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ABSTRACT

More than 40% of CO> emissions in Germany are generated in the heating sector. This contrasts with the expansion potential of deep
hydrothermal geothermal energy, which accounts for around 25 % of the country's total heating requirements. One of the regions in
Germany that can provide resources for this is the Upper Rhine Graben. There, fracture-bound deep geothermal systems are often
associated with medium-depth hydrocarbon reservoirs. Examples are Soultz-sous-Foréts, Landau, but also the former Leopoldshafen oil
field, below which a temperature of 170°C at 3,000 m depth has been proven. Heat networks in Germany typically show a low heat
demand in summer and a high demand in winter. The base load supply in summer typically accounts for only a few to around 15 p ercent
of the peak load in winter. Since the conversion of excess heat into electrical energy is associated with low efficiency levels, the storage
of excess heat in medium-depth reservoirs is proposed here to optimize the overall system.

The Deep Stor research infrastructure at the KIT-Campus North represents an analog for such storage systems in the Upper Rhine Graben.
With a planned production from the fractured geothermal system at depth of more than 3,000 m, heat can be extracted in sufficient quantity
and temperature to cover the base and medium load. The surplus heat can be stored in the peripheral areas of the former Leopoldshafen
oil field (with 70 % water saturation at theend of hy drocarbon production) and recovered in winter.

A 3-D subsurface model for Deep Stor and the city of Karlsruhe was created on the basis of 2-D and 3-D seismic data and information
from more than 20 boreholes in former oil fields. Using temperature and hydraulic data from the corresponding boreholes, thermo-
hydraulic simulations were carried out to 1) estimate the state of the deep geothermal system and 2) optimize the planned campus supply.
In summary, our results show that the share of renewable geothermal heat energy can be increased from 25 % to about 65 % by storing
the excess heat without heat losses to the atmosphere. Assuming that technical problems such as scaling can be solved, we are currently
in the process of scaling up the storage systemto the city of Karlsruhe with peak and base loads of around 250 and 30 MW.

1. INTRODUCTION

The climatic conditions in Central Europe require the provision of considerable amounts of thermal energy for heating purposes in the
winter months, which leads to a seasonal imbalance between heat supply and demand when supply is constant, as is the case with base
load-capable geothermal plants. This discrepancy requires buffer systems with alarge capacity.

The Upper Rhine Graben with its generally high temperature gradients, which can locally reach up to 100°C km™!, offers one of the most
favorable geothermal conditions in Central Europe (e.g, Baillieux et al., 2013; Vidal and Genter, 2018). Nowadays, a number of 16
geothermal wells are in operation for production and reinjection of thermal brine from Tertiary Fms. (2), Muschelkalk Fms. (2),
Muschelkalk Fms. to the Variscian basement rock (2), Buntsandstein Fms. to the Variscian basement rock (6), and only Variscian
basement rock (4, Frey et al., 2022). The causal close connection between hydrocarbon and geothermal reservoirs is shown by the spatial
proximity of temperature anomalies below hydrocarbon reservoirs and the coexistence of geothermal fluids and hydrocarbons in fractured
Mesozoic reservoirs (e.g., Bocker, 2017). The long history of hydrocarbon and geothermal exploration has led to the Upper Rhine Graben
being a continental rift system that has been intensively studied by geoscientists. The numerous depleted oil fields in the Upper Rhine
Graben are proven reservoirs that are well characterized in terms of their depth, geometry and reservoir properties. M oreover, seismicity
and environmental impact have shown to be minimal during hydrocarbon production and have been minimized during reservoir
engineering and operation in the deep geothermal systems (e.g., Schill et al., 2017; Genter et al., 2012).

Nowadays, there are numerous storage applications in near-surface underground systems, ranging from gravel pits to aquifer thermal
energy storage (ATES). State of the art is borehole thermal energy storage, in which the heat pump cycleis reversed to store excess heat.
Worldwide, > 2,800 ATES systems are in operation, mainly in the Netherlands, providing more than2.5 TWh a™! for heating and cooling
purposes (Fleuchhaus et al.,, 2018). The operating temperatures of ATES are generally < 50 °C and cover low-temperature heat
applications. There are only a few plants worldwide that operate at higher temperatures. Holstenkamp et al. (2017) describe the conditions
and experiences of the two German plants in Berlin and Neubrandenburg. High-temperature heat storage for industrial applications or
district heating supply, for which temperatures of up to >110 °C are required, are typically not taken into account (Fraunhofer ISI, 2017).

Assuming a doublet system with seasonal injection and production cycles, a numerical potential study for the injection of 140 °C water
into a typical 70°C reservoir shows an annual storage capacity of up to 12 GWh per well and significant recovery efficiencies increasing
up to 82 % after ten years of operation (Stricker et al., 2020). Around 90 % of the reservoirs investigated in the Upper Rhine Graben can
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be converted into such high-temperature ATES (HT-ATES). In summary, this indicates a total storage capacity in depleted oil reservoirs
of about 10 TWha!, which represents a considerable part of the thermal energy demand in this area.

In this study, we numerically investigate the heat extraction from a deep fractured reservoir at the Deep Stor site in combination with the
seasonal storage of heat at the edge of the depleted Leopoldshafen oil field (Figure 1). The motivation for this study is our concept to
mitigate theinduced seismicity during operation of the deep fractured reservoir through stable and moderate flow rates (Schill et al., 2017;
Genter 2012). In order to keep the flow rates in the deep fractured reservoir stable, although the heat demand in summer is significantly
lower, we propose heat storage in a porous reservoir with comparatively low potential for induced seismicity. This concept has the positive
side effect of automatically reducing the flow rates required to cover the heat demand in winter in the deep, fractured reservoir with a
higher potential for induced seismicity.
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Figure 1: Sketch of the geological and thermal situationin the subsurface of DeepStor including the locations of the former oilfield
Leopoldshafen and the corresponding surface installation such as the district heating network.

2. GEOTHERMAL SETTING AT THE DEEPSTOR SITE

The Deep Stor site is located in the central segment of NNE trending, essentially non-volcanic Upper Rhine Graben, which developed
from about 47 M aonwards between Germany, France and Switzerland. Tectonically, it is located in the hanging wall ofthe M ain Eastern
Boundary Fault. In the central graben, the Cenozoic sediments reach a thickness of up to 3,500 m (Geyeret al., 2011) and are subdivided
into Pliocene to Holocene fluviatile siliclastics that unconformably overlie late Eocene (Lutetian) to early Miocene (Burdigalian) syn-rift
sequences. These sequences were deposited in a generally low-energy environment under alternating marine, brackish, fluviatile and
lacustrine conditions and contain deposits of carbonates, sands, silts, clays, marls and locally intercalated evaporites.

The Deep Stor site is adjacent to the eastern edge of the depleted Leopoldshafen oil field in the footwall of the Leopoldshafen fault. This
NNE-striking normal fault (Wirth 1962) is part of the M ain Eastern Boundary Fault and exhibits a syndep ositional normal faulting from
the Oligocene to the early Miocene, with the synrift layers dipping shallowly to the NE (Schad 1964). A total of around 188,000 tons of
oil were extracted from a few meters thick, fine-grained, mica-rich calcareous sandstone deposits, which are embedded in hundreds of
meters thick, mostly marly Meletta and Bunte Niederrodener layers (Wirth 1962; Bocker 2015). The Meletta layers are part of the
Froidefontaine Formation and were deposited under marine conditions during a regressive phase. They show coarsening upward trends
in the late Rupelian (ca. 29 Ma), followed by atransgression phasein which the finer upward trends in the upper part of the Meletta strata
merge into the marly, still marine to brackish Cyrena strata. These stratashow a further phase of regression and further development into
the fluvio-lacustrine Niederrdderner Formation (Schad 1962; 1964; Grimm et al. 2011; Pirkenseer et al. 2011; 2013).

The Leopoldshafen field was explored by around 20 boreholes to a depth of approximately 3,000 m. The corrected temperature data (Sauer
et al., 1981), which yield about 100 °C at a depth of 2,000 m, include measurements in the Melettaand Bunte Niederrédener sandstone
layers. Maximum temperatures of 170 °C at a depth of about 3,000 m are reported from the Leop oldshafen-20 borehole.

3.3-D GEOLOGICAL MODEL

The basis of the of the numerical modeling of optimized heat cycling between the deep fractured reservoir and the porous reservoir at
intermediate depth through the surface are two individual 3-D geological models.
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The first comprises the porous reservoir for seasonal storage at a depth of about 1,300 m and is modeled on the basis of a depth-migrated
3-D seismic survey and data from more than 25 wells with a depth> 1,000 m M D (Bauer et al. subm.). It comprises the reservoir of the
Meletta sandstones with a thickness of a few meters, which is overlain and underlain by impermeable, confining marl layers. T he model
covers a volume of 5 x 8 x 3 km. Thetopography is represented by a digital elevation model with a resolution of 30 m. The interpretation
of the seismic data and the 3-D geological modeling was carried out using Petrel subsurface software (Schlumberger Ltd.).

The latter model of the fractured reservoir at depthis part of a larger 3-D geological model for the Karlsruhe area with a volume of 33 x
10-16 x 7 km. In addition to the above data, it includes a further 17 wells and 33 2-D seismic lines. The seismic interpretation was
performed with OpendTect (dGB Earth Sciences B.V.) and the 3-D model was created with the geological modeling software SKUA
GoCAD™ (Aspen Technology Inc.). It includes the base of the Tertiary, Jurassic, Keuper, Muschelkalk and Buntsandstein sediments as
well as the major Stutensee and Leopoldshafen faults. The thickness of the damage zone was empirically determined to 200 m according
to Choi et al. (2016), depending on the displacement amount of the thrust faults which can be around 900 m in case of the Leopoldshafen
fault. Note that the base of Buntsandstein marks the boundary to the crystalline basement rock, which in our case incl. Thetopography is
represented by the digital GTOPO30 elevation model of the USGS (2018).

Both geological models have been transferred into a 3-D finite element mesh, all tetrahedrons, for further numerical studies using
COM SOL Multiphysics® Finite Element software. A mesh refinement was performed around the wells to approximately 1 m. General
procedure of meshing was exporting the triangulated surfaces of the 3-D geological model (relevant formation tops and fault surfaces)
and intersect them using CAD software (Rhinoceros 3D®) into a solid volume model including representing all layers and faults. The
main normal faults were extended to volumes according to their damage zone thickness.

The model of the fractured reservoir at depth is discretized into 2.5 million elements. It extends over a volume of 15 x 16 x 8 km. An
additional mesh refinement to approximately 1 m was performed in the damage zone of the faults. The model of the porous storage volume
is discretized into 1 million elements. It extends over a volume of 5 x 5 x 1.9 km. Here, an additional mesh refinement was p erformed in
the sandstone layers.

4. NUMERICAL MODELLING OF HEAT CYCLING

For the two sub-models, the flow and heat transport were calculated for various management scenarios using COM SOL Multiphy sics®
Finite Element software. Due to the licensing situation in the study area, well for heat extraction are restricted to the M esozoic layers. The
two models are numerically connected via a single node that represents the heat exchanger and connects to the district heating (Zwickel
etal., 2022). At the surface Dirichlet boundary condition with a constant mean annual surface temperature of 10°C is applied. At the lower
boundary of the models a Neumann boundary condition of constant heat flux of 60 mW m are used.

4.1. Heat extraction from the deep fractured reservoir

The drilling target of the deep fractured reservoir are Mesozoic branch faults in the hanging wall of the main normal faults. They are
rooted in the crystalline basement, reach the Tertiary base and show displacements of up to 100 m. Permeabilities are assumed to be
increased in the hanging wall due to the presence of a damage zone of up to 200 m. The permeability of the damage zone was estimat ed
tobe 1-107"> m? based on the temperature distribution in the Leopoldshafen-20 well. The full set of final parameters are provided in Table
1 and table 2.

The calibration of the model bases on bottom-hole temperature measurements. Temperature adjustment was achieved by varying thermal
conductivities, heat production rates in the basement, and basal heat flux. The simulation indicates that, with a production rate of 25 L/s,
pressure differentials on the main faults remain below 2 M Pa. The production temperature is approximately 180°C.

About 9 MW thermal output was calculated by the modeling, the result was round-off and therefore includes a buffer for uncertainties
and heat losses.

4.2. Heat storage in porous reservoir at intermediate depth

The heat storage reservoir of the Meletta beds were developed by horizontal screens of the injection and production wells in a depth of
around 1300 meters. In the Tertiary formations faults are estimated to be sealed and limit the lateral extent of the reservoir. Low
permeabilities and thermal conductivities of the cap rock insulate the sandstone reservoir.

Given the significant influence of permeability on the effectiveness of the reservoir, a variant was calculated with a reservoir permeability
of 25 mD (mean permeability of a well close to the modelled production well), where 5 L/s were injected and produced. The second
scenario includes a permeability of about 70 mD (Stricker et al. 2020) allowing extraction/injection rates of 10 L/s.

Injection and production modeling was performed over a period of 10 years heating up the underground storage system to a plateau of
performance according to Stricker et al. 2020. The output ofthe reservoir is approximately 2.7 MW for a pumpingrate of 10 L/s, and it
is 1.25 MW for 5 L/s.

Table 1: Hydraulic parameters used for the thermo-hydraulic modelling of the individual units of the two models, the deep
fractured reservoir and the porous reservoir for heat storage.

Unit Permeability (m”) Porosity (%)
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Tertiary marls 1-10°8 15
Tertiary sandstones 25104 -6.6-10™ 15
Jurassic/Keuper (claystones) 1-10°7® 15
M uschelkalk (limestone) 5,9-10°1° 2,7
Buntsandstein (sandstone) 1-10 3
Permian (conglomerates/sandstones) 1-1071¢ 5
Basement (granite/metamorphic units) 5-10° 5
Damage zone of faults 1-101 15

Table 2: Thermal parameters used for the thermo-hydraulic modelling of the individual units of the two models, the deep
fractured reservoir and the porous reservoir for heat storage.

Unit Heat conductivity (W m'K™") | Heat capacity (MJ kg 'K ") | Heat productionrate (uWm™)
Tertiary marls 1.4 2.4 0

Tertiary sandstones 2.5 3.15 0

Jurassic/Keuper (claystones) 1.4 2.4 0

Muschelkalk (limestone) 32 2.2 0

Buntsandstein (sandstone) 33 2.2 0.3

Permian (conglomerates/sandstones) | 3.3 2.2 0.9

Basement (granite/metamorp hic 3.25 2.2 0.9-2.13

units) and damage zone of faults

5. UP-SCALING TO THE CITY OF KARLS RUHE

In summary, our results show that the share of renewable geothermal heat energy at KIT-Campus North can be increased from 25 % to
about 65 % by storing the excess heat. Assuming that technical problems such as scaling can be solved, we are currently in the process of
scaling up the storage systemto the city of Karlsruhe with peak and base loads of around 250 and 30 MW.

A comparison of the layout of the district heating network of the city with the location of depleted oilfields reveal the city district of
Knielingen as optimal location for further studies (Figure 2). Similar to the subsurface condition at the DeepStor site, the sandstone
reservoirs of the Niederrddern Fm. the wells reach bottom hole temperatures of 63 to 90°C at depths of about 1450 to 1500 m.
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Figure 2: The district heating network of the city of Karlsruhe and the locations of the wellheads of the former oilfield Knielingen.
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