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ABSTRACT

We present a novel multiphase compositional model for geothermal reservoir simulation that incorporates phase separation phenomena
and explicitly represents fractures. Mass and heat transfer in porous media typically use phase saturation as an independent variable, but
this requires procedures for variable substitution during phase transitions. In contrast, the overall composition formulation avoids such
substitutions by maintaining persistent equations and variables in every cell. For brine and steam systems with high enthalpy, we adopt
this formulation, using enthalpy as the state variable instead of temperature. The model is introduced in a novel fractional flow form,
which enhances numerical efficiency. Fractures are modeled as two-dimensional objects within the surrounding three-dimensional porous
medium, offering a mixed-dimensional extension of the multiphase flow model. This allows robust simulation of fluid flow, heat transfer,
and phase separation, including the interaction between fractures and the porous medium. Our work makes two key contributions. First,
we extend a compositional model to its mixed-dimensional version, enabling numerical simulations of fractured media in complex fracture
networks. Second, we introduce an efficient interpolation scheme for H20-NaCl brine in pressure-enthalpy-composition (PHZ) space,
ensuring accurate representation of complex thermodynamic properties. We demonstrate the model's capabilities through simulations of
geothermal flow in challenging fracture network geometries.

1. INTRODUCTION

Geothermal energy extraction requires a comprehensive understanding of the geological, physical, and geochemical properties of the
reservoir, as well as the fluid properties of the geothermal fluids. To optimize energy extraction and improve reservoir management, robust
and efficient numerical thermal simulation tools are essential (Zhu & Okuno, 2014, 2016; Connolly et al., 2021). Traditionally, simulations
of mass and heat transfer in porous media include temperature as an independent variable, along with a set of natural variables. However,
this approach requires variable substitution procedures to handle phase transitions, which adds complexity to the implementation. In
contrast, the overall composition formulation offers the advantage of well-defined equations and variables at each cell, eliminating the
need for variable substitution procedures (Voskov & Tchelepi, 2012).

Geothermal systems, consisting of fractured rocks, presents additional challenges. The intricate behavior of fractured media, which
includes natural fractures and faults, can significantly affect fluid flow and thermal transport in the reservoir. These fractures act as key
pathways for heat and mass transfer, and their geometry and connectivity must be accurately represented to predict reservoir performance
(Kissling & Massiot, 2023). Despite advancements in simulation techniques, there is still a significant need for models that can accurately
represent complex fracture geometries. Many existing models, such as TOUGH2, use multi-continua approaches to simulate flow
(Bedoya-Gonzalez et al., 2022, 2023). The representation of fractures in these models lacks the precision needed to fully account for the
impact of fracture connectivity and heterogeneity (Kissling & Massiot, 2023). This gap highlights the need for mixed-dimensional
computational models, which can better represent the interaction between fractures and the surrounding matrix and serve as a baseline for
developing and comparing with multi-continua approaches or other upscaling techniques.

In this paper, we present a novel mixed-dimensional compositional flow model tailored for high-enthalpy geothermal reservoirs, based
on the overall composition formulation. The model incorporates a balance of mass, momentum, and energy transport, along with
constitutive laws and closure relationships for non-isothermal multiphase flow in fractured media. We explicitly represent fractures as
lower-dimensional objects, allowing for a more accurate modeling of fracture-matrix interactions. The following sections outline the
mathematical formulation, including the governing equations, initial and boundary conditions. We then present numerical results from
simulations of high-enthalpy geothermal systems, demonstrating the impact of fracture connectivity, heat transfer, and miscible phase
transitions. Finally, we offer some concluding remarks.

2. MATHEMATICAL MODEL

This section presents the mathematical model, including the geometry with an explicit representation of the fractures, the conservation
equations, constitutive relationships, and closure expressions for all dimensional objects, along with the initial and boundary conditions.
It concludes with the definition of the continuous problem to be solved.

The mathematical model can be seen as extension to compositional flow of the mixed-dimensional mathematical model for single-
phase flow in fractured porous media presented by Martin et al. (2005). We propose a formulation that combines the compositional
formulation provided by Faigle et al. (2015) with a fractional flow form of the equations (Chen, 2000).
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This leads to an equivalent fractional flow formulation consistent with Vehling et al., (2020) and verified using cases from Weis et al.,
(2014). A detailed verification of the implementation of this mathematical model is provided by Oguntola et al. (2025).

2.1 Geometry

In this subsection, the geometry is described in 2D. The extension to 3D follows similar concepts and ideas and is therefore not presented
here. To simplify the model's presentation, we assume that all fractures share the same geometrical properties. However, the simulation
framework allows for a fully dedicated set of parameters for each fracture in the domain.

Figure 1a depicts a 2D schematic representation of the matrix, fractures, and fracture intersections in an equi-dimensional geometry, where
the matrix, fractures, and fracture intersections are all considered as two-dimensional geometrical objects. Assuming a large aspect ratio
between fracture length and width, Figure 1b presents fractures and their intersections as lines and points, respectively, in a mixed-
dimensional geometry. This dimensional reduction is reflected into the original PDE system by defining partial differential equations
(PDEs) on lower-dimensional objects (Martin et al., 2005; Flemisch et al., 2018; Berre et al., 2021), as shown in the following subsections.
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Figure 1: Geometries: Schematic representations for the equi-dimensional domain (a) and the mixed-dimensional domain (b).

Let dj;, denote the matrix dimension or the maximum dimension of the domain () and let d denote the subdomain dimension. Define the
codimension as ¢: = d,, — d. Let Q¢ denote the subdomain associated with c, such that Q := U Q€. For instance, if d,,, = 2, Q° represents
the rock matrix, Q! represents the fractures and Q? fracture intersections. This description is relevant to Figure 2, where a fracture Q¢ (red
line) induces a pair of interfaces I'{ (grey lines) that connect the boundaries 90°~1 (blue lines).
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Figure 2: A fracture Q¢ (red line) inducing a pair of interfaces I'{ (grey lines) that connect the boundaries 901 (blue lines). For
illustration, the lines are shown separately in the figure, but in the mixed-dimensional domain, they geometrically coincide.
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2.2 Mixed-dimensional conservation equations
Let define the jump as

“|re +- Ipe orc>0
(gpe = {CIrs Flre) fore>0 1)
(0] forc=0
The mixed-dimensional conservation equations are as follows, starting with the overall mass balance:
2OL0) 4§ m+ (m)lpe = 0, in 05, @)
component mass balance:
9(8°¢pz .
% +7-(mg) + (mg)lpe = 0, in 0, 3)
overall energy balance:
(8P (ph—p)+8S(1—P)pscs T ,
QGNP U DPET) L 7. (g, + qg) + (qa + )l = O, in 2, @

Note that the mathematical structure of the conservation Equations (2-4) consists of an accumulation term, a divergence operator, and the
jump operator. The jump operator, as defined in Equation (1), connects the flux conserved between higher and lower-dimensional
subdomains.

Table 2 presents the set of primary variables characterizing the state of the system of the partial differential equations (PDEs) (2-4). If the
mixture contains N, components, the variables include pressure, (N, — 1)-overall compositions, and the enthalpy equation.

Table 2: Set of primary variables.

Symbol Physical field Unit

D Pressure MPa
Zg Overall component fraction -

h Specific enthalpy of fluid mixture MIJ/Kg

2.3 Mixed-dimensional constitutive equations

Since the balances above involve differential operators on vectorial fluxes, it is natural to provide constitutive relationships for each flux.
In the following set of equations, §€ represents the fracture width (in meter) raised to the power of the codimension c, such that for c = 2,
8¢ = 872 is given in square meters, for ¢ = 1, §¢ = &7 is given in meters and for ¢ = 0, §¢ = 1 is dimensionless.

The gravity component in Darcy’s law is given by

ww) =K wg, in° (5)
the overall mass flux is expressed as

m = —§°AKVp + §°w(p), in N°€ 6)
the component or phase mass flux is defined as

My, = feyyM+ bgyy, in N 7
the component or phase buoyancy flux is given by

by, =8¢ Yevy ffwfnvew(ﬁfvy - ane): in 02f, ()
the advective overall energy flux is expressed as

qq =6 Ysh, f,m, inQF )

the diffusive overall energy flux is given by
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2.4 Mixed-dimensional coupling equations

The set of fluxes in Equations (5-10) is not arbitrary, as each flux has a corresponding counterpart defined on the interfaces I'{ acting in
the direction perpendicular to the lower-dimensional subdomains. This establishes a set of coupling conditions between the PDEs defined
on each subdomain.

The gravity component in Darcy’s law is given by

w(w) =Ak,w g -n, only¥, (11)
the overall mass flux is expressed as

m = =k, = (plage-s — plac) +w(p), on I, (12)
the component or phase mass flux is defined as

Mgy = feyyMm + bgyy, on I (13)
the component or phase buoyancy flux is given by

bevy = Tevy fevy favew (Pevy — Pyve), on I, (14)
the advective overall energy flux is expressed as

qa = Xehyfym, only¥, (15)
the diffusive overall energy flux is given by

qa = —ke1 o (Tlgger = Tlge), on IE. (16)

2.5 Closure relationships

To complete the system of Equations (2—16), two groups of quantities must be defined. One group pertains to fluid mobility-related
quantities, while the other describes fluid properties. The first group is detailed in Table 3, while the second is described in the following
subsubsection.

Table 3: Definition of mobility-related quantities.

Quantity Description
K
Agy = XeyPy i Mass-weighted mobility of component ¢ in phase y
Ag = Z Agy Mass-weighted mobility of component &
12
Ay = Z Agy Mass-weighted mobility of phase 4
¢
A= Z Ae = z Ay Total mass-weighted mobility
[ Y
Ae .
fe= < Fractional flow of component &
A .
fi = = Fractional flow of phase 4

Table 2 presents mobility-related quantities that link the formulation in this document to the classical form of the multiphase
multicomponent system (Faigle et al., 2015). Note that the subscripts £ — 17 and y — € are reserved for component and phases, respectively.
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The partial fractions yg, of component ¢ in phase y, along with the fractional flows f¢ and f,, satisfy Xz xz, = 1, Xs fr = 1and ¥, f, =
1.

2.5.1 The system H20-NaCl

The equilibrium problem of a compositional multiphase mixture is described by a set of nonlinear algebraic equations, known as the flash
problem. Let denote X = {p, h, Z;} the set of primary variablesand Y = {T, Xey sy} being the solution of the nonlinear algebraic equations
for a given X. The flash problem can be represented as a mapping ®: X — Y, which minimizes a scalar functional representing the Gibbs
energy of the mixture (Gharbia et al., 2021).

For the specific case of the H2O-NaCl system, it is possible to construct a set of correlations to represent the mapping ®. These correlations
are provided by Driesner & Christoph (2007), where both Y and the extra set G = {py, hy, ,uy} are expressed as functions of X, with G
mapped by P;: X - G.

Similar to Vehling et al. (2020), the mappings @ and @ are approximated using interpolated versions, ® and ®;. This is done in an
offline stage, where the results are stored on disk as an interpolator object. During the numerical solution of the governing mixed-
dimensional PDEs (online stage), these interpolators serve as an efficient proxy for the flash problem. Thus, the efficiency of the
approximated flash is translated to a cost-effective implementation of the interpolators & and ®.
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Figure 3: Pressure-enthalpy phase diagram for the H20-NaCl system at low zy,¢; = 1074,

Figure 3 presents a phase diagram in the parametric space X = {p, h, Zygc; = 10™*}. Driesner & Christoph (2007) provide a complete
visualization and the topological structure of this phase diagram. A Cartesian VTK mesh is generated using regularly spaced samples of
pressure, enthalpy, and overall composition of NaCl. The quantities from the set Y U G are evaluated at each grid point and stored as scalar
fields in the VTK structure. The phase boundaries are shown as gray contours, with isotherms for temperatures lower and higher than the
water critical point. The isotherms within the envelope highlight regions in the parametric space where pressure-temperature formulations
require special treatment to compute h. For example, for a given temperature inside the envelope, multiple enthalpy values exist. In
contrast, using pressure-enthalpy as the specification ensures a single, well-defined temperature inside the envelop, even near the critical
point. This justifies our choice of primary variables for the energy equation, where temperature is a secondary variable and enthalpy is
the primary variable in our mathematical model. The critical region can be identified near the intersection of the gray contour and the
isothermal line with value T = 646.7 [K].

2.6 Initial and Boundary conditions

The initial conditions are set by projecting the initial p(t = 0), h(t = 0), and composition z¢(t = 0) to obtain the piecewise
approximated p(t = 0), A(t = 0), and Zg(t = 0). If temperature is given instead of enthalpy, a bisection method is used to
compute A(t = 0).

To describe the multiphysics boundary condition, we define three primary subsystems. the overall mass system (p-system), the component
mass system (z-system), and the overall energy system (h-system). The p-system is parabolic, the z-system is hyperbolic, and the h-
system entails an advection-diffusion equation. Each case is described below using Dirichlet (D), and Neumann (N) boundary conditions.
The boundary conditions are independent, so the decomposition of the boundary 9Q¢ is defined separately for each subsystem.
Additionally, the conditions are given per codimension, meaning they apply to the boundaries of the subdomains 9Q°.

5
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2.6.1 Boundary conditions for p-system

Let consider the boundary decomposition Q¢ = Q5 U 00§ and 0QF N QS = @ and dQF # @. The pressure and overall mass flux
conditions are, respectively

p =pp, on 00, (17)
m-n=my, ondQg. (18)

2.6.2 Boundary conditions for z-system
Let define the boundary decomposition dQ°¢ = dQf, U 0Q5,,; and 9Qf, N 0Q5,, = @ and 005, # @. The inlet flux of component ¢ is

mg - n = mg, on 00, (19)

2.6.3 Boundary conditions for h-system

Let define the boundary decomposition dQ°¢ = 9Qf U 005 and 0Qf N Q5 = @ and 0Qf # @. The temperature and energy flux
conditions are, respectively

T =Tp, on 995, (20)

q-n=qy, ondy. 21)

2.7 Full system of equations

The set of equations (2-16) defines a system of nonlinear, strongly coupled PDEs that govern mass and energy balance, along with initial
and boundary conditions, including the constitutive mapping ®;. Let us denote this system by the continuous operator D (X (o), Y(t)) and
the set of local algebraic equations representing the flash problem as F (X ®), Y(t)): =Y() - EJ(X (t)). The continuous problem is to
find {p, h, ZS;} Vte [0, tf] such that:

Rp] _ [P(X@®.Y®)] 0
[Rﬂ - [F(X ), Y(t))] =lol 22)

where R and Ry represent the residual equations associated with PDEs and the flash equations.

3. DISCRETIZATION

This section briefly outlines the discretization approach in a concise manner. The main components of the scheme include the Finite
Volume Multi-Point Flux Approximation (MPFA) for space, the Backward Euler method for time, first-order upwinding for viscous
terms, and hybrid upwinding for buoyancy terms (Hamon & Tchelepi, 2016).

Let denote the discrete unknowns X = {ﬁ, h, Zg}, and (t™ )o<n<y the discrete time nodes with t° := 0 and t"V = tr. The discrete set of
residual equations Rp ()?(t"), Y(t")) =0 and Rp ()?(t”), Y(t”)) =0. The global discrete problem is to find
{P™), h(t™), z:(t™)} V n € {1, ..., N} such that

R (R, 7(m)

[0
Re (X, 7GM)| ol =

the evaluation of R ()? (), V(t”)) can be easily parallelized. For a particular time, node t™, the Jacobian matrix /(X (t™), ¥ (t™) ) takes
the algebraic form

g

—_—

@24

Furthermore, the Schur complement technique is used to reduce the global problem to X(t™) only, resulting in the reduced Jacobian J, =
A — BE~1C. Since we use the overall composition formulation with enthalpy as a variable, the structure of £ is block diagonal, making
its inverse computationally inexpensive. In the next section, the numerical tolerance for global Newton iterations is set tole-8.

4. NUMERICAL RESULTS

The numerical examples simulate narrow-boiling behavior and residual trapping, along with the complex properties of geothermal fluids
in the H20-NaCl system. They include fractured domains, requiring a robust discretization framework to ensure accurate modeling and
physical consistency in mixed-dimensional problems. The numerical scheme is implemented using the PorePy framework (Keilegavlen
et al., 2021). Since the verification of the gravity component is still in progress, gravity is disabled in the simulations.
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Regarding code verification, several 2D simulation benchmarks for the case of co-dimension 0 were performed (Oguntola et al. 2025),
ensuring the correctness of the numerical solution for non-fractured media. Building on this, we focus on more advanced scenarios,
including fractured domains near the critical point with high enthalpies and two-phase miscible flow.

All properties are taken from Weis et al., (2014). In the results section, we present a series of advection-dominated examples, detailing
the material properties and using the same correlations as Driesner & Christoph (2007). The relative permeabilities account for residual
saturation in the liquid phase to demonstrate residual trapping in the boiling zone, where the liquid saturation settles at s, = 0.3. This
value is observed in the simulations and highlighted to emphasize the correctness of the implementation concerning the mathematical
model.

4.1 Uni-directional flow

The initial conditions include a constant temperature and a linear pressure variation along a 2 [km] domain with a 10 [m] mesh resolution.
After the initial time, 673.15 [K] high enthalpy steam enters the liquid region at 423.15 [K], triggering the system's dynamics. The time
step size is set to 1 [year] and the final simulation time is set to t; = 2000 [year]. To simulate a two-phase front during the steam’s
advancement, the pressure is kept below, but near, the critical point of pure H20, with fixed boundary pressures of 18 [MPa] and 15
[MPa] (high-pressure case) and 13 [MPa] and 10 [MPa] (low-pressure case). These two cases result in narrow and wider two-phase flow
fronts, respectively.
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Figure 4: High-pressure case: (a) Temperature and pressure profiles, and (b) Saturation and enthalpy profiles at 2000 years. The
vertical axis colors correspond to the curve colors.

The two-phase region moves and transitions between high-enthalpy steam and low-enthalpy liquid zones, following the phase diagram
shown in Figure 3. This is clear because in both cases, the pressure profile is nearly linear, or at least a slight perturbation from the initial
linear profile (see the blue lines in Figures 4a and 5a), and the enthalpy ranges between 0.6 and 3 [MJ/kg]. In case 1, the system transitions
between the points (18 [MPa], 3.0 [MJ/kg]) and (15 [MPa], 0.6 [MJ/kg]), and in case 2, between (15 [MPa], 3.0 [MJ/kg]) and (13 [MPa],
0.6 [MJ/kg]). If a line is drawn in the diagram in Figure 3 connecting the points (18 [MPa], 3.0 [MJ/kg]) and (15 [MPa], 0.6 [MJ/kg]), it
intersects the top part of the two-phase envelope (see the gray line in Figure 3), resulting in a narrow boiling zone, as shown in Figure 4b,
where the transition between liquid and steam is approximately 125 [meter]. Now, if we draw another line connecting (15 [MPa], 3.0
[MJ/kg]) and (13 [MPa], 0.6 [MJ/kg]), this line represents a vertical shift of 5 [MPa] from the first line (case 1). This line intersects the
lower part of the envelope, where the two-phase zone becomes wider, leading to a larger boiling zone of approximately 550 [meter], as
seen in Figure 5b.
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Figure 5: Low-pressure case: (a) Temperature and pressure profiles, and (b) Saturation and enthalpy profiles at 2000 years. The
vertical axis colors correspond to the curve colors.

Another important point to emphasize is that the situation depicted in Figure 4 shows a narrow boiling zone, which is naturally handled
by the chosen set of primary variables and numerical scheme. Finally, the residual saturation of the liquid (s; = 0.3) is observed in the
two-phase zone. Interestingly, as the high-enthalpy steam move forward, it evaporates the trapped liquid, reducing the liquid saturation to
zero.

4.2 Bi-directional flow in a fractured reservoir

The physical situation being modeled is a five-spot configuration in a horizontal region with faults. The domain for this study is based on
the complex fracture network benchmark described in Section 4.3 of Flemisch et al. (2018). The geometry is scaled by a factor of 1000
[km]. The material parameters are the same as in the previous example. The key differences are constant initial pressure conditions: for
case 1, the pressure is set to 15 [MPa], and for case 2, it is set to 10 [MPa]. The inlet pressure is 18 [MPa] for case 1 and 15 [MPa] for
case 2. The injection is in the top-left corner, and production is in the bottom-right corner. The permeability for the fracture is 4 orders of
magnitude larger than the matrix and the normal permeability k, is unitary, representing a highly conductive faulted system. The time
step size is set to 2 [year], with a final simulation time of t; = 1500 [year]. Additionally, the system without faults is simulated to compare
the changes in saturation fronts with and without fractures (see the gray lines in Figures 6b and 6d).

The configuration without faults shows a regular, symmetrical profile, demonstrating the expected behavior in 2D, as shown in Figures
6a and 6c¢. Since the grid resolution is not optimal, it is not clear to observe that the boiling zone is wider in the case with lower pressure
conditions (Figure 6¢). The residual liquid saturation (s; = 0.3) is observed in the two-phase zone.

In the configuration with faults, the highly conductive fault system creates a larger, though less symmetrical, steam saturation front. Since
we model fractures as lower-dimensional objects, boiling zones appear in all subdomains: matrix (plane), fractures (lines), and fracture
intersections (points). Compared to the first case, the faulted configuration exhibits a larger boiling zone, as shown in Figure 6d. As in
previous cases, the residual liquid saturation (s; = 0.3) is observed in the two-phase zone.

Figure 7 shows color maps for enthalpy in the top panels and temperature in the bottom panels. The left panels correspond to high pressure
conditions, while the right panels correspond to low pressure conditions. Similar observations can be made here as in the uni-directional
flow case. For enthalpy, we refer to the green curves in Figures 4b-5b, and for temperature, to the red curves in Figures 4a-5a.
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Figure 6: Liquid saturation profiles at 1500 [year]: (a) High pressure without faults, (b) High pressure with faults, (c) Low pressure
without faults, and (d) Low pressure with faults. The gray lines represent the fault geometry.

For the high pressure conditions, the boiling zone enthalpy is approximately 2.0 [MJ/kg], as seen in Figure 7a (light-red color). In Figure
4b, enthalpy rapidly decreases from around 3.0 [MJ/kg] to a flat region of about 2.0 [MJ/kg], then smoothly drops to the initial value of
0.6 [MJ/kg]. A similar pattern is seen in the low pressure conditions, where the enthalpy decreases from 3.0 [MJ/kg] to a flat region of
about 1.7 [MJ/kg] and then decreases smoothly to 0.6 [MJ/kg]. This is visible in Figure 7b (light-blue color).

For temperature, Figures 7c and 7d show similar trends: higher overall temperatures for high pressure conditions and lower overall
temperatures for low pressure conditions. Additionally, due to the second-order Laplacian operator, the temperature color maps are more
diffuse than the enthalpy color maps.

The simulations in this section show the implementation ability to handle fractured domains, high-enthalpy systems, and conditions near
the critical point, all within a general compositional formulation tailored for geothermal systems. Additionally, including other correlations
and fluid characterizations is straightforward by constructing the corresponding mappings ® and ®;.
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Figure 7: Thermal profiles at 1500 years: (a) Enthalpy for high pressure conditions, (b) Enthalpy for low pressure conditions, (c)
Temperature for high pressure conditions, and (d) Temperature for low pressure conditions.

5. CONCLUSION

This paper introduces a novel mixed-dimensional compositional flow model for high-enthalpy geothermal reservoirs, based on the overall
composition formulation. It bridges the advancements in reservoir engineering for the simulation of green energy extraction, such as
geothermal systems.

The formulation extends to modeling fractures as lower-dimensional objects, balancing compact notation with sufficient detail. The
methodology incorporates complex constitutive expressions for the H20-NaCl system, successfully verified to maintain physical
consistency in mixed-dimensional problems. This consistency is demonstrated through simulation examples with and without fractures.

Future work will further verify the gravity component and assess the convergence of the full mixed-dimensional computational model.
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