PROCEEDINGS, 49" Workshop on Geothermal Reservoir Engineering
Stanford University, Stanford, California, February 12-14,2024
SGP-TR-227

Mineral Extraction from Geothermal Reservoirs: A Case Study from Western Anatolia

Raziye Sengun Cetin, Hakki Aydin, Fusun S. Tut Haklidir
Zorlu Enerji, Denizli, Turkey

raziye.sengun@zorlu.com, hakki.aydin@zorlu.com, fusun.haklidir@zorlu.com

Keywords: mineral extraction, monte carlo simulation, geothermal brine

ABSTRACT

Geothermal brine is a promising source for sustainable and environmentally friendly mineral extraction, containing a variety of valuable
minerals, such as silica, lithium, strontium, and rare earth elements. However, the low mineral concentrations in the brine present a
significant challenge, requiring large volumes of brine to be processed. This study investigates the potential of mineral extraction from
geothermal reservoirs, using a case study of reserve estimation in a geothermal field to demonstrate the application of Monte Carlo
simulation, a stochastic approach used to handle uncertain parameters with critical effects onreserve estimation. A review and evaluation
of mineral extraction methods is then presented, highlighting their challenges, advantages, and techno-economic perspectives. The study
found that mineral extraction from geothermal reservoirs is economically viable, although more research and development is needed to
overcome the challenges associated with this process.

1. INTRODUCTION

Diverse technological solutions, encompassing membrane separation, ion exchange, precipitation, biosorption, and adsorption, is currently
under development for the extraction of valuable minerals from geothermal brines (Table 1). Each methodology offers distinct advantages
and faces specific challenges, promptingongoing research efforts dedicated to process optimization. Recognizing the substantial potential
of these resources, several regions boasting significant geothermal reserves have initiated pilot projects and demonstrations. These
initiatives aim to gauge the feasibility of large-scale mineral extraction from geothermal brines, comprehensively evaluating their
practicality, environmental considerations, and economic viability.

Table 1: Mineral extraction and recovery methods

Method Material Description Reference
Adsorbtion Li,REE Adsorbent bind target material mostly with hydrogen | Ventura et al. (2018); Park et al. (2012); Farley et
ions. al. (1980); Addleman (2015); Noack et al. (2015);
Thomasetal. (2015); Thomas et al. (2016); Vulcan
Energy Resources; Bauman and Burba (1997);
Bauman and Burba (2001); Harrison (2011),
Iwanaga et al. (2007)
Ton Exchange Li, B, Cs, Rb, | Exchange of similar charged ions between resin (ion | Liu et al., (2019); Shi et al., (2014); Zhou et al,
REE, Zn, Ag, | exchange material)and brine (solution). (2020); Ruttinger et al., (2019), SRI International,
Au Standard Lithium, E3 Metals Corp., Anson
Resources,
Membrane Li, Si02 Membrane separation relies on selective permeation of | Bourcier et al. (2009); Lu et al., 2018); Li et al,
Separation certain components through a semipermeable membrane | (2019b); Liu et al., (2019); Zhang et al., (2020b);
under pressure Wanget al., (2020a)
Solvent L1, Cs,Rb, REE | Solvent extraction involves the transfer of solutes | Belova (2017); McKinley and Ghahreman, (2018);
Extraction between immiscible liquid phases through chemical | Perez et al., (2019); Liu et al., (2019); Li et al,
interactions. Suitable for refining due to large quantities | (2020); Zhouetal.,(2020); Wanget al., (2020); Xu
of solvent usage. et al., (2021); Pure Energy Minerals
Precipitation/ Ag, Mn, Au, Pt, | Reagents are added to make brine precipitate. Unwanted | Harrison (2011); Harrison, (2014); Maimoni,
Aggregation Se, As, Cu, Bi, | mineral precipitateand large quantities of reagent usage. | (1982); Schultze and Bauer,1984; Gallup (1992);
Pb, Zn, Li Christopheret al. (1975)
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Flectrochemical | B, Li, As, SiO2, | This method involves the use of electrical potential to | Mroczek et al., (2015); Mroczek et al. (2019);
Seperation Ca, Mg drive the migration ofions through an electrolyte soltion | McKinley and Ghahreman, (2018); Zhongwei and
or acrossa membrane tomove under the influence of an | Xuheng, (2015); Zhu et al., (2018); Xu et al.,
electric field. Techniques such as electrophoresis, | (2012)
electrodialysis, and membrane electrolysis fall under the
category of electrochemical separation. suitable for
refining than extraction because poor material durability.
Biochemical REE, Heavy | Biological methods for metal removal from waterinvolve | Sedlakova-Kadukova, et al. (2020); Mrazikova,
Methods metals, Li, Au the use of living organisms, such as bacteria, algae, or | (2016); Brewer, et al. (2019); Lo et al. (2014),
plants, to sequester, transform, or precipitate metal ions. | Smith et al. (2017)
Microbial ~ Biosorption, Microbial Precipitation,
Biological Chelation, Biofiltration are common
approaches.
Hybrid System | B, Li Adsorbtion & Solvent Extraction Parhi and Sarangi,(2008);Guo et al., (2013); Zante
Combinations etal.,2020a
Li Adsorption & Ultrafiltration Recepogluet al., (2017)
Li Electrodialysis & Solvent Extraction Hoshino, (2013); Liuet al.,(2020)

Drawing upon existing literature and established industrial practices, this section offers a concise overview of potential mineral extraction
methods for a spectrum of valuable elements from geothermal brines. The elements covered include lithium (Li), cesium (Cs), manganese
(Mn), strontium (Sr), neodymium (Nd), stibnite (Sb), copper (Cu), nickel (Ni), zinc (Zn), rubidium (Rb), silver (Ag), and silica (SiOz).

Neupane and Wendt (2017) conducted a comprehensive analysis of mineral contents and identified potential economic minerals in
geothermal brines, focusing on the western region of the United States. Their research suggests that several mineral commodities,
including rare-earth elements (REEs), lithium (Li), manganese (Mn), silica (SiO:), and precious metals, are present in sufficiently high
concentrations and flow rates to be economically recoverable. Stringfellow and Dobson (2021) identified inorganic molecular sieve ion-
exchange sorbents as the most technologically mature solution, noting that sorbent selectivity, tolerance for interfering ions, and the purity
ofeextracted lithium are key cost drivers. While ion exchange resins and adsorbents are favored for lithium production in geot hermal fields,
their application can be impeded by low fluid flow rates. Furthermore, elements like silica, magnesium, sodium, calcium, and precipitation
inhibitors employed in geothermal plants can damage adsorbents and exacerbate pollution. Additionally, extracting lithium from spent
resins/adsorbents incurs further chemical and operating costs. As an alternative, electrodialysis and reverse electrodialysis methods have
emerged, but they necessitate dilute fluids, electrical energy, and additional infrastructure alongside geothermal resources. Mroczek et al.
(2005) and others (Iwanaga et al., 2007; Park et al., 2012; Chitrakar et al., 2014) highlight the potential of membrane-based techniques
like electrodialysis, citing their low energy consumption and high selectivity compared to other electrical methods. This opens avenues
for further development and potentially positions electrodialysis as a contender in the mineral extraction landscape alongside traditional
methods (e.g., Christopheret al., 1975; Yoshinaga et al., 1984; Rothbaum & Middendorf, 1986; Bauman et al., 2001; Harrison, 2018)

Chemical consumption strategies play a key role in manganese extraction from geothermal resources. Notably, selective precipitation
with lime and hydroxide-based precipitation at pH 8-9 offer viable options. Furthermore, Harrison (2014) proposed the exploration of
combined methodologies, featuring chemical precipitation in silica-free brine following thermal flash processes to produce manganese
minerals. These approaches highlight the potential for targeted manganese recovery from geothermal brines with tailored chemical inputs
and processing strategies.

Valiente (1999) proposed the utilization of liquid-liquid solvent extraction with di(2-ethyl-hexyl) phosphoricacid (D2EHPA)in hexane
for neodymium recovery. This approach leverages an ion exchange mechanism to selectively capture neodymium from solution. The
choice of D2EHPA as the extractant, combined with hexane as the diluent, capitalizes on the specific chemical properties of both
components to achieve efficient and targeted neody mium extraction.

Cesium recovery from geothermal brines can be achieved through diverse strategies, encompassing fractional precipitation, ion exchange,
and solvent extraction techniques (Zhang et al., 2020; Schulz and Bray, 1987). Notably, Zhang et al. (2014) demonstrated a promising
approach involving theselective removal of cesium from desilicated and deferrified brines through tetrafluoroborate precipitation, often
in conjunction with potassium extraction. Broadly, cesium production methods can be categorized into chemical and electrical approaches,
highlighting the distinct technological landscapes available for exploiting this valuable element.

Strontium extraction from complex matrices, often alongside other challenging nuclear waste constituents like americium, neptunium,
plutonium, uranium, and technetium, has spurred the development of specialized techniques. Horwitz et al. (1990) proposed a solvent
extraction process for the co-extraction of cesium and strontium from acidic nitrate media, leveraging the selective affinity of specific
extractants towards these elements. This approach offers simultaneous recovery of both valuable resources while simplifying the overall
treatment process. Alternatively, Orth and Kurath (1994) explored diversified avenues for strontium extraction. Their work highlights the
potential of: (1) chemical solvent extraction with ion exchangers, particularly suited for acidic environments, and (2) precipitation
followed by ion exchange, a viable option for alkaline media. These diverse strategies demonstrate the ongoing research efforts towards
efficient and targeted strontiumrecovery from challenging sources.
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Antimony, a metalloid with diverse industrial applications, presents a promising target for extraction from geothermal brine. Several
promising methodologies have emerged for antimony recovery from geothermal brines: Uysal et al. (2022) demonstrated a highly efficient
two-stage cementation process for antimony extraction, achieving a 90% recovery rate. This method leverages the preferential
displacement of antimony by zinc from its dissolved state in the brine. Dupont et al. (2016) proposed a comprehensive approach involving
grinding, flotation, and density-based separation followed by antimony extraction through chemical, electrochemical, or electrical methods
in both alkaline and acidic media. This multifaceted approach caters to the complex composition of geothermal brines and offers versatility
in selecting the most effective extraction technique based on specific conditions.

Extracting copper from various waste streams and unconventional resources has gained significant interest due to its growing demand
and limited primary resources. Several research efforts have explored promising methodologies for copperrecovery. Dupont et al. (2016)
delve into the intricacies of copper recovery from wastes in conjunction with strontium, offering valuable insights into this area. Barragan
(2020) proposes an electrochemical approach for copper extraction following a pickling process. Stando et al. (2021) further showcase
the potential of electrochemical techniques by demonstrating copper recovery even in the presence of impurities like iron, magnesium,
aluminum, zinc, and arsenic, utilizing carbon nanotubes for enhanced efficiency. Peralta et al. (1996) explore the potential of geothermal
sediments as a source of copper, proposinga leaching method for selective separation of arsenic, copper, and zinc. Additionally, M aimoni
(1982) investigated the applicability of a liquefied cathode cementation process with metallic iron as the reducing agent for copper
recovery from these resources.

For nickel recovery, a diverse array of electrochemical methods presents promising avenues, as outlined by Coman et al. (2013). These
methodologies can be broadly categorized into several key groups: Separation with chemical precipitators, ion flotation with surfactant,
zeolite and ion exchange resins, physisorption, adsorption and electro deionization, electrofloaters and electrocoagulation.

Electrochemical methods such as chemical heavy metal precipitators, ion flotation with the help of surfactants, zeolite and ion exchange
resins, physisorption (ultra, nano), adsorption and electro deionization, electrofloaters and electrocoagulation are the methods to obtain
nickel (Coman et al. 2013).

Several established methods exist for zinc extraction from geothermal brines, including lime-induced selective precipitation, liquefied
cathode cementation with metallic iron, and precipitation in silica-free brine after flash distillation. Additionally, treating pH-stabilized
(calcareous) brine with hydrogen sulfide (H2S) can be an economical option, as the trace presence of H2Sin geothermal non-condensable
gases can reduce theneed for external H-S supply and lower chemical consumption costs.

Chemical and electrochemical methods such as fractional precipitation, ion exchange, solvent extraction are proposed to recover Rubidium
(Zhang 2014, 2020).

Several studies have investigated methods for obtaining silicon dioxide from various sources. These include techniques for:
e  Colloid growth through aging and filtration (Bourcier et al., 2009; Geo40; Roberts, 2009).
e  Separation with electrocoagulation (Mroczek et al., 2019; M ohan, 2009).
e Precipitationas calcium silicate and/or metal silicate forms.

e  Retention tanks to promote polymer growth (Rothbaum and Anderton, 1976; Shannon et al., 1982; Sasan et al., 2016).

Researchers have proposed cathode cementation with metallic iron and deposition on steel mesh plates for silver separation from
geothermal sediment (Gallup 1992, M aimoni 1982, Brown and Roberts 1988). However, extracting noble metals like silver often involves
energy -intensive hydrometallurgical cycles using acidic or caustic solutions. Fortunately, various methods can be applied to recover such
metals from these solutions, including cementation, precipitation, electrolytic recovery, solvent extraction, ion exchange, reductive
exchange, adsorption,and even bio-hydrometallurgical approaches like bio-oxidation and biosorption (Syed 2012, Das 2010, Patel et al.
2017).

Western Anatolia hosts a significant geothermal energy potential attributable to its unique geological structure. Numerous electricity
generation facilities have been established since 2005, capitalizing on this valuable renewable resource (Figure 1). Theinstalled capacity
of these geothermal power plants surpasses 1.7 GWh, with tens of thousands of tons of geothermal fluid produced per hour for electricity
generation and subsequent reinjection into the subsurface. Beyond energy production, the extraction of minerals from these geothermal
fluids constitutes a developing field of research and discussion.
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MAIN GEOTHERMAL FIELDS OF WESTERN ANATOLIA

Installed GEP Field

1-Denizli-Kizildere (200-245°C) (Zorlu)
Denizii-Kizildere (140°C ) (Bereket)
2-Aydin-Salavath (171°C) (MeGe)
3-Aydin-Germencik (276°C) (Girmat)
4-Aydin-Pamukoren (188°C) (Celikler)
5-Canakkale-Tuzla (174°C)(Enda)
6-Aydin-Hidirbeyli (180°C) (Maren)
7-Aydin-Gimigkdy (180°C) (BM)
8-Denizli-Gerali (124°C) (Degirmenci)
9-Manisa-Alagehir (185°C) (Tarkerler)
10-Ganakkale-Ayvacik (160°C) (MTN)
11-Manisa-Alasehir-Alkan (193°C) (Zorlu)
12-Aydin-Umurlu (155°C) (Kar-Key)

13-Denizli-Tekkehamam (241°C) (Greeneco)
14-Denizli-Tosunlar (103°C) (Akga)
15-Manisa-Alagehir-Kemaliye (160°C) (Enerjeo)
16-Aydin-Germencik-Ortaklar (180°C) (Karizma)
17-Manisa-Alagehir (180°C) (Sis)
18-Manisa-Alagehir (287°C) (MASPO)
19-Afyonkarahisar (125°C) Afjet
20-Denizli-Kuyucak-Y&re (200°C) (Turkas)
21-Manisa-Salihli-Caferbeyli (168°C) (SANKQ)
22-Manisa-Alagenhir (180°C) (Mis Enerji)
23-Manisa-Alasehir-Baklaci (250°C) (Akga)
24-Aydin-Incirliova (180°C) (35Kale)
25-Aydin-Sultanhisar (180°C) (Celikler)
26-Aydin-Buharkent (146°C) (Limak)
27-Manisa-Alagehir (180°C) (Soyak)

Project Phase

Main Geothermal Heating System
- lzmir-Balgova (JMS+SR)

- Balikesir-Edremit (JMS+SR)

- Denizli-Saraykty (JMS+5SR)

- Manisa-Salihli (JMS+SR)

- Kiitahya-Simav (JMS+SR)

- lzmir-Dikili (JMS+SR)

- Balikesir-Bigadic (JMS)

- Manisa-Turgutiu (SR)

- Manisa-Salihli-Lider (SR)

- Denizli-Agro Pekdemir (SR)

- Denizl-AKGA (SR)

- lzmir-Gegme (JIS)

- Balikesir-Pamukgu (SR)

GEP: Geothermal Electric Power Plant
GDHS: Geothermal District Heating System
GH: Greenhouse Heating

28-lzmir-Seferihisar (153°C)
29-lzmir-Balgova (142°C)
30-Aydin-Atga (124'C)
31—Izn1ir—E]ikiIi—Bergama (130°C)
32-Balikesir-Sindirgi (107°C)
33-Aydin (=100°C)
34-Kitahya-Saphane (188°C)
35-Aydin-Nazilli (168°C)
36-Kitahya-Simawv (164°C)
37-Aydin-Germencik (239°C)
38-Denizli-Kizildera (245°C)
39-Aydin-Sultanhisar (180°C)
40-Aydin-Yiimazkdy (142°C)

Figure 1: Main geothermal fields of Western Anatolia (Simsek, 2020)
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Mineral enrichment within Anatolian metamorphic geothermal reservoirs primarily occurs through the dissolution of reservoir rock during
hydrothermal fluid circulation. While the absolute mineral concentrations may be lower compared to globally recognized resources, the
significant volume of extracted fluid renders the extraction of even low-concentration minerals potentially economically viable. This study
aims to quantify the recoverable reserves of Lithium (Li), Cesium (Cs), Manganese (Mn), Strontium (Sr), Neodymium (Nd), Antimony
(Sb), Copper (Cu), Nickel (Ni), Zinc (Zn), Rubidium (Rb), Silver (Ag), and Silica (SiO2) present within the produced fluids of seven
operational geothermal fields: Kizildere, Germencik, Alasehir, Salihli, Simav, Seferihisar, and Canakkale, across Western Anatolia. These
fields currently function as sources of electrical and/or thermal energy. The mineral reserve estimation will leverage Monte Carlo
simulations, a technique frequently employed in assessing investment decisions for geothermal electricity generation. To achieve this
objective, relevant reservoir parameters and water analyses for each location will be compiled and critically assessed from existing
literature.

2. MATERIALS AND METHODS

This study focuses on minerals resource assessment within the geothermal fields by using a volumetric approach derived from the U.S.
Geological Survey's framework, typically applied to evaluate geothermal energy potential. Subsequently, Muffle (1978) enhanced this
method by incorporating a probabilistic approach, termed Monte Carlo simulation, to address uncertainties associated with crucial
reservoir parameters, including area and thickness. This study adapted Monte Carlo simulation to quantify the minerals potential of
geothermal systems. At its core, the volumetric method hinges upon calculating the in-situ mineral content within the geothermal brine
occupying the reservoir's porous and fractured media. Notably, the potential contribution of minerals residing within the rock matrix was
not considered, and potential minerals transfer from rock grains to brine due to concentration gradients during production was deemed
negligible. Aydinet al. (2022) used equation (1) for assessment of lithium. This study benefits from this equation to assess mineral reserves
in western Anatolia.

Recoverable mineral= Axhx¢pxCxRFxE 1)

where, "A": reservoir area (km?); "h": reservoir thickness (m); " ¢ ": equivalent porosity (fraction); C: mineral concentration in brine
(ppm); RF: Recovery Factor (fraction); E: Extraction efficiency.

The estimation of recovery factors for geothermal reservoirs remains a debated subject, with research predominantly focused on energy
extraction (DiPippo, 2007; Lawless and Beardsmore, 2010; Zarrouk and Moon, 2014). Consequently, this study will utilize reported
recovery factors ranging from 5% to24%, reflecting the impact of porosity, and permeability (Williams et al., 2008; Avsar et al., 2015).
However, geothermal brine mineral extraction efficiency additionally depends on the chosen capture technique, often resulting in
incomp lete recovery of target minerals. Therefore, to account for this variability, this study integrates experimentally determined mineral
extraction efficiencies as multipliers alongside the recovery factors. For instance, Zhang et al. (2021) and Sun et al. (2020) proposed an
iron phosphate electrochemical method for environmentally friendly lithium recovery, achieving a maximum extraction efficiency of
90.65%. Similarly, Harrison (2014) reported lithium extraction exceeding 95% in laboratory experiments using sorbents. Conversely,
Mceachern et al. (2020) observed efficiencies below 60% with aluminate-based adsorbents. M oreover, M cGrail et al. (2017) and Smith
et al. (2017) documented rare earth element extraction efficiencies approaching 90% alongside recovery efficiencies of approximately
20%. Values for key reservoir characteristics, such as porosity, thickness, and areal extent, were obtained from relevant references.

Due to inherent uncertainties associated with reservoir parameters utilized in the volumetric method, a M onte Carlo simulation approach
is employed for robust estimation. This probabilistic technique relies on iteratively sampling random values for key parameters, such as
porosity or thickness, from predefined probability distributions. Subsequently, for each iteration, the production potential is calculated,
generating a range of possible outcomes. By analyzingthe distribution of these outcomes, uncertainty associated with the estimated reserve
is significantly reduced and a more representative understanding of the resource potential is achieved. Dueto lack of data distribution, we
selected triangular distribution for all uncertain parameters.

3. RESULTS AND DISCUSSIONS

Western Anatolia hosts rich geothermal provinces characterized by numerous high-temperature fields distributed across distinct tectonic
grabens. Notably, Kizildere and Germencik fields lie within the Bilyiikk M enderes Graben the prominent, while the Gediz Graben hosts
the Alasehir and Salihli fields. Furthermore, the Seferihisar Field resides within the Cubukdag Graben, and the Simav Graben encompasses
the Eynal, Nasa, and Citgdl fields. Finally, the Edremit Graben is distinguished by the presence of the Tuzla Field.

3.1 Kizildere Geothermal Field

Located at the easternmost and narrowest extremity of the Biiyiik M enderes Graben, the Kizildere Geothermal Field holds the dis tinction

of being the first field discovered in Turkey for geothermal electricity generation. The field is underlain by the Menderes Massif, a
metamorphic complex composed of diverse schists and marbles (including schist, quartzite, mica schist, and chlorite schist). These
formations contribute to the production of geothermal fluids with temperatures reaching 245 °C. Kizildere boasts a well-developed
infrastructure, with over a hundred wells drilled to date and an installed capacity exceeding 280.85 M We. Further details regarding the
reservoir characteristics and relevant mineral concentrations for this study are available in Table 2.
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Table 2: Data inputvalues for reserve estimation of Kizildere geothermal field.

Parameter Units C 011:&]]11—:’::&0“5 Min. Mean Max. Reference

Reservoir Area A (m2) 30000000 70000000 10000000 | Yimazer (2015)

Reservoir Thickness H (m) 500 1000 1500 Yilmazer (2015)

Equivalent Porosity 0 (%) 3 5 10 (AZ}(f)dllg)and Akin (2020); Kiiciik

Lithium -Li C (ppm) 5.7 0.57 5.7 8.55 Haklhdir etal. (2021)

Neodymium-Nd C (ppm) 1.3 0.13 1.3 1.95 Moller etal. (2004)

Cesium-Cs C (ppm) 0.02 0.002 0.02 0.03 Bundschuh etal. (2013)

Manganese-Mn C (ppm) 0.54 0.054 0.54 0.81 Zorlu(2022)

Strontium-Sr C (ppm) 0.4 0.04 0.4 0.6 Zorlu(2022)

Antimony-Sb C (ppm) 0.18 0.018 0.18 0.27 Zorlu(2022)

Copper-Cu C (ppm) 0.5 0.05 0.5 0.75 Zorlu(2022)

Nickel-Ni C (ppm) 2.16 0.216 2.16 3.24 Zorlu(2022)

Zinc-Zn C (ppm) 0.09 0.009 0.09 0.135 Zorlu(2022)

Rubidium- Rb C (ppm) Bel"vrigfitfctio“ 0.001 0.01 0.015 | Bundschuh etal. (2013)

Silica- SiO2 C (ppm) 560 56 560 840 Haklidir etal. (2021)

Silver-Ag C (ppm) 0.93 0.093 0.93 1.395 Zorlu(2022)

Recovery Factor RF (%) 10 15 20 g(i)l}i;ns ctal.(2008); Avsaretal.
Sun etal. (2020); Mceachem etal.

Extraction Efficiency E (%) 50 70 90 (2020); McGrail vd. (2017); Smith
etal. (2019)

3.2 Alasehir Geothermal Field

Located on the southern side of the Gediz Graben, Alasehir geothermal field harness its geothermal potential from M eta-sedimentary
units, marbles and fractured quartzite zones in the Paleozoic-M esozoic aged Menderes M etamorphites (Rabet et al., 2017). Reservoir
temperature ranges from 150 to 220 °C and reservoir fluid is water-dominated (Baba, 2015). The total installed capacity of geothermal
power plants in the area is 310 M We. The reservoir characteristics of Alagehir Geothermal Field and the precious mineral concentrations
tobe used in the study are given in Table 3.

Table 3: Data input values for reserve estimation of Alagehir geothermal field.

Parameter Units Cor%ions Min. Mean Max. Reference

Reservoir Area A (m2) 45000000 90000000 | 135000000 [ Yilmazer (2015)

Reservoir T hickness H (m) 250 500 750 Yilmazer (2015)
Equivalent Porosity 0 (%) 3 5 10 Aydm and Akin (2020); Kiigiik (2018)
Lithium -Li C (ppm) 6.3 0.63 6.3 9.45 Haklidir and Sengiin (2020)
Neodymium-Nd C (ppm) - 0.275 2.75 4.125 Salihli value used.
Cesium-Cs C (ppm) 0.01 0.001 0.01 0.015 Bundschuh etal. (2013)
Manganese-Mn C (ppm) 0.08 0.008 0.08 0.12 Bundschuh etal. (2013)
Strontium-Sr C (ppm) 0.2 0.02 0.2 0.3 Bundschuh etal. (2013)
Antimony-Sb C (ppm) 0.005 0.0005 0.005 0.0075 Bundschuh etal. (2013)
Copper-Cu C (ppm) 0.9 0.09 0.9 1.35 Zorlu(2022)

Nickel-Ni C (ppm) - 0.95 9.5 14.25 Salihli value used.

Zinc-Zn C (ppm) 0.01 0.001 0.01 0.015 Bundschuh etal. (2013)
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Rubidium- Rb C (ppm) 0.01 0.001 0.01 0.015 Bundschuh etal. (2013)
Silica- SiO2 C (ppm) 0.01 36.6 366 549 Haklidir and Sengiin (2020)
Williams etal.(2008); Avsaretal.
Recovery Factor RF (%) 366 10 15 20 (2015)
Sun etal. (2020); Mceachem etal.
Extraction Efficiency E (%) 50 70 90 (2020); McGrail vd. (2017); Smith
etal. (2019)

3.3 Salihli Geothermal Field

It is located within the Gediz Graben, where the metamorphic rocks ofthe M enderes M assif function as aquifers for both cold and thermal
waters. The metamorphites of the M enderes M assif serve as aquifers for both cold and thermal waters. The Neogene terrestrial sediments
serve as caprock. Notably, the Salihli-Koseali geothermal well yielded the second-highest reservoir temperature recorded in Turkey,
reaching a remarkable 287°C. Further details regarding the reservoir characteristics of the Salihli Geothermal Field and the specific

mineral concentrations relevant to the study are presented in Table 4.

Table 4: Data inputvalues for reserve estimation of Salihli geothermal field.
Parameter Units ConMc?ﬁ@ Min. Mean Max. Reference
Reservoir Area A (m2) 5000000 12000000 20000000 | Yimazer (2015)
Reservoir Thickness | H (m) 250 500 750 Yilmazer (2015)
Equivalent Porosity | @ (%) 3 5 10 Aydm and Akin (2020); Kiigiik (2018)
Lithium -Li C (ppm) 5.14 0.514 5.14 7.71 Ozen vd. (2010)
Neodymium-Nd C (ppm) 2.27 0.227 2.27 3.405 Moller etal. (2004)
Cesium-Cs C (ppm) 0.03 0.003 0.03 0.045 Bundschuh etal. (2013)
Manganese-Mn C (ppm) 0.01 0.001 0.01 0.015 Bundschuh etal. (2013)
Strontium-Sr C (ppm) 0.06 0.006 0.06 0.09 Bundschuh etal. (2013)
Antimony-Sb 0.001 1E-04 0.001 0.0015 Bundschuh etal. (2013)
Copper-Cu C (ppm) 9.5 0.95 9.5 14.25 Ozen etal. (2010)
Nickel-Ni C (ppm) 43 0.43 43 6.45 Ozen etal. (2010)
Zinc-Zn C (ppm) 0.02 0.002 0.02 0.03 Bundschuh etal. (2013)
Rubidium- Rb Cppmy | Beloydetection | g 91 0.01 0.015 | Bundschuh etal. (2013)
Silica- SiO2 C (ppm) 322 322 322 483 Ozen etal. (2010)
Silver-Ag C (ppm) 0.88 8.80E-02 0.88 1.32 Ozen etal. (2010)
Recovery Factor RF (%) 10 15 20 Williams etal.(2008); Avsaretal. (2015)
e [res RN T

3.3 Germencik Geothermal Field

Germencik geothermal field is in the west of the Biiyiik M enderes Graben and composed of two reservoirs. The primary reservoir is
constituted by the fractured quartz schists, gneisses, and marbles of the M enderes M assif. In contrast, the secondary reservoir is composed
of Neogene-aged sandstones and conglomerates. Neogene-aged clay-bearing sedimentary units serve as the caprock for the entire system.
Recorded temperatures within the field range from 200°C to 232°C, as reported by Filiz et al. (2000). Notably, the installed capacity of
geothermal power plants found between Omerbeyli and Giimiiskdy collectively reaches 502 M We. Table 5 provides a comprehensive
overview of the reservoir characteristics of the Germencik Geothermal Field and the specific precious mineral concentrations relevant to

the present study.
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Table S: Data input values for reserve estimation of Germencik geothermal field.

Parameter Units Co%ons Min. Mean Max. Reference

Reservoir Area A (m2) 75000000 150000000 | 225000000 [ Yimazer (2015)

Reservoir Thickness | H (m) 171 1000 1400 Yilmazer (2015)

Equivalent Porosity | © (%) 3 5 7.5 Aydin and Akin (2020); Kiigiik (2018)
Lithium -Li C (ppm) 10.6 1.06 10.6 15.9 Karakus and Simsek (2013)
Neodymium-Nd C (ppm) 347.4 34.74 347.4 521.1 Moller etal. (2004)

Cesium-Cs C (ppm) 0.06 0.006 0.06 0.09 Bundschuh etal. (2013)
Manganese-Mn C (ppm) 0.15 0.015 0.15 0.225 Parkm (2012)

Strontium-Sr C (ppm) 0.11 0.011 0.11 0.165 Bundschuh etal. (2013)

Antimony-Sb C (ppm) 1.9 0.19 1.9 2.85 Parkin (2012)

Copper-Cu C (ppm) 0.079 7.90E-03 0.079 0.1185 Parkin (2012)

Nickel-Ni C (ppm) 0.26 0.026 0.26 0.39 Bundschuh etal. (2013)

Zinc-Zn C (ppm) 0.29 0.029 0.29 0.435 Parkin (2012)

Rubidium- Rb C (ppm) 0.03 0.003 0.03 0.045 Bundschuh etal. (2013)

Silica- SiO2 C (ppm) 535 53.5 535 802.5 Karakus and Simsek (2013)

Recovery Factor RF (%) 10 15 20 Williams etal.(2008); Avsaretal. (2015)
Extraction Sun etal. (2020); Mceachem etal. (2020);
Efficiency E (%) >0 70 20 McGrail vd. (2017); Smithetal. (2019)

3.4 Seferihisar Geothermal Field

Seferihisar geothermal field is located in the southwest of Izmir. The rhyolites and rhyolodacites within the Cumaovas: Volcanites,
identified as the heat source. These volcanic domes, situated as individual features within the Cretaceous formations southeast of the
Graben, contribute significant thermal energy. Fractured mafic submarine volcanites and highly permeable limestone and serpentinite
masses of the Bornova mélange serve as the reservoir rocks, while relatively impermeable clay -rich zones and sandstone and shale levels
of Neogene sediments act as cap rocks. The reservoir fluid is predominantly liquid, and its temperature varies between 70°C and 200°C
depending on depth. The field boasts a single geothermal power plant with a capacity of 12 MWe. Table 6 details the reservoir
characteristics and relevant mineral concentrations of the Seferihisar Geothermal Field.

Table 6: Data input values for reserve estimation of S eferihisar geothermal field

Parameter Units C M. Min. Mean Max. Reference
oncentrations
Reservoir Area A (m2) 12500000 25000000 37500000 | Aydmn etal. (2022)
Reservoir T hickness H (m) 500 1000 1500 Aydin etal. (2022)
Equivalent Porosity 0 (%) 3 5 10 Aydm and Akin (2020); Kiigiik (2018)
Lithium -Li C (ppm) 10 1 10 15 Zorlu(2020)
Neodymium-Nd C (ppm) - 0.000092 0.00092 0.00138 | no analysis,value estimated
Cesium-Cs C (ppm) 0.15 0.015 0.15 0.225 Bundschuh etal (2013 )
Manganese-Mn C (ppm) 0.19 0.019 0.19 0.285 Bundschuh etal. (2013 )
Below detection Bundschuh atal. (2013), The
Strontium-Sr C (ppm) V‘ll it 0.005 0.05 0.075 measurement limit isaccepted as the
mi value.
Antimony-Sb C (ppm) 0.001 0.00001 0.0001 0.00015 Bundschuh etal. (2013)
Copper-Cu C (ppm) - 0.0001 0.001 0.0015 no analysis,value estimated
Nickel-Ni C (ppm) 0.12 0.012 0.12 0.18 Bundschuh vd. (2013)
Zinc-Zn C (ppm) 0.02 0.002 0.02 0.03 Bundschuh vd. (2013)
Below detection Bundschuh atal. (2013), The
Rubidium- Rb C (ppm) limit 0.001 0.01 0.015 measurement limit is accepted as the
value.
Silica- SiO2 C (ppm) 119 11.9 119 178.5 Zorlu(2020)
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Recovery Factor RF (%) 10 15 20 g(l)lilg;ns etal.(2008); Avsaretal.
Sun etal. (2020); Mceachem etal.

Extraction Efficiency E (%) 50 70 90 (2020); McGrail vd. (2017); Smith
etal. (2019)

3.5 SimavGeothermal Field

Simav geothermal field is in the central part of the Simav Graben. The primary reservoir rocks within the field are the chalcocite and
marble levels of the Kirkbudak formation. Naga basalts potentially contribute as secondary reservoir rocks. Impervious Neogene rocks
such as claystone, sandstone and conglomerate cover the Simav Geothermal System (Gemici and Tarcan, 2002; MTA, 2005). The
reservoir temperature ranges between 180°C and 200°C. Carbonate minerals, as observed by Gemici and Tarcan (2002), tend to precipitate
in the region. Table 7 presents the detailed reservoir characteristics and relevant mineral concentrations of the Simav geothermal field.

Table 7: Data input values for reserve estimation of S imavgeothermal field

Mineral

Parameter Units Y Min. Mean Max. Reference
Concentrations

Reservoir Area A (m2) 1000000 2000000 5000000 Karakus etal. (2017)
Reservoir Thickness H (m) 250 1000 3000 Karakus etal. (2017)
Equivalent Porosity 0 (%) 6 6 6 Karakus etal. (2017)
Lithium -Li C (ppm) 1.76 0.176 1.76 2.64 Cardak etal. (2019)
Neodymium-Nd C (ppm) - 0.000092 0.00092 0.00138 no analysis,value estimated
Cesium-Cs C (ppm) 0.02 0.002 0.02 0.03 Bundschuh etal. (2013)
Manganese-Mn C (ppm) 15.25 1.525 15.25 22.875 Cardak etal. (2019)
Strontium-Sr C (ppm) 0.05 0.005 0.05 0.075 Bundschuh etal. (2013)
Antimony-Sb C (ppm) 0.002 0.0002 0.002 0.003 Bundschuh etal. (2013)
Copper-Cu C (ppm) - 1.00E-04 0.001 0.0015 no analysis,value estimated
Nickel-Ni C (ppm) 15.25 1.525 15.25 22.875 Cardak etal. (2019)
Zinc-Zn C (ppm) 5.5 0.55 5.5 8.25 Cardak etal. (2019)
Rubidium- Rb C (ppm) 0.01 0.001 0.01 0.015 Bundschuh etal. (2013)
Silica- SiO2 C (ppm) 280.7142857 28.1 281 421.5 Cardak etal. (2019)

Williams etal.(2008); Avsar
Recovery Factor RF (%) 10 15 20 etal. (2015)

Sun etal. (2020); Mceachem
Extraction Efficiency | E (%) 50 70 90 etal. (2020); McGrail vd.

(2017); Smith etal.(2019)

3.6 Canakale Tuzla Geothermal Field

Canakkale-Tuzla geothermal field:is located in the Edremit Graben of northwestern Turkey, lies 80 km southwest of Canakkale and 5 km
from the Aegean Sea. Influenced by seawater infiltration, its thermal waters exhibit Na-Cl and Na-HCO3-Cl types, reaching well
temperatures of 173°C. The installed geothermal power plants’ capacity is 46.5 M Wein the region. The reservoir rocks are composed of
different types of lavas and recrystallized limestones of the metamorphic basement, while the tuffaceous claystone, conglomerate and
sandstones above these units serve as caprocks for the system (Gevrek et al., 1984; MTA, 2005). The reservoir characteristics of Tuzla
Geothermal Field and the mineral concentrations to be used in the study are given in Table 8.

Table 8: Data input values for reserve estimation of Canakkale Tuzla geothermal field

Parameter Units Min_eraJ‘ Min. Mean Max. Reference
Concentrations
Reservoir Area A (m2) 3000000 6000000 9000000 Yilmazer (2015)
Reservoir Thickness | H (m) 250 500 750 Yilmazer (2015)
Equivalent Porosity | @ (%) 3 5 10 Aydin and Akin (2020); Kiiciik
(2018)
Lithium -Li C (ppm) 29.294 2.9294 29.294 43.941 Katircioglu (2013)
Neodymium-Nd C (ppm) 0.00092 0.000092 0.00092 0.00138 Ozgetin and Gemici (2018)
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Cesium-Cs C (ppm) 2.4 0.24 2.4 3.6 Ozgetin and Gemici (2018)

Manganese-Mn C (ppm) 5.117 0.5117 5.117 7.6755 Katircioglu (2013)

Strontium-Sr C (ppm) 169.968 17 170 255 Katircioglu(2013)

Antimony-Sb C (ppm) <2 0.19 1.9 2.85 Karaca etal. (2013)

Copper-Cu C (ppm) 2.4 2.40E-01 2.4 3.6 Ozgetin (2018)

Nickel-Ni C (ppm) <0.3 0.02 0.2 0.3 Karaca etal. (2013)

Zinc-Zn C (ppm) 0.535 0.0535 0.535 0.8025 Karacaetal. (2013)

Rubidium- Rb C (ppm) 0.026 0.0026 0.026 0.039 Karaca etal. (2013)

Silica- SiO2 C (ppm) 96.2 9.62 96.2 144.3 Ozgetin (2018)

Recovery Factor RF (%) 10 15 20 g(i)l}isa;ns ctal (2008); Avsaretal.

Extraction Sun etal. (2020); Mceachem etal.

Efficiency E (%) 50 70 90 (320'20); McGrail vd. (2017);
mith etal. (2019)

Based on extensive datacollated from the literature, reserve estimations for Western Anatolia indicate a high potential for mineral wealth.
Lithium exhibits the most substantial reserve projection, exceeding 24,813 metric tons. Significant reserves of other vital elements are
also evident, including 208 metric tons of manganese, 67,423 metric tons of neodymium, 35 metric tons of cesium, 924 metric tons of
strontium, 412 metric tons of antimony, 958 metric tons of copper, 553 metric tons of nickel, 113 metric tons of zinc, 8 metric tons of
rubidium, and a remarkable 246,417 metric tons of silica. Additionally, estimated silver reserves reach 844 metric tons (Table 9). These
findings highlight the remarkable geological diversity and mineral resource potential of Western Anatolia. The probabilistic results of
mineral reserve estimation are shown in the Appendix in the figure 2 through figure 8 as cumulative probability density function.

Table 9: Estimated reserves (P10, 90%) of high-temperature geothermal fields in Western Anatolia

Seferihisar | Alasehir | Germencik Kizildere Simav Salihli Tuzla
Total

field field field field field field field
Lithium -Li 414 723 1964 986 1039 5116 14572 24813
Manganese-Mn 8 5 25 80 65 0.1 24 208
Neodymium-Nd 0.04 205 67004 194 0.01 21 0.004 67423
Cesium-Cs 7 1 11 4 0.1 0.3 12 35
Strontium-Sr 2 15 20 69 0.2 1 816 924
Antimony-Sb 0.004 0.37 372 31 0.012 0.009 9 412
Copper-Cu 0.04 752 14 84 0.006 96 12 958
Nickel-Ni 5 1 52 371 81 42 1 553
Zinc-Zn 1 1 58 15 35 0 3 113
Rubidium- Rb 0.41 0.74 5.21 1.73 0.05 0.1 0.14 8
Silica- SiO2 5181 26242 107511 102208 1600 3171 504 246417
Silver-Ag 0.188 302 1 491 0.042 48 2 844

3.7 Economical Analysis of Mineral Extraction

While numerous critical minerals reside within geothermal brines, lithium gained prominent attention due to its extensive research and
diverse applications. Direct Lithium Extraction (DLE) techniques, primarily those leveraging adsorption and ion-exchange, find wide
applicability in lithium extraction from geothermal sources. Warren (2021) estimates production costs for extracting lithium from brines
containing 100-400 ppmto range from 3200 to 4554 USD/mt Li in the US/Europe, with a 5-year payback period. Notably, for Western
Turkey's brines, the extraction cost stands at 4.6 USD/kg Li, with a 12-year payback period.
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Extracting various critical minerals, not just lithium, from geothermal fluids presents a cost-effective and environmentally friendly
approach to raw material production. This viability directly hinges on the mineral concentration within the brine and the employed
technology. Notably, geothermal brine extraction offers an effective strategy to mitigate supply chain risks associated with critical
minerals.

The International Energy Agency emphasizes the crucial role of critical minerals like copper, lithium, nickel, cobalt, and rare earths in
fueling clean energy technologies, including wind turbines, power grids, electric vehicle batteries, LEDs, and hydrogen electrolyzers.
Demand for these minerals is expected to soar as clean energy transitions gain momentum. Securing sustainable and reliable sources for
materials crucial for daily and industrial needs is paramount. Utilizing geothermal resources for critical mineral extraction presents a
promising avenue towards economic feasibility in this endeavor.

In 2022, the U.S. Geological Survey (USGS) released a report outlining short- and medium-term requirements for critical minerals
essential for energy production and various industrial applications. According to the report, six materials - cobalt, dysprosium, gallium,
natural graphite, iridium, and neodymium - are categorized as "critical" in the short term. Notably, the medium-term outlook includes 12
critical, 6 near critical, and 4 noncritical materials. Key points include elevated importance to energy for copper and silicon while
maintaining their supply risk. Additionally, supply risk scores increase for aluminum, iridium, manganese, neodymium, phosphorus,
platinum, and silicon carbide, despite their stable importance to energy. Nickel exhibits simultaneous increases in both importance to
energy and supply risk. Conversely, dysprosium experiences a decline in energy importance due to potential substitutes in the medium
term, but its supply risk rises, solidifying its status as a critical material.

While the individual element concentrations within the geothermal brines of western Anatolia are demonstrably lower when comp ared to
global benchmarks, their cumulative economic significance cannot be disregarded solely based on individual values. As evidenced in
Table 10, the combined resource base extracted from these production fields encompasses 25,000 tons of lithium, 208 tons of manganese,
67,000 metric of neodymium, 35 tons of cesium, 924 tons of strontium, 412 tons of antimony, 958 tons of copper, 553 tons of nickel, 113
tons of zinc, 8 tons of rubidium, 844 tons of silver, and 246,000 tons of silica. Notably, the estimated total economic value associated with
these extracted minerals surpasses 28 billion USD (Table 10).

Table 10: Economic value of mineral assets in geothermal reservoirs in west of Turkey

Mineral ID f::ir:lvzt?fon) (l\{[jasrll)(/et:m[;ﬁce Explanation fisjtsig)ated Economic Value
Lithium -Li 24,813 $846,220 Metal (Li>99%) $20,997,244,454
Manganese-Mn 208 $937 Manganese Sulfate(Mn=%32) | $608,810
Neodymium-Nd 67,423 $19,848 Metal (Nd=99,0-99,9%) $1,338,225,654
Cesium-Cs 35 $101,258,846 [ Cs>99,5% $3,544,059,610
924 $4,340 Al-Sr (%10) Alloy $40,097 812
Strontium-Sr
Antimony-Sb 412 $133,800 Sb-05 (=99,999%) $55,125,600
Copper-Cu 958 $11,070 Powder Copper $10,605,060
Nickel-Ni 553 $3,879 Nikel (Ni: 99,90%) $2,144,983
Zinc-Zn 113 $483 Zinc (Zn>99,5%) $54,623
Rubidium- Rb 8 $115,724,345 | Rubidium (Rb > 99,995%) $925,794,760
Silica- Si02 246,417 $805 Si>97%, Fe>1,8%,Ca>1,0% $198,401,020
Silver-Ag 844 $771,000 99,99% $650,724,000
Total 27.763.086.384

4. CONCLUSION

Extracting critical minerals from geothermal brines presents an economical viable and environmentally friend approach to securing
essential raw materials for both daily needs and clean energy technologies. M ineral enrichment within Anatolian metamorphic geothermal
reservoirs primarily occurs through the dissolution of reservoir rock during hydrothermal fluid circulation. This study quantified the
recoverable reserves of Lithium (Li), Cesium (Cs), Manganese (Mn), Strontium (Sr), Neodymium (Nd), Antimony (Sb), Copper (Cu),
Nickel (Ni), Zinc (Zn), Rubidium (Rb), Silver (Ag), and Silica (SiO2) present within the produced fluids of seven operational geothermal

11



Sengun et al.

fields: Kizildere, Germencik, Alaschir, Salihli, Simav, Seferihisar, and Canakkale, across Western Anatolia. The study employed M onte
Carlo simulations to overcome uncertainty of parameters such as concentration, area, and thickness. Based on extensive data collated from
the literature, reserve estimations for Western Anatolia indicate a high potential for mineral wealth. Lithium exhibits the most substantial
reserve projection, exceeding 24,813 metric tons. Significant reserves of other vital elements are also evident, including 208 metric tons
of manganese, 67,423 metric tons of neody mium, 35 metric tons of cesium, 924 metric tons of strontium, 412 metric tons of antimony,
958 metric tons of copper, 553 metric tons of nickel, 113 metric tons of zinc, 8 metric tons of rubidium, and a remarkable 246,417 metric
tons of silica. Additionally, estimated silver reserves reach 844 metric tons. These findings highlight the remarkable geological diversity
and mineral resource potential of Western Anatolia. While the absolute mineral concentrations may be lower compared to globally
recognized resources, the significant volume of extracted fluid renders the extraction of even low-concentration minerals potentially
economically viable. Careful consideration of mineral concentrations within the brine and the selection of appropriate technologies are
crucial for economic feasibility. M oving forward, research and development efforts should focus on optimizing extraction processes and
mitigating environmental impacts to fully unlock the potential of geothermal brines as a sustainable source of critical minerals.
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Figure 2: Mineral reserve estimation of Kizildere geothermal field.
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Figure 3: Mineral reserve estimation of Alasehir geothermal field.
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Mineral reserve estimation of Germencik geothermal field.
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Figure 6: Mineral reserve estimation of S eferihisar geothermal field.
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Figure 7: Mineral reserve estimation of Simavgeothermal field.
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Figure 8: Mineral reserve estimation of Canakkale Tuzla geothermal field.
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