x axis. The correlation length along the direction of the
layering is 0.8L while the correlation length normal to the layering is 0.04L, where
L = Lx = Ly is the length of a side of the (square) domain. Permeability is log-
normally distributed, with the variance of log k equal to 4. In each fine scale block we
set k2 = 0.1k1, where k1 is the principal value of permeability in the direction along
the layering and k2 is the principal value of permeability in the direction across the
layering. The permeability in the x− y coordinate system is therefore a full tensor
quantity, which can be determined from k1 and k2 in each block and θ via:

k(x, y) =

[
k1 cos2 θ + k2 sin2 θ (k1 − k2) sin θ cos θ
(k1 − k2) sin θ cos θ k1 sin2 θ + k2 cos2 θ

]
, (48)

where θ = 30◦. The permeability field is shown in Fig. 20 (log(k1) is the scalar
quantity actually displayed in the figure). The flow-based grid for this case is of
dimensions 20× 20. This grid, shown in Fig. 21, was generated using the technique
described in §6.1. Upscaled permeabilities were computed using the finite volume
method described in §4.5.

Figure 20: Permeability field with layering oriented at 30◦ (from [87]).

The simulation in this case involves two-phase flow. Relative permeabilities to
water and oil are specified as krw = S2 and kro = (1 − S)2 and the viscosity ratio
(µo/µw) is 10. The total mobility therefore varies in time, which means that the
pressure equation (10) and the saturation equation (9) must be solved at each time
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Figure 21: Flow-based grid after smoothing for permeability field of Fig. 20 (from
[87]).

Figure 22: Total flow rate for two-phase flow in the x direction in oriented system
(from [87]).
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Figure 23: Oil cut for two-phase flow in the x direction in oriented system (from
[87]).

step (an IMPES procedure is applied). Flow in this case is in the x direction and is
driven by boundary conditions of the same form as those used to generate the initial
streamlines. We fix S = 1 at the inlet edge of the model for these simulations.

Results for total flow rate (Q) as a function of time (PVI) are shown in Fig. 22.
Four curves are shown in the figure. These correspond to the 100 × 100 fine grid
solution (solid curve), the 20×20 uniform coarse grid solution generated using r = 1
(dotted curve), the flow-based grid solution with k∗ computed with r = 0 (dot-dash
curve), and the flow-based grid solution with k∗ computed with r = 1 (dashed
curve). The flow-based grid results, with k∗ computed using r = 1, are in close
agreement with the fine grid results (at initial time, the error is about 5%). This is
in contrast to the uniform grid results with r = 1 and to the flow-based grid results
with k∗ computed using r = 0 (initial time errors for both of these results are more
than 20%).

Results for oil cut (Fo) versus PVI are shown in Fig. 23. Again we see the
best accuracy using the flow-based grid with k∗ computed using r = 1, though
breakthrough does occur slightly earlier than in the fine scale solution. This may be
due to numerical dispersion effects. The uniform grid predicts late breakthrough, as
does the flow-based grid with k∗ computed using r = 0 (though error is less in this
case). The results of Figs. 22 and 23 demonstrate that a grid formed by solving a
single-phase flow problem can still be used within the context of a two-phase flow
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Figure 24: Multiple-channel system in three-dimensions: left - permeability field;
right - flow results (from [44]).

simulation. It is important to note that the coarse scale flow-based grid model
required a factor of 60 times less computation time than the fine model. These
savings will be realized each time the coarse model is run. The grid generation
and permeability upscaling calculations required only about 0.4% of the fine grid
simulation time, so the overhead cost is quite small for this problem.

Our final example (from He [44]) involves the use of a streamline-based grid
for a channelized system in three-dimensions. The channelized system, shown in
Fig. 24, is generated using FLUVISM, an object-based geostatistical tool [23]. This
tool allows the user to specify the maximum number of channels, channel width,
thickness and sinuosity ranges, orientations, etc. Indicator-type data are generated
and permeabilities are assigned accordingly (here we assign 1000 md for the sand
and 1 md for the background regions). This type of permeability field is highly
discontinuous and the flow is for the most part in the channels.

The fine model is of dimensions 100×100×20 and the coarse models are 20×20×
10 (upscaling factor of 50). Results are shown for both Cartesian and streamline-
based grids and for both k∗ and T ∗ upscaling (a global method based on a two-point
flux approximation is used in this case for T ∗ upscaling; see [44] for details). The
cyan curve in Fig. 24 (flow-based grid plus transmissibility upscaling) gives the
closest result compared to the fine results. Here the upscaling method plays the
more significant role in the accuracy of the results in terms of both oil cut and total
flow rate Q. Specifically, it is the use of the more accurate T ∗ upscaling technique
that most impacts coarse grid accuracy in this case. This is because the streamline
grid is limited in terms of its ability to resolve the multiple (and sinuous) high-flow
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channels. The use of the streamline grid does, however, provide improvement for
both oil cut and total flow rate.

8 Concluding remarks and future directions

In this paper, techniques for upscaling detailed geocellular models were described
and applied. The methods discussed include local, extended local, global and quasi
global procedures for computing upscaled permeability or transmissibility, tech-
niques for upscaling to irregular quadrilateral cells, upscaling in the vicinity of wells,
and the use of flow-based gridding procedures for capturing the effects of connected
permeability in coarse models.

The various upscaling methods were shown to provide coarse scale results of
varying levels of accuracy. For example, for the North Sea permeability field consid-
ered in [17], it was shown that purely local permeability upscaling provided accurate
coarse scale results for the upper, more continuous layers. The coarse models gen-
erated in this way were not nearly as accurate, however, for the lower channelized
layers. For these layers, the use of border regions in the upscaling improved the
coarse scale results considerably. The adaptive local-global procedure was shown to
further enhance the results for highly heterogeneous reservoirs. Near-well upscaling,
which can be applied as an extended local technique or within the context of adap-
tive local-global upscaling, was shown to provide improvement in modeling wells.
The benefits of smoothed flow-based grids were illustrated using a permeability field
that was oriented relative to the underlying coordinate system. In this case it was
demonstrated that the combined use of the flow-based grid and border region up-
scaling provided the most accurate overall results. Flow-based gridding combined
with transmissibility upscaling was also shown to be very effective for the coarse
modeling of a channelized system in three dimensions.

The upscaling of two-phase flow functions (e.g., calculation of pseudo relative
permeabilities) was not discussed in this review. As indicated in the Introduction,
such upscaling will be required when high degrees of coarsening are applied. In
addition, this type of upscaling may also be necessary when additional two-phase
flow effects (such as effective coarse scale capillary pressure functions) are required.

A number of techniques were described and illustrated individually in this pa-
per. It will be of interest to investigate hybrid procedures that combine one or more
of the methods described here to give a more powerful overall upscaling method-
ology. Potentially useful combinations include the use of local-global upscaling in
conjunction with flow-based gridding as well as the coupling of many of the tech-
niques described here with approaches for two-phase upscaling. Extension of many
of the techniques presented here to unstructured models is also of great interest. In
addition, if many geological models are to be considered, it is important that the
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gridding and upscaling techniques be further (or completely) automated.

Finally, it is very important that we achieve a better understanding of the error
introduced by the various upscaling procedures. By quantifying this error through
the development of error models, we will be able to determine the appropriate up-
scaling method and level of coarsening to use for a particular problem. Error models
can also be used to correct predictions made using coarse models. Progress in the
general area of error modeling has been reported by [41, 60, 68] among others,
though the techniques have thus far been applied only for idealized problems. The
development of practical methods to assess and model upscaling error will allow for
the use of coarse scale simulations with the appropriate level of model complexity.
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Nomenclature

A area
f fractional flow function
Fo oil cut
G arbitrary pressure gradient
G metric tensor
J Jacobian matrix of grid transformation
k permeability tensor
k∗ effective or equivalent permeability tensor
krj relative permeability for phase j
Kg global equivalent permeability
l dimensionless correlation length
L system length
m mass flow rate
n normal vector
p pressure
q volumetric flow rate
Q global flow rate
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r size of border region or radius
S saturation
t time
T transmissibility
u Darcy velocity
V volume
Wi well index for block i
x slow (coarse) scale or physical space coordinates
y fast (fine) scale
φ porosity
λ mobility
µ viscosity
θ layer orientation
ρ density
σ standard deviation
ω power averaging exponent, relaxation parameter
ξ logical space coordinates
Ψ streamfunction

Subscripts

b bulk
i block index
j phase or block index
l fine block index
o oil
ref reference
t total
w water or well
x, y, z coordinate direction

Superscripts

˜ per unit volume
∗ upscaled, effective or equivalent
c coarse scale
j flow solution (1 or 2)
k iteration number
w well
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