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ABSTRACT

Lithium de France is the first independent French operator that aims to extract heat and geothermal lithium. Their project consists
in producing hot and Li-rich fluid naturally circulating inside a fracture network in the Upper Rhine Graben. Nonetheless, previous
geothermal projects have highlighted the highly seismogenic nature of the faults system in this region. Therefore, mitigating the
seismic risk related to deep geothermal exploitation and anticipating reservoir development is essential for the project of Lithium
de France.

Using the subsurface knowledge acquired during geophysical exploration campaigns, a thermo-hydro-geomechanical model has
been built with the 2D finite element code Disroc. The fault zones have been divided into a discrete core zone, and an inner and an
outer damage zone, represented as equivalent continuous formations. Cold fluid is injected inside the outer damage zone of a major
fault zone, near 2000 meters depth. The open-hole section of the production well is located 1.2km away from the injection point at
a similar depth within the fault damage zone (FDZ).

In order to evaluate the reservoir storage capacity and the risks of fault reactivation, 2 ranges of permeability for the fault zones
have been compared: a large permeability case and a low permeability case. The case with the largest permeability shows small
fluid pressure variations (less than 20 bars after 20 years of fluid circulation), with productivity and injectivity indexes observed in
similar geothermal projects such as the neighbor project of Rittershoffen. In the low permeability case, induced seismicity is
expected at a similar flowrate after a few years, as observed in such geothermal projects. Therefore, a permeability anisotropy must
be considered in fault zones, to account for both the storage and the geomechanical aspects of the geothermal fault reservoir.

1. INTRODUCTION

Various geological studies and measurements from previously drilled geothermal projects in Northern Alsace showed geothermal
gradient anomalies, with up to 150°C at 1500 meters depth (Baillieux et al., 2013; Pribnow and Schellschmidt, 2000), but also high
lithium concentration in the brine circulating in the faulted crystalline basement (Aquilina et al., 1997; Kélbel et al., 2023; Sanjuan
et al., 2016). Lithium de France is the first independent French geothermal operator linking in a same project the two following
aspects: (1) producing direct heat from the geothermal brine circulating inside the fracture network in the Upper Rhine Graben; and
(2) extracting battery-grade lithium from this brine, with a minimal environmental impact.

Lithium de France already owns 2 geothermal exploration licenses in Northern Alsace, called Les Sources and Les Poteries, and 1
lithium mining exploration license, called Les Sources Alcalines (Fig 1). To improve the subsurface knowledge of these areas,
geophysical exploration campaigns (two 3D seismic campaigns and a Controlled Source Electro-M agnetic, or CSEM, acquisition)
were performed in 2022 and 2023 on these exploration licenses to better characterize the subsurface structures and their tendency
to fluid storage (Fig 1). Moreover, Lithium de France acquired and reprocessed vintage 2D lines to improve 3D seismic data
processing and interpretation, with the help of geological and geophysical data from neighboring wells (Fig 1). A 3D geological
static model was built on the Leapfrog software (Seequent) from five seismic horizons and multiple fault signatures converted to
depth, to 3D visualize the geothermal reservoir.

Previous geothermal experiences in the Upper Rhine Graben show geomechanical instability of the faults and fractures present in
the reservoirs, with generation of induced microseismicity during geothermal activities (Baujard et al., 2020; Schmittbuhl et al.,
2021). Therefore, the estimation of seismic risk through fault reactivation must be modeled to estimate the viability of the
geothermal exploitation, besides reservoir modeling of the resource. M oreover, the fracture system composing the faults’ damage
zoneresults in permeability heterogeneities in thereservoir (Llanos et al., 2015; Malin et al., 2020; Panja et al., 2021), which impact
local pressure and thus induced seismicity triggering (Khajehdehi et al., 2022). In order to make previsional estimations of both hot
fluid storage in the reservoir and geomechanical issues, we built a thermo-hydro-mechanical model using the 2D Disroc code
(Pouya,2016). As no well has been drilled in the considered exploration licenses yet, we consider a simple model to overcome the
lack of information about the faults mechanical properties and connectivity in depth and yet to have a global estimation of the
reservoir behavior.
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Figure 1: Exploration licenses and geophysical data

2. PREDICTIVE DYNAMIC MODELLING
2.1 Short Description of the Numerical Code

Disrocis a 2D THM finite-element software for modelling mechanical deformation and thermal and hydraulic processes in fractured

rock masses. It is designed to support discontinuities such as deterministic faults and DFN (Discrete Fracture Network).

Themain equations governing the THM processes used in Disroc are described below. Details can be found in Pouya (2016). Fluid
is considered incompressible and flows in the continuous matrix and throughout the discrete faults, both saturated. In the porous
rock matrix, the flow is governed by Darcy’s law. Combining Darcy’s law for linear fluid flow with the fluid mass conservation

law, hydraulic diffusion is given in the matrix by:

Cu 2 = div(kvw)

where Pis the fluid pressure (Pa), Cm the compressibility coefficient (Pa™'), k the permeability tensor (m?), W=P-+yez the hy draulic
head (Pa), v,, = gp,, the fluid density (Pa/m) where p,, the fluid density (kgm™) and g the gravity intensity (m.s™). V and div are

the gradient and divergent operators, respectively. The notation ~ refers to a tensor.

Concerning fluid flow in fractures, the following equation ensures fluid mass balance along the interface:

d I
CMfa_}; =V..(cv) — [vl. 7

where Cy is the fracture compressibility coefficient (Pa™'), cr the fracture hydraulic conductivity, v the fluid velocity and n the
normal to the interface plane (-). V represents the tangent gradient in the local plane of the interface, [. ] refers to the discontinuity

of the considered property at the interface. Thenotation - refers to a vector.
2
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Even though the code manages thermal advection, we consider heat transfer only through conduction here, using Fourier’s law of
heat transport:

W = —AVT 3)
where w is the heat flow (W.m™), A the heat conductivity tensor (W.m'.K") and T the temperature (K).

The thermal energy balance is given by:
T _ o
Cr5; = —div(w) “)
where Cr is the thermal capacity (J.kg'.K™).

The geomechanical behavior of rock masses and discontinuities can be elastic or elasto-plastic. We consider here linear thermo-
poro-elasticity in rock matrix, with the stiffness tensor relating the stress tensor to the strain tensor through generalized Hooke’s
law.

We consider discontinuities to adopt elastic linear behavior in normal direction, elastic and then perfectly plastic behavior in shear
direction. Plastic shear stress limited by the fracture shear strength expressed in the Mohr plane by the Mohr-Coulomb failure
criterion:

\/?z—ualsff—C=O ®)

where 1 is the shear stress (Pa), Jﬁf f = oy

(-) and C the cohesion (Pa).

— P the effective normal stress (Pa), on the normal stress (Pa), p the friction coefficient

The increment of shear plastic displacement is derived from a non-associated plastic flow relation:
Au” =1 _‘[ (6)

where AuP is the increment of shear plastic displacement (m), A, the plastic multiplier (-), G = Vo2 - Jﬁf T tan @, the plastic
potential (Pa) and ¢o the dilatancy angle (°).

2.2 Conceptual Model

The geothermal reservoir is defined as an assembly of porous and fractured sedimentary formations and faulted granitic basement,
in accordance with the literature from the neighbor geothermal projects (Baujard et al., 2017; Degouy et al., 1992; Reinecker et al.,
2019). The fault zones are divided in an outer damage zone (ODZ), witha low fracture intensity, altered and more permeable than
the surrounding rock; an inner damage zone (IDZ), with a higher fracture intensity, more altered and more permeable than the ODZ;
and a fault plane, where most of the fault displacement occurs (Figure 2 and Figure 3). In accordance with the observations from
the wells from the Soultz and Rittershoffen projects (Dezayes et al., 2010; Sausse and Genter, 2005; Vidal et al., 2017, 2016), and
relationships between fault offset and damage zone width at outcrop scale (Torabiet al., 2020), the faults are divided in 3 types with
associated damage zone width detailed in Table 1. The fault planes are considered discrete while the damage zones are represented
as equivalent continuous materials (Cappa,2011; Rinaldi et al., 2014), only represented in the hanging wall block, in accordance
with well data from a neighboring project (Vidal etal., 2017).

The 2D constructed model is defined as a horizontal slice of the 3D geological model to estimate the global behavior of the reservoir,
including fault connections (Figure 3). The intact rock matrix in this 2D model represents an equivalent reservoir. Therefore, its
thermo-hydro-mechanical properties are averaged by the heights of the different rock formations forming the reservoir. The
geothermal exploitation is expected to present a single well doublet. These wells are represented as 2 source points, located at the
intersection between the well trajectories and the model plane. These points appear to be in a fault outer damage zone.

We choose to consider a simplified model with no thermal advection. Nonetheless, we consider a thermal pseudo-advection, with
the thermal properties of the fault zones being function of the hydraulic conductivities of these zones. Fault failure occurs when a
simplified M ohr-Coulomb criterion is reached (Equation 5), with a null cohesion and a friction coefficient of 1, in accordance with
the literature (Cornet et al., 2007). In order to better understand the evolution of the geomechanical behavior of faults during fluid
circulation, the Coulomb Failure Stress, or CFS, has been computed for each fault segment in our model:

CFS =vt?— g/t (7)

To account for water reinjection related to the lithium extraction process, the injection flowrate is considered higher than the
production flowrate. The percentage of overinjected fluid is fixed and has been determined to limit reactivation of neighbor faults
and microseismicity triggering.

3
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Figure 2: Conceptual model adopted for faultzones

Table 1 : Size characteristics of the faults’ damage zones

Type 1 faults Type 2 faults Type 3 faults
Main orientation Mostly N-S Variable Variable
Fault offset estimated with
the 3D seismic cube (m) 200 50 10
Width of the ODZ (m) 150 40 10
Width of the IDZ (m) 50 10 1

2.3 Model Setup: Geometry, Initial Conditions, and Thermo-Hydro-Mechanical Properties

The model is located at 2 kilometers depth, that is in the granitic basement according to the 3D seismic imaging and the neighboring
geothermal wells (Aichholzer et al., 2016; Duringer et al., 2019). It consists of a 7 km-per-10 km studied zone embodied in a 40
km-per-50 km area (Figure 3a). The continuous formations are considered homogeneous, isotropic, permeable, and linearly elastic.

The initial pressure, temperatureand stress state are assumed homogeneous on the model and in accordance with the literature on
the Upper Rhine Graben (Guillou-Frottier et al., 2013; Valley and Evans, 2007) (Table 2). The adopted thermo-hy dro-mechanical
properties of the rocks and faults are summarized in Table 3, in accordance with the literature on the hydraulic tests fromthe Upper
Rhine Graben geothermal projects (Azzola et al., 2019; Cornet et al., 2007; GeORG Team, 2013; Kushnir et al., 2018;
Mahmoodpouret al., 2021; Rachez and Gentier, 2010; Stober and Bucher, 2015). Equivalent thermal properties are considered due
to pseudo-advection. The production flowrate is constant and equal to 250 m>/h. The reinjection temperature is equal to 64°C. 20

years of fluid circulation are simulated.
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Figure 3: Conceptual representation and meshing of the model. For confidentiality reasons, the static model is detailed
within the pink zone only.

Table 2: Thermal, hydraulic and mechanical initial conditions usedin the model

Parameters Value
Initial temperature To (°C) 144
Initial fluid pressure Py (bar) 205
Initial maximal horizontal stress SHmax (M Pa) 47.2
Initial minimal horizontal stress Shmin (M Pa) 26.8
Initial vertical stress'S, (M Pa) 49.7

Table 3: Thermal, hydraulic and mechanical properties usedin the model. Values in italic are usedin the low permeability

case, values in bold in the high permeability case.

Equivalent reservoir oDZ IDZ Faultplane
Equivalent thermal 593 108 150 45
conductivity A (W/m/K) 56 79,2
Equivalent specific heat 46 328
ity Cr (1/k 447 74.1
capacity Cr (Jkg/k) 57.1 10.4
Linear thermal expansion 1 4E-5
coefficient ar (1/K) ’
- o 1.15E-11 4.65E-11
Intrinsic p( fnrgt)leablhty k 1 3E-15 7 5E-13
2.3E-12 9.3E-12
Porosity @ (%) 3.5 4.8 9.3 100
Storativity S (1/Pa) 6.81E-10 1.06E-9 2.66E-9 4.54E-10
Biot coefficient b (-) 0.24 0.5 0.5 1
Dilation angle @o (°) - - - 5
Young modulus E (GPa) 52 39 7 -
Poissonratio v (-) 0.26 0.26 0.26 -
Density p (kg/m3) 2.7 2.7 2.7 -
Normal stiffness kn i ) ) 40
(GPa/m)
Shear stiffness ks (GPa/m) - - - 4
Friction coefficient p (-) - - - 1
Cohesion C (M Pa) - - - 0

I Even though the vertical direction is not represented in the model, vertical stress is still considered.

6
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3. INFLUENCE OF THE PERMEABILITY OFFAULT ZONES
We compare 2 ranges of fault zone permeabilities (Table 3) in terms of pressure, temperature and stress variations in the reservoir.

3.1 Reservoir storage estimation

Figure 4 shows pressureand temperature variations after 20 years of fluid circulation for both damage zone permeability models.
In the low damage zone permeability model, a very high overpressure (near 100 bars) is observed close to the injection well after
20 years of fluid circulation (Figure 4-a). In the high damage zone permeability, the overpressureis far lower, with near 20 bars at
the injection well after 20 years (Figure 4-b) ; this value is in accordance with other EGS numerical simulations in the Upper Rhine
Graben (Goldberg et al., 2023).

No significant temperature decrease has been observed at production well after 20 years of circulation in both cases (Figures 4-c
and 4-d). Nonetheless, the size of the temperature drop zone is higher in the high permeability case than in the low permeability
case, as expected with thermal pseudo-advection. Therefore, the temperature starts decreasing at the production well before 20 years
of fluid circulation in the high permeability case, witha thermal drop of 4°C being observed after 20 years of fluid circulation. We
have tonote that the symmetrical behavior of the thermal response of the models is an artifact related to the pseudo-advection.

b)

) Pressure variations after 20 years of fluid circulation

Temperature variations after 20 years of fluid circulation
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Figure 4: Fluid pressure and temperature variations after 20 years of fluid circulation in (a,b) low and (c,d) high damage
zone permeability cases

3.2 Faultreactivation and potential inducedseismicity

Figure 5 shows the proximity of reactivation of the faults represented in the model in both permeability cases, before exploitation
and after 20 years of fluid circulation. Before geothermal exploitation, the stress state is critical with 73% of the faults’ segments
having a CFS less than 5 M Pa. Ruptureis expected in the high damage zone permeability case after 19 years of fluid circulation,
whereas faults are reactivated after 5 years of fluid circulation in the low damage zone permeability case. In this particular case,
possible induced microseismicity could occur near injection on a fracture sub-parallel to the near main fault after 3 years, as observed
at the Rittershoffen exploitation, where an induced event with M >1.5 has been detected close to the geothermal operation after 2
years and 8 months of fluid circulation (M aurer et al., 2020)

4. CONCLUSION

We built 2D horizontal THM model to simulate the expected behavior of a geothermal reservoir in the Upper Rhine Graben. As no
well data has been acquired by Lithium de France yet, we consider a simple model, with unilateral coupling (H->M, T->M), no
thermal convection, a M ohr-Coulomb rupture criterion and a constant friction law. In this way, we have a rough estimation of both

7
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storage and seismicity in the reservoir. Nonetheless, a separate set of hydraulic properties must be considered for each estimation,
as both estimations require different kinds of concern. Another solution could be in considering permeability anisotropy in the fault
zone, with stochastic repartition of permeability values. This may need a more complex model that can be built after well drilling
and data acquisition from well tests and monitoring of induced microseismicity.
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Figure 5: Proximity to failure of faults (a) before the beginning of the exploitation and after 20 years of fluid circulation in
(b) high and (c) low damage zone permeability cases.
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