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ABSTRACT  

There has been increasing global attention to the growing demand for a cost-efficient and carbon free energy resource to power 

development of artificial intelligence (AI), as well as the application of AI for scientific challenges. AI has the potential to both transform 

geothermal energy exploration and greatly increase the supply of renewable energy. The development of exploration-focused AI 

techniques, however, requires a large dataset of geologic models of geothermal systems for training algorithms. This dataset needs to be 

both geologically realistic and sufficiently comprehensive in order for geoscientists to apply these algorithms effectively to real-world 

exploration campaigns. Unfortunately, such a dataset for geothermal exploration is currently unavailable. The scarcity of geothermal sites, 

compared to conventional oil and gas fields, as well as the lack of digitized and systematically formatted data from earlier exploration 

efforts, has contributed to this gap. In this study, we address this issue by developing a dataset of geologic models of geothermal systems 

that combines real-world data with advanced physical simulations. This dataset, named “GeoGym”, represents a significant step forward 

in AI training and algorithm development for geothermal exploration. It enables a quantitative assessment of algorithm-assisted decision-

making and data collection strategies.  

1. INTRODUCTION 

In an era of urgent climate concerns and growing clean energy demands, geothermal energy is a baseload power with a large development 

potential (IEA, 2024). However, despite its promise, the exploration for viable geothermal resources has historically been hampered by a 

high failure rate of deeper exploration wells, making project development risky and costly (Siahaan et al., 2023). This high failure rate 

often arises from a diverse set of challenges: how to algorithmically or manually leverage individual collected geological, geophysical 

and geochemical datasets for well targeting? How to integrate these datasets together? How to assess and utilize uncertainty estimates in 

the decision making process? What is the best drilling strategy in terms of number and depths and types of temperature gradient or slim 

wells? What value do individual datasets contribute to the final drilling decision? When to end a drilling campaign? Many papers address 

one or more of these challenges, though often on just one or a limited number of geothermal sites - limiting the ability to quantitatively 

evaluate the generalizability and effectiveness of exploration methods across diverse sites.  

High-quality datasets are essential to address these challenges and support the rigorous testing of methods and data-types used for well 

targeting. The success of modern AI across diverse fields—from autonomous vehicles relying on massive driving datasets, to large 

language models (LLMs) trained on vast text corpora—underscores the transformative power of publicly available, large-scale data. 

Similarly, robust datasets and benchmarks in the geothermal exploration space, open to academia and industry, will lead to development 

of AI products that will enhance reservoir characterization, reduce development risks, and increase geothermal energy production.  

 

To address this gap, we assembled, for the first time, a dataset of more than 15 real-world geothermal reservoir sites, following a 

standardized format. This dataset aims to establish a benchmark for advancing geothermal exploration research and innovation. 

2. METHOD 

The presented dataset, which currently includes thermal models for over 15 geothermal sites, is publicly accessible (Liang et al., 2025), 

and will be expanded as new data becomes available. To construct these models, we integrated well temperature measurements, geological 

surveys, and other relevant subsurface information to accurately capture the complex spatial relationships among faults, layers, and 

lithological units. We then performed numerical simulations for each location to replicate the physical processes governing heat and fluid 

flow, calibrating the models against observed well temperature data. The resulting temperature distributions show good agreement with 

real-world measurements, highlighting the reliability of both the modeling approach and the input data. 

2.1 Repository Structure 

We published our benchmark dataset in a repository hosted on Kaggle. The repository is structured in the following format (Figure 1): 



Liang et al. 

2 

 

 

Figure 1: Folder structure of the dataset repository 

 

In the following, you can find the detailed descriptions of the items in the repository. 

1. Each individual site’s dataset is placed in a separate subfolder within the DataFolder directory. 

2. The script test.py checks every folder to confirm that the formatting and file contents are correct. 

3. The script visualize.py/.ipynb is used to quickly visualize the dataset in the PyVista package. An example of a 3D 

visualization is shown in Figure 2. 

 

Figure 2: 3D visualization of the temperature cube shown in isosurface, with vertically exaggerated topography to enhance 

visual clarity. 

 

2.2 File Description 

Each site data folder contains the following files described in Table 1. To ensure the uniformity of dataset, the following rules are 

applied to the dataset: 

1. All measurement units for distance are in meters and for temperature are in degrees Celsius. 

2. Centered Coordinate System: All models are centered at the origin to maintain a standardized spatial reference for data 

integration and comparison. By removing direct geographic references, each site remains anonymous, thereby encouraging 

broader community contributions and more open collaboration on model improvements. 

Table 1: Description of the files in the repository 

File Name Format Description Comments 
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SiteName_aoi .csv file 

Comma-separated file with six columns: Xmin, 

Xmax, Ymin, Ymax, Zmin, Zmax. This defines 

the area of interest (AOI), specifying the 

dataset’s spatial bounds. 

This file defines the scale of the 

dataset. All the coordinates have 

been shifted to the origin, i.e. 

Xmin = 0, Ymin=0 and Zmax 

=0. The reference elevation is 

set to the minimum elevation of 

the topography 

SiteName_elev_rbf .pkl (Python pickle) 

Stores a SciPy RBFInterpolator providing 

elevation data. Given (x, y), it returns a z-value 

that corresponds to the local topographic 

elevation. 

The minimum elevation of the 

topography of the area is shifted 

to Z=0 for the consistency and 

anonymity. 

SiteName_temperature_rbf .pkl (Python pickle) 

Contains a SciPy RBFInterpolator for 3D 

temperature data. Given (x, y, z), it returns a 

corresponding temperature value based on the 

interpolation model. 

The interpolator is constructed 

by a grid with 100m x 100m 

100m cell size. The linear kernel 

is used for the RBF interpolator. 

 

3. APPLICATIONS 

The benchmark dataset presented here offers abundant opportunities for AI-driven research in the geothermal sector, enabling researchers 

to conduct quantitative evaluations of novel algorithms and computational methods. By providing standardized, diverse data, it also serves 

as a valuable resource for educational purposes, allowing students and instructors to explore real-world geothermal scenarios in a 

structured, consistent manner.  

The dataset supports multiple “games” or benchmarks. One is the challenge of developing an algorithm for maximizing discovered 

temperature under a fixed drilling budget, across multiple drilling campaigns. Researchers can also improve such algorithms for aiming 

not only for the highest mean temperature outcomes across multiple sites, but also for reduced performance variance across sites. This 

benchmark metric is discussed in more detail in the following section. Another challenge focuses on predictive modeling: given just a few 

sampled wells, the task is to estimate either the complete subsurface temperature distribution or the temperature at any new well location. 

These complementary scenarios highlight the dataset’s versatility for both cost‐constrained decision‐making and advanced machine‐

learning interpolation, reflecting the real‐world complexities of geothermal exploration. 

Building on the first metric of cost-contrained exploration, we developed a game environment called GeoGym—showcased at the 2024 

Geothermal Rising Conference (GRC2024)—to demonstrate one practical application of this benchmark. In the next section, we delve 

into the details of the GeoGym setup and how it leverages the dataset for interactive geothermal exploration and learning. 

3.1 GeoGym 

The name GeoGym is inspired by the Gymnasium library (Towers et al., 2024) - an API standard for reinforcement learning with a diverse 

collection of reference environments developed by OpenAI. We designed this environment to provide a similar standard environment in 

geothermal for training both algorithmic and human agents. A snapshot of the graphical user interface for human players is shown in 

Figure 3. The game rules are set up to mimic an actual exploration process and includes the following steps: 

- Each player is assigned a random site and given initial funds of $1M. 

- The players have the option to purchase 3 types of datasets if available for the site: gravity data, magnetics data and 2 meter 

temperature data. Each dataset costs $50k. 

- The players have the option to drill 4 types of wells, each of them with a different cost: 

- 100m - $50k 

- 250m - $100k 

- 500m - $250k 

- 750m - $500k 

- The player can ‘place a well’ on a desired location within the area of interest. 

- The 3D interpolation of the ‘well temperature’ and the 2D temperature profiles are shown. 

- The player continues drilling wells until they run out of funds. 

- The goal is to find the maximum temperature in the field. 
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Figure 3: Screenshot of the GeoGym game. The left sidebar displays the used and remaining funds, along with the available 

data that can be purchased. On the right, three tabs allow users to toggle between the map view, 3D view, and drilled well 

data. A dropdown menu in the center presents different well options, each with its own associated cost. The pin point shows 

the location of the first drilled wells and its highest temperature. The colored map shows a slice at depth of the 3D 

interpolation of the temperature field based on the well data. 

 

3.2 Performance Metrics 

To account for variations in the maximum attainable temperatures across different sites, we introduced a percentage-based metric to 

measure a user’s performance regardless of the site played. We use this metric to quantitatively evaluate the performance of different 

players on different sites and also later for the objective function for the algorithm.  

𝑓𝑡𝑒𝑚𝑝(𝑇) =
𝑇 − 𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
× 100%          (1) 

where 𝑇𝑚𝑖𝑛 and  𝑇𝑚𝑎𝑥 are the minimum and maximum temperature one can achieve with the maximum depth of drilling in the game 

(750m in the current game).  

3.3 Game Results Analysis 

During the GRC 2024 conference, the GeoGym game attracted many players from both academia and industry. In total, 65 players 

participated, generating 235 completed game rounds across 20 different geothermal sites. One site’s outcomes are shown in Figure 4, 

where each color‐coded line represents a single player’s approach. On the horizontal axis is the cumulative drilling cost, while on the 

vertical axis is the highest temperature found so far in that playthrough. The black dashed line near 140 °C indicates the maximum possible 

temperature attainable at this specific site. 

Close inspection reveals contrasting strategies. The orange player (visually emphasized with round markers along the orange line) 

demonstrates what we call “progressive exploration,” making incremental investments in shallow wells, before finally drilling a deeper, 

more expensive well. This approach spreads out risk and collects subsurface information along the way. In contrast, the light‐blue player 

(marked with diamond symbols on the light‐blue line) exhibits a “leap of faith” strategy, racing to a deeper well at an earlier stage to 

potentially secure a higher temperature faster. While this can be highly rewarding, it also risks running out of funds if the early deep well 

does not yield the expected results. Figure 4 underscores that even when players are given the same site and starting budget, the chosen 

exploration path strongly influences both the total cost spent and the peak temperature reached. The diversity of colored lines in the plot 

highlights the myriad ways individuals balance drilling depth, location, and data acquisitions under budget constraints. Such variability 

also illustrates the game’s educational value—by experimenting with different strategies, players gain insights into real‐world trade‐offs 

encountered in geothermal exploration, where costly yet potentially high‐payoff wells must be weighed against more systematic, stepwise 

investigations. 
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Moving beyond a single site, Figure 5 offers a broader perspective across all 20 sites, combining results under the introduced performance 

metric. The solid green line represents the average percentage of the maximum site temperature achieved at each cumulative cost value, 

while the shaded region denotes the p25–p75 range. This view highlights how some players manage to approach the site’s thermal 

maximum quickly, whereas others remain well below the potential peak temperature, often due to premature budget exhaustion or 

suboptimal well placement. 

Finally, in Figure 6, we categorize observed drilling sequences into “progressive exploration” (non‐descending depths) versus “leap-of-

faith drilling” (early direct drilling of deep wells). The box plot demonstrates that progressive explorers tended to secure higher average 

maximum temperatures, reflecting the benefit of gathering incremental knowledge via shallower wells before committing to deeper, more 

expensive ones. By contrast, those who didn’t do enough exploration before drilling the deep well often achieved subpar outcomes, 

underscoring the risks of an unfocused strategy. These results not only emphasize the impact of informed decision-making within the 

GeoGym environment, but also highlight broader implications for real-world geothermal exploration, where effective sequencing and 

budgeting can significantly influence project success. 

 

Figure 4: The game result of a representative site played during GRC2024. Each different color represents a different 

player. The black dashed line shows the maximum possible temperature can be reached. Markers highlight the gameplay 

of two example players discussed in the text.  

 

Figure 5: The game result of all sites, evaluated based on the performance metrics introduced in this paper. The black 

dashed line represents the anticipated AI performance benchmark. 
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Figure 6: The performance based on different drilling strategies. The strategy is categorized based on the sequence of the 

drilling depth. If the depth sequence is non-descending, we categorize them as Progressive Exploration. Otherwise it will 

be categorized as Insufficient Exploration.  

 

4. DISCUSSION 

The results from the GeoGym game and the accompanying benchmark dataset underscore both the complexity and the promise of AI-

assisted geothermal exploration. As illustrated in Figure 4 (the multi‐color lines representing various players’ attempts at a single site), 

participants adopted a wide spectrum of drilling and data‐acquisition strategies. Some players opted for an aggressive “deep first” 

approach—investing heavily in their earliest wells to reach deeper, hotter intervals—while others followed a more conservative 

“ascending” strategy, starting with shallow wells and incrementally moving deeper to minimize initial expenditure. The box plot in Figure 

4 comparing these two cost‐sequence categories visually confirms that players who front‐loaded their drilling costs often achieved higher 

temperatures more quickly but occasionally ran out of funds before maximizing resource potential, whereas more cautious approaches 

sometimes yielded lower peak temperatures but did so more consistently. 

From a methodological perspective, the dataset’s uniform file structure and standardized coordinate system lowered the barrier to 

analyzing cross‐site results. While every site had different maximum attainable temperatures—necessitating a percentage‐based metric to 

enable fair comparisons—the consistent formatting allowed rapid prototyping of AI algorithms across multiple sites. Owing to the broad 

geological diversity encompassed in the more than 15 real‐world locations, the dataset offers unique opportunities for benchmarking 

algorithms on settings that vary by fault configuration, temperature gradient, lithological heterogeneity, and data availability. 

The positive reception at the GRC 2024 conference supports the value of “gamifying” geothermal exploration to attract not only experts 

but also newcomers from academia and industry. Informal feedback revealed that participants rapidly deepened their understanding of the 

interplay among geological uncertainty, well costs, and diminishing financial resources. At the same time, these real‐time decisions and 

their final outcomes—now documented in our dataset—can serve as a novel training resource for machine‐learning researchers developing 

new methods in geothermal targeting.  

Nonetheless, several limitations remain. The most critical of which is the representativeness of the training models for current exploration 

targets and the quality and quantity of data used for creating the models. Ongoing efforts aim to expand the dataset with additional sites, 

incorporate more complex geological and physical models to represent the subsurface more faithfully. 

Despite these caveats, the game results and the variety of strategies exhibited underscore the importance of developing consistent and 

tested algorithmic approaches to exploration strategies. The benchmark dataset provides a test bed for future algorithmic innovations, 

bridging research and real-world application by enabling scientists to develop exploration algorithms. We look forward to future work 

from research teams showing performance plots similar to the black line on Figure 5.   
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5. CONCLUSION 

In this paper, we introduced a first-of-its-kind benchmark dataset named GeoGym of over 15 geothermal sites, along with a gamified 

exploration environment. By blending curated real-world measurements with physically grounded simulations, the dataset provides a 

robust platform for testing machine‐learning algorithms and for teaching the fundamentals of geothermal exploration. The analysis of 

GeoGym gameplay at the GRC 2024 conference demonstrates that even small differences in drilling strategy and data-purchase decisions 

can have an outsized effect on outcomes. Observing human decision-making “in the wild” not only validates the dataset’s complexity but 

also opens avenues for improved AI algorithms designed to optimize well targeting under uncertainty. 

This work paves the way for further advancements in geothermal exploration research. Future expansions of the benchmark will include 

additional sites, more varied rock-property distributions, and additional datasets. We anticipate that these data and the associated gameplay 

records will help researchers refine both supervised and reinforcement-learning approaches, ultimately driving down exploration risks 

and catalyzing wider adoption of geothermal energy. By fostering an open, collaborative environment—both on Kaggle and through 

interactive demos such as GeoGym—we hope to accelerate innovation and usher in the next generation of AI‐enabled, cost‐efficient 

geothermal resource discovery. 
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