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ABSTRACT

Toachieve net-zero carbon emissions, it is essential to involve communities in the implementation of green energy technologies. This can
be done through informed decision-making, community -centered research, and engagement of stakeholders at the local, state, and regional
levels. Community-led research and implementation are fundamental to achieving success. These collaborations should include rule
makers, environmental regulators, clean energy industries, and technology researchers and developers. Unfortunately, many green
infrastructure initiatives still adhere to a top-down and expert-driven process of site selection and design without awareness and
acknowledgment of public engagement needs. This can lead to costly delays, including lawsuits, and ultimately less than desired or lacking
outcomes as well as missed opportunities. Geothermal energy is a promising green energy source, and it is important to ensure that its
expansion is equitable and does not disproportionately impact disadvantaged and underprivileged communities. To address this, we have
developed anovel web-based interactive software and user-friendly interface called GeoT Go (https://geotgo.com) that provides everything
that is needed for communities to better understand and develop their geothermal resources. Our website provides access to our machine-
learning method and tools. Our tool also includes a comprehensive and living Community Engagement Plan (CEP) that was
collaboratively developed with members of underprivileged and underrepresented communities. It bridges the gap between technology
advancements and community needs by facilitating the interactions between the geothermal industry, regulators, stakeholders, and end-
users. GeoTGo merges data, software (including data analysis, text mining, artificial intelligence, and modeling tools), know ledge,
expertise, and experience to provide fast processing and dissemination of the latest information about cutting-edge geothermal
technologies to users and communities. M achine learning and artificial intelligence methods in GeoTGo are based on our existing open-
source algorithms (SmartTensors, https://github.com/SmartTensors, SmartML, https://github.com/SmartTensors/SmartM L.jl, MADS,
https://aithub.com/madsjulia). GeoTGoiis a valuable tool that can help communities to develop their geothermal resources in a way that
is equitable and sustainable. We are currently working with several New Mexico Native Nations to pilot the tool and plan toexpand it to
other communities in the future. GeoTGo will help accelerate the development of geothermal energy and contribute to the achievement
of net-zero carbon emissions.

1.INTRODUCTION

Geothermal energy is one of the most attractive renewable energy options; it is the only source capable of delivering consistent and reliable
electricity 24 hours a day, 365 days a year, and it is right under our feet. Geothermal is critical for the socioeconomic development of
underprivileged communities in the Southwest U.S., where substantial geothermal potential exists. The lack of geothermal development
will negatively impact our society and environment through the continued utilization of fossil fuels.

Significant barriers to the wide use of geothermal energy include a lack of understanding, weak or non-existent supportive
legislation/incentives, and high costs/risks associated with geothermal exploration and utilization (Prodi 2014). For effective and equitable
outcomes towards achieving the national goal of net-zero carbon emissions, communities must be included and lead the implementation
of innovative green-energy technologies. Collaborations with communities should happen through informed, community -centered
research and local, state, and regional engagement. Unfortunately, many energy infrastructure initiatives still adhere to a top -down and
expert-driven process of site selection and design without awareness and acknowledgment of public engagement needs. This can lead to
costly delays, lawsuits, less-than-desired or lacking outcomes, and missed opportunities (Simons 2017).

Geothermal, like other new technologies whose impacts are not fully understood, may cause disproportionately high adverse effects on
disadvantaged communities if the process does not fully account for their socioeconomic and cultural interests and concerns. That is why,
under this project, we focus on the interplay between the technological and socioeconomic factors impacting geothermal utilization. A
large portion of the potential geothermal resources in the U.S. is located in areas with predominantly Native American Nation (NAN)and
underprivileged communities. That is why our work aims to engage with these communities and their workforce and businesses. Our work
will support local workforce and business development in geothermal and AI/ML.

Our country has the largest known geothermal potential in the world (Bhatnagar et al. 2022). However, the resources are underutilized.
The geothermal industry, decision-makers, and communities need tools that can help make decisions related to (1) where and how these
resources can be tapped, (2) what the deployment options are, and (3) what the potential total energy output is. Geothermal utilization
also depends on many other factors, including energy demand, socioeconomic needs, and existing infrastructure. Geothermal systems are

1


mailto:monty@envitrace.com
mailto:hope@envitrace.com
mailto:trais@envitrace.com
https://geotgo.com/
https://github.com/SmartTensors
https://github.com/SmartTensors/SmartML.jl
https://github.com/madsjulia
https://www.zotero.org/google-docs/?ViCGHo
https://www.zotero.org/google-docs/?II50hy
https://www.zotero.org/google-docs/?3lOIVl

Vesselinov, Jasperson, and Kliphuis

expensive to construct and maintain. The advancements proposed under this project are critical to addressing these issues. Our primary
goal is to remove the socioeconomic and technological barriers associated with geothermal exploration and utilization. Our work will
support the development of local job opportunities and businesses. Our work will also address the methodological and technical risks
associated with developing viable commercial softwareand services for geothermal exploration and utilization.
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Figure 1: Geothermal uses in urban settings.

1. SCIENCE-INFORMED MACHINE LEARNING (S IML)

A critical aspect of our work is the development and demonstration of SIML (Science-Informed Machine Learning) technology for
processing geological (geothermal, geochemical, geophysical, hydrogeological, etc.) data. These methods and tools are critical for the
robust and efficient utilization of geothermal resources. They are also important for scientifically defensible assimilation of the available
data and parameterization of the subsurface governing processes.

SIML methods are different from traditional ML techniques (Figure 2). In both cases, the M L models are trained to predict the spatia
distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g.,, permeability, porosity, etc.). The
traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes.
However, the conventional neurons (using standard activation functions) do not explicitly capture any physics. All constitutive
relationships must be learned exclusively from the input data.

In contrast, the SIM L neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models) (Figure
2). This results in ML models that have a physical meaning and satisfy physics laws and constraints (e.g., Darcy’s law, mass/energy
conservation, stress/deformation relationships, etc.). SIML can also include automatically differentiable numerical models. As a result,
the SIML NN as outlined in Figure 2 can execute model selection. SIML can choose which of the provided alternative “flow” models is
the most applicable to reproduce the data. SIML can also decide to use some combination of these models. For example, a series of
alternative expressions can be provided relating fracture properties to the medium porosity and permeability. SIML can select or combine
these relationships to represent the observed site data. SIML also accounts for the physics associated with different governing processes
critical for the characterization and parameterization of the site conditions (e.g., flow, stress, deformation, etc.).
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Alternatively, SIM L analysis can be performed in cases where the loss function applied for optimization of the NN includes a differentiable
(DP) model predicting a series of observable outputs (Figure 3). The discrepancies between model predictions and field measurements
are appliedtotrain an NN, parameterizing model inputs to represent the observed data.

Asaresult, SIML models are more robust, trustworthy, interpretable, and defensible than traditional M L models. SIML requires less data
for training, testing, and validation and increases predictability and opportunity for knowledge transfer between different sites.

SIML methods can also be applied to develop robust, fast, surrogate (reduced-order) models predicting geothermal conditions and
utilization based on site-specific data.

Itis important to emphasize that the development of traditional ML is general, utilizing similar NN architectures. However, the SIML is
problem specific. SIML for different science domains involves unique combinations of mathematical expressions, constitutive
relationships, and numerical/analytical models tailored for the particular task.

SIML requires the development of a differential programming (DP) reservoir simulator. In our case, a DP simulator is integrated into our
existing computational workflows for data analytics, model diagnostics, and SIML. The simulator is also coupled with existing products
developed by our company (e.g., SmartTensors, SmartM L, MADS). We have applied the DP simulator coupled with our SIM L techniques
to predict geothermal utilization prospectivity based on provided data. The obtained results are discussed below.
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Figure 2: Traditional ML (top) vs SIML (bottom). In both cases, the ML models are trained to predict the spatial
distribution of an output (e.g., pressure; right) based on a series of inputs (e.g., permeability, porosity, etc.; left). The
traditional ML (a) relies on deepandwide neural networks (NNs) based on simple algebraic mappings to represent complex
processes. Howewver, the conventional neurons (using standard activation functions) do not explicitly capture any physics
(a). In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and
physics/chemistry models) (b). This results in ML models that have a physical meaning and satisfy physics laws and
constraints (e.g., Darcy’s law, mass/energy conservation, stress/deformation relationships, etc.). SIML can also include
automatically differentiable numerical models. As a result, SIML can execute model selection: SIML can choose which
“flow” model is the most applicable to reproduce the data. SIML also accounts for the physics associated with different
governing processes (flow, stress, deformation, etc.).
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Figure 3: Example SIML analysis where the loss function includes a differentiable (DP) model predicting a series of
observable outputs. The discrepancies between model predictions and field measurements are applied to train an NN,
parameterizing model inputs to represent the observed data.
2.GeoTGo

We are developing a cloud-based interactive software called GeoTGo designed to provide everything needed to better understand and
develop geothermal resources at local/regional scales, accounting for socioeconomic and geologic conditions. In summary, our software

aims to:

apply Science-Informed Machine Learning (SIML) to geothermal problems

bridge thegap between geothermal technology advancements and community needs

facilitate interactions between the industry, regulators, stakeholders, and users

merge physics and engineering data, knowledge, expertise, experience, and models

provide fast processing and analysis of available data

suggest site-specific options for geothermal utilization depending on the subsurface conditions and energy needs

propose alternative geothermal uses, including electricity/hydrogen generation, mineral and trace-element mining,
greenhouse/district heating, recreation, and geoexchange heating and cooling.

support equitable and inclusive community geothermal development

Key GeoTGo features that are designed to address our goals related to data processing and analysis are:

cloud-based computing and data processing

access to public datasets and management of proprietary data

curing-edge data-analytics, model-diagnostics, and Al/M L methods and tools

analyses incorporating socioeconomic, engineering, and geoscience data and knowledge

transfer learning of information and experience between geothermal sites and regions

data input-output capabilities supportingexisting web databases (e.g., GDR, EDX, NGDS, and existing state-level and federal
public data resources), their APIs,and commonly -used file formats

To support the needs of business customers, GeoTGo will provide a series of decision tools critical for geothermal exploration and

utilization:
e costand return of investment (Rol) estimates based on energy cost and needs
e prediction of geothermal energy demand and utilization
e optimization of data acquisition strategies for efficient geothermal exploration and utilization
e optimization of geothermal production
e design of geothermal systems that efficiently mitigate risks (e.g., environmental, economic, social) and are representative of

community needs

Toaddress the challenges associated with the community engagement:
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design based on community engagement inputs addressing community and local workforce needs

access to training materials, reports, papers, informational videos, regulations, standards, and lessons learned
dissolves barriers between technology capabilities and community needs
intuitive interactive user interfaces for access from a wide range of devices, including mobile apps

GeoTGo is still in development. However, the software prototype and the existing dashboard are accessible through our GeoT Go
(https://geotgo.com) website. Screenshots of the GeoT Go dashboard are showcased in Figure 4.
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Figure 4: GeoTGo dashboard (http://geotgo.com) provides access to data and AI/ML methods and tools. Currently, only
public data can be processed; proprietary data access is under development. A series of alternative datasets representing
the geothermal conditions in New Mexico and the Great Basin can be selected. The dashboard provides cloud data
management and computing. It also visualizes the data and results obtained. Results related to Great Based are showcased
inFigure 7 below.
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3. GEOTGOo/SIML RESULTS

The setup of the developed DP simulator for integration in the SIM L process is shown in Figure 5.

The obtained results are presented in Figure 6. Here, GeoTGo estimates for geologic-engineered systems consisting of injection and
extraction wells. The 3 plots in Figure 6 (a, b, and c) present solutions for different permeability fields. The plots show permeability
fields (top left corner) and corresponding pressure fields predicted by GeoTGo. The SIML model also predicts the optimal rates
constrained by a pressure of less than 1 m at a given distance from the system'’s center (here, 3000 m).

In addition, GeoTGo allows for the processing of a series of alternative datasets representing the geothermal conditions in New Mexico
and the Great Basin. These datasets can be selected and processed through the GeoT Go dashboard (Figure 4).

For example, Figure 7 demonstrates the results obtained for the Great Basin. The Great Basin is a vast region (covering areas of Nevada,
Utah, California, Oregon, and Idaho) with significant geothermal potential. Many geothermal studies have been conducted over the last
50 years (Ayling 2022; Faulds 2015; 2021; GBCGE 2022; Wannamaker et al. 2020). Geothermal prospectivity so far has been evaluated
through a laborious manual process requiring advanced subject-matter expertise. Now, GeoTGo can achieve similar results in minutes.
GeoTGo has been applied to discover geothermal prospectively of the Great Basin from limited, sparse geochemical data (18 attributes;
TDS, B, Mg, etc.) observed with gaps and uncertainties.
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Nodes along a monitoring circle to ensure that
pressure does not exceed a predefined threshold
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Figure 5: GeoTGo model setup. The model domain and other model parameters are considered to be dimensionless. This allows
the developed S IML models to be applied to a range of reservoir conditions. Dimensionless model parameters include
domain size, radius of monitoring circle, distance between wells, permeability, and pressure threshold.
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Figure 6: Results demonstrating the applicability of SIML to predict injection/extraction rates. SIML provide predictions
of geothermal reservoir utilization given different permeability fields (a, b, and c). The plots present S IML estimates about
potential geothermal utilization assuming different configurations for well injection/extraction systems. The S IML model
predicts the optimal rates by applyinga constraint that the pressure buildup is less than a given threshold (here,1m) at a
given distance from the center of the system (here, 3000 m). The SIML model also predicts the pressure field. The distance
between the wells can also be varied and it also impacts the ML predictions. These analyses are also demonstratedon our
GeoTGo software prototype website and dashboard (http://geotgo.com).
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Figure 7: The Great Basin is a vast region (covering areas of Nevada, Utah, California, Oregon, and Idaho) with significant
geothermal potential. Many geothermal studies have been conducted over the last 50 years. Geothermal prospectivity so
far has been evaluatedthrough a laborious manual process requiring advanced subject-matter expertise (top left). Now,
GeoTGo can achieve similar results inminutes (top right). GeoTGo has been applied to discover geothermal prospectively
of the Great Basin from limited, sparse geochemical data (18 attributes; TDS, B, Mg, etc.) observed with gaps and
uncertainties (bottom). These analysesare also demonstratedon our software website and dashboard (http://geotgo.com).

3.CONCLUSIONS

We are actively developing novel Science-Informed Machine Learning (SIML) methods and tools designed to address geothermal needs
associated with exploration and utilization. Our ML methodology is embedded in a cloud-based interactive software dashboard called
GeoTGo (http://geotgo.com). It is designed to provide everything needed for communities to better understand and develop their
geothermal resources. GeoTGo provides cloud data management and computing. Our work bridges the gap between technology
advancements and community needs by facilitating the interactions between the geothermal industry, regulators, stakeholders, and end-
users. GeoTGo merges data, software (including methods and tools for data analysis, text mining, artificial intelligence, numerical
simulators, and visualization), knowledge, expertise, and experience to provide fast processing and dissemination of the latest information
about cutting-edge geothermal technologies.
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