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ABSTRACT 

Closed-loop geothermal systems (CLGSs) use a closed-loop heat exchanger such as U-loop or co-axial systems for subsurface heat 

extraction. These systems have recently received significant attention and investment, with several companies developing and 

commercializing this technology. Additionally, access to consolidated, independent, high-quality simulations for early scoping and/or 

project management purposes has become increasingly useful. However, open-source software for rapid data exploration and decision-

making for closed-loop projects is limited. Most existing packages or tools serve as general-purpose subsurface simulators, and they may 

not provide above-ground economic modules. Likewise, their software may operate on legacy code, require local setup, and rely on the 

user scripting default conditions or researching hundreds of parameters to roughly mimic a closed-loop system. Furthermore, proprietary 

applications that comprehensively serve both below-ground and above-ground techno-economics currently need to be purchased. To this 

end, we present GeoCLUSTER v2.0: an open-source, cloud-native, techno-economic web simulator that enables start-up developers and 

venture capitalists to rapidly explore the economic viability of closed-loop geothermal systems, such as capital and levelized costs. Users 

can explore scenarios through several methods: 1) toggling between the heat-exchanger designs, working fluids, and end-use, 2) 

optimizing power output and economic competitiveness by clicking on the scenario buttons and moving easy-to-use sliders, and 3) 

visualizing simultaneous graphics and summaries. In GeoCLUSTER’s v2.0 release, we integrate a Slender-Body Theory (SBT) model 

that enables users to rapidly and semi-analytically simulate any type of U-loop and co-axial system which were not originally included in 

its first release, such as depths deeper than 5 km and geothermal gradients larger than 70°C/km. This speed and parameter space expansion 

is due to the SBT’s 1D discretization along the wellbore that, unlike 3D finite element (FEM) or finite volume methods (FVM) that must 

solve the entire reservoir volume extending outwards from the well, can cut down on orders of magnitude and mesh size. In turn, with 

data and compute increasingly integrating into the tool, we profile the application’s memory usage and significantly reduce its memory 

footprint (97% drop). Thus, GeoCLUSTER acts as an agile software for quickly adapting to emergent geothermal feasibility research, and 

in this paper, we present GeoCLUSTER’s most recent updates as it supports continued systematic evaluation of the technical performance 

and cost-competitiveness of closed-loop geothermal systems. 

1. INTRODUCTION 

Risk averse compared to enhanced geothermal systems (EGSs) (Budiono et al., 2022) but capital-intensive (Liu et al., 2024; White et al., 

2023), closed-loop geothermal systems (CLGSs) hold the promise of clean electricity on the upwards of 300+ GW by 2050 across the 

United States (Blankenship et al., 2023; INL, 2006) but also face the challenges of high drilling costs (White et al, 2023; Fervo, 2023) 

and efficient heat production over extended operational periods. These systems are a next-generation geothermal technology whose heat-

exchanger design circulates a fluid through closed wellbores drilled in the subsurface, and their commercial viability has largely depended 

on drilling wells at depths far deeper than those of current geothermal wells in order to reach commercial levels of power production 

(Fervo, 2023). Their next-gen counterpart, the EGS, conducts far greater heat extraction than CLGSs by requiring hydraulic fracturing to 

create pathways for the fluid to directly penetrate the reservoir, but closed-loop projects are afforded the benefit of avoiding risks from 

hydraulic fracturing, such as induced seismicity, reservoir sustainability, soil contamination, and water drawback (White et al., 2023; 

Alimonti et al., 2018). To then bridge the “heat gap”, technical efforts have been underway to further enhance the heat extraction and 

reduce the costs of CLGSs by, for example, repurposing abandoned oil wells and adding insulation like polyurethane foam (Liu et al., 

2024). In turn, identifying how to close these gaps for optimized heat extraction and economic feasibility of CLGSs can add further value 

for both current and future closed-loop projects that aim to commercialize CLGSs. 

Efforts to increase investments towards commercializing closed-loop projects can then significantly benefit from decision support tools 

that easily enable early scoping on the performance of different system designs. This is becoming more relevant as geothermal tools 

continue to integrate sensitivity studies and model increasingly complex and wider parameter spaces that compute vast simulations in 

support of high-quality analyses (Budiono et al., 2022). In its most reporting, the Department of Energy’s (DOE) Geothermal Data 

Repository (GDR) hosts 1,285 datasets amassing 287 TB of data for the geothermal community (Weers et al., 2025). And for closed-loop 

projects that have “just begun to come online” (Blankenship et al., 2023), they may anticipate data volumes similar to pioneers like DOE’s 

FORGE that currently hosts over 98 TB of wellbore, rock property, seismic, and facture mapping data (FORGE, 2025). In turn, retrieving 

information and analytics across massive data pools and their various modalities, while balancing data storage and compute, becomes 

increasingly valuable – as recently architected by GeoMapTM (Project InnerSpace, 2025) –, with some of those retrieval and predictive 
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tasks are already being uptaken by artificial intelligence (AI) and machine learning (ML) capabilities, as demonstrated by GeoTGo 

(Kliphuis et al., 2025). Simulators have then become increasingly useful for capturing and evaluating the techno-economic feasibility of 

next-generation geothermal technologies – in particular, easy-to-access online tools with high quality data and a low memory footprint 

for seamless scoping.  

However, for closed-loop projects, such tools are still rare. Existing tools extensively consider geothermal system design or serve as 

general-purpose geothermal simulators, such as STOMP-GT (PNNL, 2023), T2Well (Pan et al., 2024), PLOTRAN (2024), FEHM (2017), 

OpenGeoSys (2025), and GEOPHIRES (NREL, 2018). However, these packages or modules often operate on legacy software, require 

setup in a local environment, or rely on the user knowing and researching how to script and tune their default wellbore and reservoir 

boundary conditions in order to mimic a “sealed” or closed-loop system. For easier setup, other independent tools, like GEOPHIRES or 

GES-CAL (Bláquez et al., 2020), provide interactive simulation, either through the web or a local user interface, but require user training 

to navigate, at times, hundreds of editable, techno-economic parameters. These interfaces are often suitable for subject matter experts, but 

for start-up developers, venture capitalists, or power purchasers looking to rapidly explore the economic viability of closed-loop 

geothermal systems, they may not be readily adopted. Likewise, state-of-the-art, commercial software often extensively consider intuitive 

user flows; however, their capabilities may focus largely on subsurface modules, simulating the thermal performance of ground source 

heat pump systems, while overlooking techno-economic modules for various closed-loop configurations (e.g., ResFrac (Fowler et al., 

2021), CMG GEMTM (2017)). Even in the most comprehensive demonstrations of “out-of-the box”, closed-loop modules, like Eavor-

LoopTM that offers cloud-native, advanced builder capabilities for users to simulate their techno-economic case studies, still need to be 

purchased (Eavor, 2024).  

To then equip the geothermal community with an agile tool that adapts quickly to state-of-the-art geothermal feasibility research, we 

introduce GeoCLUSTER v2.0 (https://geocluster.labworks.org/; Figure 1-5): a cloud-native, techno-economic web simulator that enables 

start-up developers and venture capitalists to explore the economic viability of closed-loop geothermal systems. In its latest release, 

GeoCLUSTER has been updated to support a parameter space of 31 user editable parameters, has significantly reduced its memory 

footprint (97% drop), and offers fast, new, on-the-fly computed case studies that can reach in the quadrillions due to the integration of the 

Slender-Body Theory (SBT) model (Beckers et al., 2015). Over the past few years, multiple studies have been undertaken by our closed-

loop geothermal working group to create GeoCLUSTER, including a 1) general feasibility study by White et al. (2023), 2) a database of 

pre-calculated reservoir simulations of multiple closed-loop designs (Beckers et al., 2023), 3) a heat transfer performance study of closed-

loop geothermal systems with thermally conductive enhancements (Beckers et al., 2024), and 4) an impact assessment of convection on 

performance of closed-loop systems (Hakes et al., 2024). In this paper, we will share GeoCLUSTER’s latest updates in greater detail and 

conclude with anticipated future directions. 

 

 

Figure 1: GeoCLUSTER v2.0 on its landing page. 

 

https://geocluster.labworks.org/


Bernat, Buchko, Beckers, and Moreno 

 3 

 

Figure 2: GeoCLUSTER v2.0 displaying the full, pre-calculated, parameter space (i.e., HDF5 model) and its economic results. 

 

 

Figure 3: GeoCLUSTER v2.0 displaying HDF5 subsurface results. 
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Figure 4: GeoCLUSTER v2.0 displaying HDF5 subsurface contours. 

 

Figure 5: GeoCLUSTER v2.0 displaying the latest, on-the-fly, parameter space (i.e., SBT v1.0 model) and its economic results. 

 

2. UPGRADES 

GeoCLUSTER is a user-friendly, closed-loop, techno-economic simulator hosted on Amazon Web Services (AWS) and publicly 

accessible via the web (URL: https://geocluster.labworks.org/) or on GitHub (codebase: https://github.com/pnnl/GeoCLUSTER). The tool 

is intended to enable users to rapidly explore numerous techno-economic simulations for closed-loop geothermal systems. GeoCLUSTER 

v1.0 was originally developed by a team of multiple national laboratories (i.e., Closed-Loop Geothermal Working Group as mentioned 

https://geocluster.labworks.org/
https://github.com/pnnl/GeoCLUSTER
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previously); likewise, GeoCLUSTER has now been enhanced in part by the Pacific Northwest National Laboratory to deploy a more 

lightweight and cost-effective 2.0 version. GeoCLUSTER v2.0 also integrates a Slender-Body Theory (SBT) model developed by the 

National Renewable Energy Laboratory (NREL) and Sandia National Laboratory (Sandia). Between GeoCLUSTER v1.0 and v2.0, major 

differences and similarities are documented in Table 1 and further described below. 

Table 1: Parameter metrics and their ranges between versions of GeoCLUSTER. Rows shaded grey showed no change between 

v1.0 and v2.0 of GeoCLUSTER. In total, 31 parameters are editable in GeoCLUSTER v2.0. 

Parameter GeoCLUSTER v1.0  GeoCLUSTER v2.0 (SBT Integrated) 

Heat-Exchanger Design U-Loop, Co-axial U-Loop, Co-axial 

Working Fluid H2O, sCO2 H2O, sCO2 

End-Use Heating, Electricity Heating, Electricity 

Mass Flow Rate 5 kg/s to 100 kg/s 5 kg/s to 300 kg/s 

Horizontal Extent 1,000 m to 20,000 m 1,000 m to 50,000 m 

Drilling Depth 1,000 m to 5,000 m 1,000 m to 10,000 m 

Geothermal Gradient 0.03 K/m to 0.07 K/m 0.015 K/m to 0.20 K/m 

Borehole Diameter 0.2159 m to 0.4445 m 0. 2159 m to 0.4445 m 

Annulus Radius (coaxial) -- 0.1080 m to 0.2223 m 

Center Pipe Radius (coaxial) -- 0.06350 m to 0.1740 m 

Center Pipe Thickness (coaxial) -- 0.0050 m to 0.025 m 

Insulation Thermal Conductivity -- 0.025 W/m-K to 0.50 W/m-K 

Wellbore Radius Vertical (utube) -- 0.1080 m to 0.2223 m 

Wellbore Radius Lateral (utube) -- 0.1080 m to 0.2223 m 

Number of Laterals 1 0 to 30 

Mesh Fineness -- 0 (coarse) to 2 (fine) 

Accuracy -- 1 (coarse) to 5 (fine) 

Mass Flow Rate Mode -- Constant, Variable 

Injection Temperature Mode -- Constant, Variable 

Injection Temperature 30°C to 60°C  30°C to 100°C 

Injection Pressure 200 bar (fixed parameter) 200 bar (fixed parameter) 

Rock Thermal Conductivity 1.5 W/m-K to 4.5 W/m-K 0.4 W/m-K to 5 W/m-K 

Rock Specific Heat Capacity 790 J/kg-K (fixed parameter) 500 J/kg-K to 2,000 J/kg-K 

Rock Density 2,750 kg/m3 (fixed parameter) 1000 kg/m3 to 3,500 kg/m3 

Surface Temperature 25°C (fixed parameter) 0°C to 40°C 

System lifetime 10 years to 40 years 10 years to 40 years 

Drilling Cost 0 $/m to 4,000 $/m 0 $/m to 4,000 $/m 

O&M Cost Plant as Percentage of Capital 

Cost 
1.5% (fixed parameter) 1.5% (fixed parameter) 

Discount Rate 0 % to 20 % 0 % to 20 % 

Direct Use Heat Plant CAPEX 0 $/kWt  to 1,000 $/kWt 0 $/kWt  to 1,000 $/kWt 

Power Plant CAPEX (for electricity 

generation) 
0 $/kWe  to 10,000 $/kWe 0 $/kWe  to 10,000 $/kWe 

Pre-cooling 0 °C to 40°C 0 °C to 40°C 

Turbine Outlet Pressure 75 bar to 200 bar 75 bar to 200 bar 

Dead-State Temperature 20°C (fixed parameter) 20°C (fixed parameter) 

Dead-State Pressure 1 bar (fixed parameter) 1 bar (fixed parameter) 

Turbine Isentropic Efficiency (for sCO2 

electricity) 
90% (fixed parameter) 90% (fixed parameter) 

Generator Efficiency (for sCO2 electricity) 98% (fixed parameter) 98% (fixed parameter) 

Compressor Isentropic Efficiency (for 

sCO2 electricity) 
90% (fixed parameter) 90% (fixed parameter) 

Turbine Outlet Pressure (for sCO2 

electricity) 
79 bar (fixed parameter) 79 bar (fixed parameter) 

Pre-cooling Temperature Decline (for 

sCO2 electricity) 
5°C (fixed parameter) 5°C (fixed parameter) 
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Although not comprehensive, it should be noted that compared to published sensitivity parameter studies of closed-loop geothermal 

systems, GeoCLUSTER leads considerably, even when only comparing a fraction of its parameter space to recent reports (Table 2). Users 

have wide flexibility to input data based on their specific closed-loop project by tuning various geologic properties, wellbore operations, 

tube geometry, economic parameters, and model specifications (a total of 31 parameters). This broad coverage ensures results remain 

relevant for practical feasibility studies in diverse geologic sites, but now GeoCLUSTER v2.0 enables users to assess the performance of 

closed-loop projects operating in more extreme cases. 

Table 2: Sensitivity parameters of closed-loop geothermal systems (CLGSs) by publication. Table was recreated from publications 

with more than five sensitivity parameters in Table 6 of the literature view conducted by Budiono et al. 2022. Modifications to the 

table include adding GeoCLUSTER v1.0 and v2.0 as rows and adding new heat transfer and economic parameters added as 

columns. There are a total of 23 sensitivity parameters considered and compared. 

 Heat Transfer Performance Parameters and Sensitivity Variables Economic Parameters 

Reference T 
Q

r 

P Pt

h 

H q t Tg

rd 

Ki

ns 

Pi

n 

Ti

n 

d F Lh

or 

Kr

es 

W

s 

H

E 

E

U 

D D

R 

L P

Ct 

P

Ce 

Song et al. x   x x x x    x             

Sun et al. x x x   x    x x             

Zhang et 

al. 
x  

 x  x x  x    x           

Sun et al. x  x   x x  x     x          

Yu et al. x x x  x x    x              

Sun et al. x x x  x x    x              

Yuan et al. x   x   x    x    x x        

Zhang et 

al. 
x x 

   x x       x x         

Wang et al. x x    x x     x x x          

Sun et al. x x x  x x  x x x   x x          

GeoCLUS

TER v1.0 
  

  x x x x x  x x x x x  x x x x x x x 

GeoCLUS

TER v2.0 
  

  x x x x x  x x x x x  x x x x x x x 

Note: T—Temperature distribution; Qr—Heat extraction rate; P—Pressure/Pressure drop; Pth—Thermal power; H—Wellbore depth; q—

Flowrate; t—Production time; Tgrd—Reservoir gradient temperature; Kins—Conductivity coefficient of the insulation; Pin—Inlet 

pressure; Tin—Inlet temperature; d—Wellbore diameter; F—Fluid type; Lhor—Horizontal length; Kres—Conductivity coefficient of the 

reservoir; Ws—Wellbore spacing (multi-lateral type CLGSs only); HE—Heat-exchanger; EU—End-use; DC—Drilling cost; DR—

Discount rate; L—Lifetime; PCt—Plant CAPEX ($/kWt); PCe—Plant CAPEX ($/kWe). 

2.1 Backend Optimizations 

To ensure that GeoCLUSTER is served to users via web in ways that are lightweight and cost-effective, we upgraded our servers, 

deployment strategies, and the application’s memory performance as summarized in Table 3 and outlined in further detail below.  

Table 3: Setup, performance, and parameter metrics between versions of GeoCLUSTER. 

Setup GeoCLUSTER v1.0 GeoCLUSTER v2.0 (SBT Integrated) 

Web Framework Dash-Plotly Dash-Plotly 

Python Version 3.8 3.11 

Memory Performance (Data File) 6500 MB (HDF5 ~90 MB compressed) 200 MB 

EC2 Instance (Memory; Cost) 
r6i.large (16 GB; $90; Memory 

Optimized; 2 vCPUs) 

t3.small (2 GB; $15; Burstable 

Performance; 4 CPUs) 

Number of Simulations 

631,800 simulations per each of the four 

combinations of heat-exchanger / fluid 

type, totaling to over 2.5 million 

simulation runs (if all results were 

precomputed, it would require 

approximately 500 petabytes). 

Additional simulations in the quadrillions 

can be generated on the fly. Most notably, 

users can run case studies with depths 

deeper than 5 km and geothermal gradients 

larger than 70°C/km 
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2.1.1 Cloud Architecture 

Between GeoCLUSTER v1.0 and v2.0, there was no change in cloud architecture. Figure 6 shows a minimal setup on Amazon Web 

Services where the Apache web server, Dash-Plotly web framework, and data files are all on the same Elastic Container Compute (EC2) 

instance, with traffic distributed by an Elastic Load Balancer (ELB). In this architecture, the web server does not just serve GeoCLUSTER, 

but it is also involved in processing requests, making it responsible for both the view (the display of the data) and the controller (the 

processing behind requests). The HDF5 file serves as the model (storage of data). 

 

Figure 6: Simple AWS architecture diagram of GeoCLUSTER deployed on AWS Cloud. 

2.1.2 Memory Optimizations 

The previous version of GeoCLUSTER was light on CPU load but required 6.5 GB of RAM. As such, backend optimizations to reduce 

the memory needed were required to make GeoCLUSTER more energy- and cost-efficient. Due to project constraints, the application was 

limited to being hosted on an EC2 instance (described above) and optionally a MySQL database. So, optimization efforts were focused 

on reducing the number of computational resources the hosting instance needed for the application instead of moving towards a traditional 

split model-view-controller paradigm. 

Some explanation of the working of GeoCLUSTER is a prerequisite to explaining the memory optimizations. GeoCLUSTER contains a 

subsurface model (i.e., clgs.py) that calculates the output of a CLGS, and an economic model (i.e., clg_tea_module.py) that uses the 

subsurface results to calculate the economic performance of that CLGS. The subsurface model leverages Beckers et al. (2023) dataset, 

which contains the output heat, and pressure over time of a CLGS at 631,800 different configurations for each of the 4 combinations of 

working fluid (H2O or sCO2) and tube shape (coaxial or utube). This dataset was generated by simulating a CLGS over the Cartesian 

production of 7 different parameters describing a CLGS. For any combination of these parameters, the dataset contains the output pressure 

and temperature of the CLGS at that configuration over 161 points in time, representing the output of the CLGS over 40 years. This data 

is stored as an 8D matrix where the first 7 dimensions are the CLGS configuration parameters, and the 8th dimension is the output over 

time for either the heat or the pressure. The dataset contains 8 of these 8D matrices: one for the output pressure and one for the output 

temperature for each of the 4 possible combinations of working fluid and tube shape.  

While these 8D matrices take only 90MB of disk space when compressed into an HDF5 file as a result of singular value decomposition 

compression, they take much more when decompressed and read into memory. The 8D matrices were stored in float64s at runtime, so 
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each 8D matrix required (631,800 ∗ 161)datapoints ∗ 8 
𝑏𝑦𝑡𝑒𝑠

𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡
≈ 0.81GB. Since the application uses 8 of these matrices, 

GeoCLUSTER requires 8 times this amount, about 6.5GB. 

These 8D matrices are used in two ways. The first is to look up the output over time for a given set of input parameters, as shown in Figure 

7. This is equivalent to slicing the matrix by holding the first 7 dimensions constant as the input parameters and fetching the output over 

time.  

 

Figure 7. Input parameters in red and output temperature and pressure over time in blue 

 

Secondly, we generate the subsurface contours, which show how the outlet state changes with respect to mass flow rate and a second 

parameter (any one of the 6 other input parameters), at a CLGS configuration defined by the remaining 5 parameters. This is essentially 

slicing the matrix by mass flow rate and the second parameter, holding the 5 other input parameters and time constant. In both cases, 

only a small subset of the data from the entire matrix is needed at a given moment.  
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Figure 8. Subsurface contours with the second parameter in green, variation of outlet state with respect to mass flow rate and 

the second parameter in red, and parameters held constant in blue. 

  

However, the access patterns are complicated by the use of interpolation to approximate the outlet states of the CLGS when the input 

parameters are not equal to their precomputed values. This is because the precomputed dataset computed the results at many different 

discrete parameter combinations, but the user can input any value on a nearly continuous1 range for each parameter. For example, in 

Figure 8, the borehole diameter is 0.35m, which is not one of the precomputed values for borehole diameter. In this case, GeoCLUSTER 

cannot simply slice into the matrix where the borehole diameter is equal to 0.35m, as that data point does not exist. Instead, the application 

uses multidimensional linear interpolation to approximate the output value at that point. GeoCLUSTER treats the 8D matrix like an 8D 

grid, where the location of the point is the parameters of the CLGS configuration, and the value at that point is the outlet state for that 

configuration. When given a CLGS configuration that isn’t precomputed, it falls “between” the points on the grid, and the application 

uses linear interpolation and the precomputed outputs at points near the given point to approximate the output at the given point. 

To remove this large memory burden, a way was needed to offload the storage of these matrices from directly into memory to a database.  

One considered option was to simply avoid the challenge of interpolation entirely and pre-interpolate the outlet states at every possible 

value in GeoCLUSTER, save the output to Amazon’s Simple Storage Service (S3), and fetch the simulation output at the given parameters. 

However, due to the curse of dimensionality, this would take an astronomical amount of space. In order to have the same degree of 

granularity in a pre-interpolated matrix as the granularity offered with interpolation on GeoCLUSTER, the shape would need to change 

from (26, 20, 9, 5, 3, 3, 3, 161) to (190, 190, 80, 79, 114, 150, 150, 161). This would require  190 ∗  190 ∗ 80 ∗  79 ∗ 114 ∗ 150 ∗ 150 ∗
161 ≈ 9.42 ∗ 1016 datapoints, which would require approximately 377 petabytes if they were stored as float32s. Before even constructing 

an access pattern for this data, the raw amount of storage needed alone disqualified this approach.  

Instead, focus was turned to offloading the data from memory and then only fetching the points the application needed to approximate the 

output of a given CLGS configuration. In the same way only the 2 sample points around a given point are needed to linearly approximate 

in 1D, and only the corners of the square around a point are needed to bilinearly approximate in 2D, only the corners of the surrounding 

8-cube in the 8D matrix are needed to interpolate a point on an 8D grid. Code was written to compute the indices of the corners of the 8-

cube around the point to interpolate for. Then, the outlet states at these points could be fetched from a database and fed into scipy’s 

interpolation function (i.e., internpn), which would perform the linear interpolation. 

To ease integration with the pre-existing codebase, the database chosen was an 8D HDF5 dataset in the same format as the 8D NumPy 

matrix in memory, but the key difference is that this new dataset is chunked.  Instead of the data being stored in one contiguous file on 

disk that’s then all read into memory, it’s stored as many different individual subsets of the data, chunks, which can be read into memory 

independent of each other. When the application slices into this chunked matrix, it loads only the chunks containing the slice into memory 

and reads the points requested in the slice from those chunks. Given our 2 access patterns, a chunk size of (26, 1, 1, 1, 1, 1, 1, 161) was 

chosen as a balance between reducing the amount of unnecessary data per chunk and reducing the number of chunks needed per lookup. 

Another difference between the 2 versions is that the new dataset is not stored using singular value decomposition, but instead the 8D 

                                                                 

1The input for each parameter is not actually continuous but is instead hundreds of very small steps. 
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matrix is stored as-is to disk, increasing the disk size needed to 3.2GB. This was done to minimize latency in the application, as 

GeoCLUSTER would need to decompress the data every time it read a chunk from disk if it was stored in a compressed format. 

This chunked HDF5 dataset on the disk of the EC2 instance acts as the database for GeoCLUSTER and meets all the demands of the 

application (Table 4). It supports concurrent reads (meaning that two threads can read from the dataset at the same time when the website 

is serving multiple users simultaneously) and partial I/O, which allows us to only read a portion of the dataset into memory at a time, 

instead of the entire dataset. Since the application only reads the dataset and never writes to it, a traditional database is not needed. A 

prototype version of the application using MySQL as a database instead was tested, but the memory overhead and performance were 

comparable between the two versions, and the MySQL version unnecessarily increased the complexity of the application with no added 

benefit. 

In all, the output of a CLGS configuration at a point in time is treated as a point on an 8D grid. When that configuration is not precomputed, 

the point is essentially “between” the grid lines. The application finds the corners of the 8-cube that contains the point, fetches the output 

at those corners from a database, and then linearly interpolates on them to approximate the output at the given point. With this strategy of 

offloading the 8D matrices from memory onto disk, the RAM needed for the application was reduced by roughly 97%, from 6.5GB to 

200MB.  

Table 4: Available output datasets, [hx] = “utube” or coaxial”, [fluid] = “H2O” or “sCO2”. Note the left, right singular vectors 

correspond to a rank k approximation. This table has been expanded from Table 3 of Beckers et al. 2023. 

HDF5 v1.0 dataset path Description HDF5 v2.0 dataset path Description 

/[hx][fluid]/output/Tout/U 
Left singular vectors for 

outlet temperature state 
/[hx][fluid]/output/chunked_tout 

Chunked temperature 

outlet state 8D matrix 
/[hx][fluid]/output/Tout/sigma 

Singular values for outlet 

temperature state 
/[hx][fluid]/output/chunked_tout 

/[hx][fluid]/output/Tout/Vt 
Right singular vectors for 

outlet temperature state 
/[hx][fluid]/output/chunked_tout 

/[hx][fluid]/output/Pout/U 
Left singular vectors for 

outlet pressure state 
/[hx][fluid]/output/chunked_pout 

Chunked pressure 

outlet state 8D matrix 
/[hx][fluid]/output/Pout/sigma 

Singular values for outlet 

pressure state 
/[hx][fluid]/output/chunked_pout 

/[hx][fluid]/output/Pout/Vt 
Right singular vectors for 

outlet pressure state 
/[hx][fluid]/output/chunked_pout 

/[hx][fluid]/output/We 
Available work over forty 

years, units [GWhr] 
/[hx][fluid]/output/We 

Available work over 

forty years, units 

[GWhr] 

/[hx][fluid]/output/Wt 
Heat output over forty years, 

units [GWhr] 
/[hx][fluid]/output/Wt 

Heat output over forty 

years, units [GWhr] 

 

2.2 Frontend Profiling  

A detailed memory and object data analysis of GeoCLUSTER was made using Python’s memory_profiler and guppy3 utility libraries. 

The analysis focused on two primary areas: NumPy objects used for model calculations, and Plotly graph objects associated with the Dash 

components rendered on the front-end web page. The analysis revealed that the data class gets instantiated 4 times on app startup 

accumulating 10MB of memory in the heap each time. Each time new parameters were passed and outputs required interpolation, it 

involved manipulating NumPy array and matrix objects that caused additional memory spikes ranging from 1-12MB. This was then output 

through the generation and rendering of new, or existing graphs. Consequently, Dash components were revealed to cause significant 

memory spikes ranging from 1-15MB when rendering these graphs.  

Further heap analysis using the guppy3 utility revealed that objects of the numpy.ndarray type, while few in number (159 instances), 

accounted for the largest portion of memory. Of the entire heap storage while GeoCLUSTER was running, 40MB was from storing 

NumPy objects in memory. This was primarily caused by GeoCLUSTER’s data class, which is responsible for parsing the data from the 

HDF5 file (Table 4). String objects and tuples accounted for 26MB and 23MB in the heap memory, respectively.  

In exploring solutions to optimize memory usage, Pyodide presented interesting possibilities. Pyodide enables Python code to be run in 

the web browser by compiling CPython to WebAssembly, effectively allowing computational tasks to be offloaded from the 

GeoCLUSTER server to the end user’s internet browser. This decentralization was thought to bring significant reductions to the server’s 

memory load by utilizing the user’s local resources for storing data and running memory-intensive computations but proved to not be 

necessary. 
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2.3 Slender-Body Theory (SBT) Model 

We integrated the Slender-Body Theory (SBT) model into GeoCLUSTER to allow simulating closed-loop geothermal scenarios and 

configurations that were not originally included in the pre-calculated database Beckers et al. (2023). For example, with the SBT model, 

designs can be simulated for depths deeper than 5 km, geothermal gradients larger than 70°C/km and with number of laterals greater than 

1, which were originally upper limits considered for the respective parameters when generating the database. The SBT model combines 

Green’s functions with a one-dimensional discretization along a closed-loop heat exchanger for computationally fast simulations of heat 

transfer with closed-loop systems in conduction-only reservoirs. The model was originally developed by Beckers et al. (2015) for 

simulating shallow geothermal heat exchanger and was updated by Beckers et al. (2022) for simulating deep co-axial and U-loop closed 

loop systems. The model requires constant rock properties but can dynamically update the heat transfer fluid properties over time and 

along the heat exchanger as a function of temperature and pressure. Thermal interference between laterals is captured and variable flow 

rate and injection temperature can be simulated. Recently, Aljubran et al. (2024) simulated dispatchable geothermal power production 

with closed-loop systems using the SBT model by varying injection temperature and flow rate on an hourly time step over a 20-year 

lifetime. For integration into GeoCLUSTER, we converted the SBT model code from MATLAB to Python.  

3. CONCLUSION 

In approximately six months, GeoCLUSTER v2.0 has integrated new capabilities to provide an agile and cutting-edge closed-loop 

geothermal simulator for both subsurface performance and economic evaluation. It now supports 31 user-editable parameters, with 

convective data and new editable parameters in the near future. Notably, the integration of the SBT model provides rapid simulations of 

deeper and more complex designs that previously would take hours to run a single case study. Additionally, by reducing memory usage 

by 97%, GeoCLUSTER v2.0 makes high-level geothermal simulations accessible for users with limited computational resources. With 

its ease of use and speed, this application is well positioned to facilitate early scoping of closed-loop projects, supporting both researchers 

and industry stakeholders in their efforts to commercialize these systems. 
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