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ABSTRACT  

We present a global sensitivity analysis with an entropy production objective function to improve our understanding of transient thermo-
hydraulic processes in geothermal reservoirs under epistemic uncertainties. The entropy production describes the contributions of the 

irreversible heat transfer and the fluid flow friction. As a global sensitivity analysis demands numerous model runs to measure the 

significance of each physical parameter, we employ the non-intrusive reduced basis method to construct a surrogate model to decrease 

the computational cost. We test the application for a geothermal reservoir study in The Hague, Netherlands. The use of a surrogate model 

provides more than eight orders of magnitude speed-up, enabling an efficient global sensitivity analysis. With the use of the entropy 
production as the objective function, we can capture important parameters contributing to both the thermal and the hydraulic process for 

all time steps. The use of either only the pressure or the temperature state as an objective function in the global sensitivity analysis fails  

to identify important parameters contributing to the thermo-hydraulic process. 

1. INTRODUCTION 

Global sensitivity analyses have been used before to improve the understanding of physical processes, captured via numerical simulations, 
by characterizing the contribution of input parameters on the variations of an objective function (Saltelli et al., 2019). However, they 

provide us with the challenge is of selecting a comprehensive objective function that leverages the understanding of the desired physical 

processes (Degen et al., 2021b; Wainwright, 2014). For improving the knowledge of transient thermo-hydraulic processes in geothermal 

reservoirs, the entropy production provides useful insight (Börsing et al., 2017; Bejan, 2013; Regenauer-Lieb et al., 2010). The entropy 
production, derived from the Second Law of Thermodynamics, characterizes the thermodynamic state and the irreversibility of a system 

(Börsing et al., 2017; Bejan, 2013; Regenauer-Lieb et al., 2010). It offers an abstraction to describe multi-physics processes, including 

thermo-hydraulic processes, in geothermal applications. Huang and Wellmann (2021), Niederau et al. (2019), Börsing et al. (2017), and 

Wellmann and Regenauer-Lieb (2012) successfully utilize the entropy production to identify instabilities in hydrothermal systems, to 

discern a shift from conductive to convective processes, and to indicate variations in geometries and the heterogeneity of the permeability. 
In this paper, we use the entropy production to gain an understanding of the transient thermo-hydraulic process in The Hague, Netherlands, 

in the context of the heat extraction process.  

The spatio-temporal understanding of the thermo-hydraulic process in geothermal applications is often gained through numerical 

simulations as measurement data is limited and sparse (Beer et al., 2023; Degen et al., 2023; Willcox et al., 2021; Degen et al., 2021b; 

Schulte et al., 2020). The numerical simulation inherently carries uncertaint ies, particularly epistemic uncertainties (uncertainties caused 
by inaccurate characterization of physical parameters and incomplete knowledge of physical processes) (Degen et al., 2022., 2021c; 

Willcox et al., 2021; Schulte et al., 2020). Inspired by the work of Niederau et al. (2019) and Börsing et al. (2017), we can further use the 

entropy production to analyze which material properties dominate the transient thermo-hydraulic process. This, in turn, will help for future 

analysis investigating the epistemic uncertainties. 

The global sensitivity analysis (GSA) becomes an essential tool for this purpose (Degen et al., 2021b; Wainwright, 2014). It characterizes 
the impact of parameters and their correlation with respect to an objective function that is used for improving the system understanding 

(Degen et al., 2022, 2021c; Saltelli et al., 2019; Wainwright, 2014). We use the variance-based Sobol sensitivity analysis (Sobol, 2001) 

since the transient thermo-hydraulic problem is non-linear, which eliminates the use of local sensitivity analyses (Degen et al. 2022; 

2021c; Saltelli et al., 2019).  

Given the computational cost of performing global sensitivity analyses (Degen et al., 2021a; 2021b; 2021c), we use a surrogat e model 
constructed through the non-intrusive reduced-basis (NI-RB) method. The NI-RB method is a model order reduction (MOR) technique 

that reduces the spatial and temporal degrees of freedom of parameterized partial differential equations (PDEs) such as thermo-hydraulic 

problems. It represents the solution of these PDEs as a linear combination of basis functions and weights (Swischuk et al., 2019; Wang et 

al., 2019; Hesthaven and Ubbiali, 2018).  The basis functions contain the structure of the physical processes, and the weights are calculated 

using a non-intrusive approach, such as a machine learning model (Swischuk et al., 2019; Wang et al., 2019; Hesthaven and Ubbiali,  
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2018). This method ensures physical consistency in the surrogate model’s predictions (Degen et al., 2023; Willcox et al., 2021; Swischuk 

et al., 2019; Wang et al., 2019; Hesthaven and Ubbiali, 2018). 

We aim to understand the transient thermo-hydraulic process in The Hague, Netherlands under the influence of epistemic uncertainties 

using global sensitivity analysis. The Hague, Netherlands is in the West Netherland basin where the main interest for the heat extraction 

process is on the Delft Sandstone (Lower Cretaceous layer) (Willems et al., 2020; Mottaghy et al., 2011). The recoverable heat from the 

Delft sandstone is expected to provide heating for 6000 houses in the DenHaag Zuidwest district and the planned heat extraction process 

involves an injection-production procedure using a doublet setup (Mottaghy et al., 2011).  

The structure of this paper is as follows: In Section 2, we show the thermo-hydraulic formulation and present the concepts of entropy 

production and global sensitivity analyses. The sensitivity analysis results are shown in Section 3. It is followed by discussions in Section 

4 and conclusions in Section 5.    

2. MATERIALS AND METHODS 

In this section, we first present the thermo-hydraulic formulation, describing the heat extraction process. It is then followed by introducing 

the concept of entropy production for hydrothermal flow characterization. We also provide a brief introduction to the concept of variance-

based global sensitivity analysis. For the surrogate modelling construction, we illustrate the concept of the non-intrusive reduced-basis 

method. 

2.1 Transient thermo-hydraulic process 

We solve a 3-D coupled fluid flow in a porous medium and the heat transfer equation for modeling the transient thermo-hydraulic 

processes in geothermal reservoirs as it is presented in Cacace and Jacquey (2017).  The fluid density and fluid viscosity are dependent 

on the pressure and temperature, following the IAPWS correlation (Cacace and Jacquey, 2017). The solid thermal conductivity is 

dependent on the temperature, and is mathematically expressed as follows (Clauser, 2003): 

𝜆𝑠 = {
(

770

350+𝑇 [ 𝑜𝐶]
+ 0.7) [

𝑊

𝑚 𝑜𝐶
] 𝑇 > 800 𝑜𝐶

([
770

350+𝑇 [ 𝑜𝐶]
+ 0.7] × [𝜆𝑠

𝑟𝑒𝑓

2.78
(1 − (

𝑇 [ 𝑜𝐶]−20

800−20
)) + (

𝑇 [ 𝑜𝐶]−20

800−20
)]) [

𝑊

𝑚 𝑜𝐶
] 𝑇 < 800 𝑜𝐶

,                                                                (1) 

where 𝜆𝑠
𝑟𝑒𝑓is the reference solid thermal conductivity at 20 °C and 𝑇 is the temperature. We use the finite element method with a 

hexahedral grid (HEX8) to solve for the pressure and temperature states. To perform these computations, we utilize the open-source 

software GOLEM, a MOOSE-based application (Lindsay et al., 2022), developed by Cacace and Jacquey (2017).       

2.2 Entropy production 

According to the Second Law of Thermodynamics, the entropy is a measure of the molecular disorder or randomness of a system (Kern 

and Weisbrod, 1967). Bejan (2013) further formulates the volumetric rate of the total entropy production (𝒮̇), a measure of increase in 

entropy associated with irreversible processes, in a saturated porous medium. It is expressed as a linear combination of the irreversible 

heat transfer 𝒮𝑡̇ℎ𝑒𝑟𝑚 and the fluid flow friction 𝒮𝑣̇𝑖𝑠𝑐  contribution: 

𝒮̇ = 𝒮𝑡̇ℎ𝑒𝑟𝑚 + 𝒮𝑣̇𝑖𝑠𝑐 =
[𝜆𝑓
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where 𝜆𝑓 is the fluid thermal conductivity, 𝜂 is the fluid dynamic viscosity, 𝒌 is permeability, 𝒗 is the velocity, 𝑇𝑡𝑜𝑝  is the temperature at 

the top boundary, 𝑇𝑏𝑜𝑡𝑡𝑜𝑚 is the temperature at the bottom boundary.  

With the use of the entropy production concept, Börsing et al. (2017) show the temporal evolution of a system from a conductive to a 

convective state. Furthermore, Niederau et al. (2019) and Wellmann and Regenauer-Lieb (2012) demonstrate the use of the entropy 

production to analyze the impact of permeability and geometric uncertainties on transient thermo-hydraulic processes. Considering the 

success of these works, we further use the entropy production as an objective function in global sensitivity analyses, to improve our 
understanding of the transient thermo-hydraulic process in The Hague, Netherlands. This understanding is important to ensure safe and 

efficient injection-production operations in this region.  

2.3 Global Sensitivity Analysis 

The idea behind global sensitivity analyses is to identify parameters that have a significant impact on the model response and determine 

potential parameter correlations based on their contributions to the variation of an objective function. Through this identification, we can 

gain insights into the physical processes occurring in our system (Degen et al., 2021b; Wainwright, 2014).  

The identification of significant parameters is based on sensitivity indices, defined in Sobol (2001). The total sensitivity index 𝑆𝑇 measures  

the contribution of each parameter on an objective function, including its interaction with other parameters. It is mathematically expressed 

as 
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𝑆𝑇𝑖 = 1 −
Var𝝁~𝑖

[𝔼𝝁𝑖
[𝑓(𝝁;𝑡)|𝝁~𝑖]]

Var [𝑓(𝝁;𝑡)]
 ,          (3) 

where 𝑓(𝝁; 𝑡) is an objective function focusing on, for instance, physical processes, Var[⋅] is the variance, 𝔼[⋅] is the expectation, and 𝝁~𝑖 

represents all parameters except the 𝑖-th parameter. The first-order sensitivity index 𝑆 measures the contribution of each parameter without 

considering its correlation with other parameters, mathematically written as: 

𝑆𝑖 =
Var𝝁𝑖

[𝔼𝝁~𝑖
[𝑓(𝝁;𝑡)|𝝁𝑖]]

Var [𝑓(𝝁;𝑡)]
,           (4) 

The detailed algorithm and sampling method to compute the sensitivity indices is presented in Saltelli (2002). We utilize the SALib Python 

library for conducting variance-based global sensitivity analysis, employing the Saltelli sampling method (Herman and Usher, 2017). To 

reduce statistical error, we use 100,000 realizations per parameter, resulting in 2,800,000 total realizations for the entire global sensitivity 

analysis.  

2.4 Case study: reservoir simulation for The Hague, Netherlands 

We are interested in improving our understanding of the transient thermo-hydraulic process in The Hague, Netherlands, specifically in 

the Delft sandstone layer, during the injection-production process using doublet setup . For this purpose, Mottaghy et al. (2011) develop 

two geological models: a regional geological model and a reservoir model. The regional geological model is used for investigating the 

temperature distribution across the region before the extraction process and the reservoir model, embedded within the regional geological 

model, is employed to evaluate the heat produced during the injection-production process.  

Based on Mottaghy et al. (2011), the regional geological model of The Hague, Netherlands spans 22.5 km east-west and 24.3 km north-

south as depicted in Figure 1. It consists of nine layers with a total model depth of 5 km and has 2,485,913 nodes (hexahedral grid), see 

Figure 1. The solid density for all layers is 2,570 kg/m3, the solid heat capacity 960 J/(kg K), the porosity is 0.001, and the permeability 

is 1 ×  10−17 m2 . The uncertain parameters in the regional model are the solid thermal conductivity of each layer (shown in Table 1) and 

the heatflow at the bottom of the model, which varies between 0.06 and 0.07 W/m² (Mottaghy et al., 2011).  

 

Figure 1: The geological model of The Hague, Netherlands, adopted from Mottaghy et al. (2011). The top model (denoted with a 

light blue font color) is the regional geological model and the lower model (denoted with a purple font color) is the reservoir 

model.   

The reservoir model has an extend of 5.5 km × 3.5 km × 1.1 km, and 21,275 nodes (hexahedral grid), see Figure 1. It consists of five 

layers (Figure 1). The solid density and solid heat capacity for all layers in the reservoir model are the same as in the regional model. The 

uncertain parameters in the reservoir model are the permeability of the Delft Sandstone and the solid thermal conductivities of the adjacent 

layers (Table 1). The thermal conductivity of the Rodenrijs Claystone and the Delft Sandstone is set to their mean values. 
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Table 1: The rock properties for each layer in the regional geological model and the  reservoir model in The Hague, Netherlands, 

obtained from Mottaghy et al. (2011). 

Regional geological model Reservoir model 

Geological layers  

(from top to bottom) 

Solid thermal 

conductivity 

[W/(m K)] 

Geological layers  

(from top to bottom) 

Solid thermal 

conductivity 

[W/(m K)] 

Porosity 
Permeability 

[m2] 

North Sea Supergroup 

(N) 
1.8 – 4.0 

Lower Cretaceous 

Supergroup (KN) 
1.8 – 3.7 1 ×  10−3 1 ×  10−17 

Upper Cretaceous 

Supergroup (CK) 
1.7 – 3.0 

Rodenrijs Claystone 

(RC) 
3.5 1 ×  10−3 1 ×  10−17 

Lower Cretaceous 

Supergroup (KN) 
1.8 – 3.7 

Delft Sandstone  

(DS) 
5.6 0.15 

   3 ×  10−14  -

2 ×  10−12  

Jurassic Supergroup (S) 2.3 – 4.9 
Jurassic Supergroup 

(S) 
2.3 – 4.9 1 ×  10−3 1 ×  10−17 

Altena (AT) 1.6 – 2.7 
Altena  

(AT) 
1.6 – 2.7 1 ×  10−3 1 ×  10−17 

Lower Germanic Trias 

Group (RB) 
1.5 – 4.7 

    

Zechstein (ZE) 1.7 – 5.0     

Rotliegend (RO) 2.0 – 4.8     

Basement (DC) 1.5 – 3.9     

 

Both the regional and the reservoir model are saturated with water, which has a density of 1,000 kg/m3, a thermal conductivity of 0.65 

W/(m K), and a heat capacity of 4193.5 J/(kg K). The injection-production activity is conducted only in the Delft Sandstone layer with an 

injection rate of 41.67 – 45.83 L/s and an injection temperature 35 – 40 °C. The range for the injection rate and the injection temperature 

are obtained by combining values from Veldkamp et al. (2016) and Mottaghy et al. (2011).  

While utilizing the same models as Mottaghy et al. (2011), our study incorporates different scenarios, with a particular focus on modifying 

the top and bottom boundary conditions of the reservoir model. Unlike the fixed top boundary condition of the reservoir model of 55.8 °C 

in Mottaghy et al. (2011), we recognize that the top reservoir layer is part of the Lower Cretaceous Supergroup (KN), and this layer 

features an uncertain thermal conductivity. Similarly, we refrain from assigning a fixed value for the bottom boundary condition of the 
reservoir model. Variability in the top and bottom boundary condition values yields variability in pressure and temperature state. The 

procedures to include these uncertain boundary conditions into the transient thermo-hydraulic simulations for The Hague is the following 

(for each realization): 

1. Conduct a steady-state thermal simulation of the regional geological model to obtain the entire temperature state. 

2. Transfer the temperature values at the depth slice corresponding to the top of the reservoir model to establish the top boundary 
condition for the reservoir model. Consequently, the temperature at the top boundary varies spatially. 

3. Calculate the heat flow at the depth slice corresponding to the bottom of the reservoir model and transfer these values to 

determine the bottom boundary condition of the reservoir model. Hence, the calculation of heat flow at the bottom boundary 

considers a spatial variation of the temperature. 

4. Execute a transient thermo-hydraulic simulation of the reservoir model using the boundary values obtained from the regional 

geological model. 

With this setup, we provide a more accurate characterization of the produced heat, accounting for uncertainties of the reservoir model’s  

boundary conditions. Moreover, we do not merge the two models since we do not have enough measurement data to extrapolate the 

reservoir model layers into the regional model layers.  

2.4.1 Objective functions 

In this paper, we aim to investigate the influence of various objective functions for the global sensitivity analysis to improve our 

understanding of thermo-hydraulic processes. In Figure 2, we illustrate all performed global sensitivity analyses. 

We split the period of analysis into two phases:  
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 Before injection: in this period, since the The Hague region is conductive, there is no flow occurring (Mottaghy et al., 2011). 
The main heat transfer mechanism here is the heat conduction.  

 During injection: in this period, there is a flow due to the injection and production process in the doublet setting.  

For each period, we perform the global sensitivity analysis with four different objective functions: 

 Total thermal energy: The total thermal energy is calculated as the sum of the temperature of the entire model. This objective 

function produces a sensitivity analysis illustrating changes in the overall temperature distribution of the reservoir model, 

treating each region equally. 

 Total kinetic energy: This objective function is computed as the sum of the pressure of the entire model. It generates a sensitivity 

analysis that outlines changes in the overall pressure distribution of the reservoir model, with equal consideration given to every 
region. 

 Total thermal and kinetic energy: We propose this objective function to capture simultaneous changes in both the pressure and 

the temperature, this objective function assigns equal weights to the temperature and pressure responses across the entire 

reservoir model. It is calculated as the sum of the temperature and pressure of the entire model. 

 Total entropy production: Inspired by the derivation in Section 2.2, this objective function has a similar purpose as the "total 

thermal and kinetic energy " objective function. However, for the total entropy production, the gradient of the temperature and 

pressure is used instead of the temperature and pressure themselves.  

 

 

Figure 2: Analysis phases and objective functions used in the global sensitivity analysis for understanding the thermo-hydraulic 

process in The Hague, Netherlands. 

2.5 The non-intrusive reduced-basis method 

The non-intrusive reduced-basis (NI-RB) method constructs a surrogate model that provides a map from the parameters 𝝁 and the time 𝑡 

to the solution of, for instance, a thermo-hydraulic problem, which is represented by the pressure  𝑃 and the temperature 𝑇. Using the 

temperature and pressure state, we create an additional mapping to a quantity of interest, the entropy production 𝒮̇. There are 13 

parameters, including uncertain rock properties and operation-related parameters (injection rate and injection temperature), which serve 

as the inputs of the surrogate model. 

The NI-RB method expresses a solution as a linear combination of basis functions and coefficients, which is mathematically written as 

follows: 

𝒛(𝒙, 𝑡; 𝝁) = ∑ 𝑉𝑘(𝒙)𝑟
𝑘=1  𝛼𝑘(𝑡, 𝝁),                                                                                                                                                         (3) 

where 𝒛(𝒙, 𝑡; 𝝁) ∈ ℝ𝑁𝑡 × 𝑁𝑥 is the solution. Here 𝑁𝑡 are the number of time steps and 𝑁𝑥 are the number of nodes,  𝒙 are the spatial 

coordinates, 𝑽(𝒙) ∈ ℝ𝑁𝑥 × 𝑟 are the basis functions with 𝑟 being the reduced dimension, and 𝜶(𝑡, 𝝁) ∈ ℝ𝑟 × 1 being the coefficients. The 

basis functions are obtained by applying a Proper Orthogonal Decomposition (POD) on the snapshots of either the solution of the thermo-
hydraulic problem or a quantity of interest. For calculating the coefficients, we use a Neural Network. The detailed construction steps are 

described in Wang et al. (2019). Figure 3 shows an example of the NI-RB surrogate model for the temperature state. We use the Tensorflow 

Python library (Abadi et al., 2015) to construct the Neural Network and Bayesian Optimization with Hyperband (BOHB), developed by 

Falkner et al. (2018), implemented in the bohb-hpo Python library (Karakaşlı, 2020). The BOHB method is used to optimize the 

hyperparameters of the Neural Network (e.g. learning rate, number of epochs, number of neurons, number of layers, and batch s ize). To 
construct the NI-RB surrogate model for The Hague, we utilize 300 training samples and 75 test samples, each comprising 302 time steps. 

The generation of these training and test samples was carried out on 48 cores of the CLAIX High-Performance Computing (HPC) 

Thermo-hydraulic process

in The Hague, Netherlands

Before injection

Total thermal 

energy

Total kinetic 

energy

Total thermal and 

kinetic energy
Total entropy 
production

During injection

Total thermal 

energy

Total kinetic 

energy

Total thermal and 

kinetic energy
Total entropy 
production

Objective functions:

Period:
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infrastructure, leveraging Intel Xeon Platinum 8160 Processors ("SkyLake"). The computational process consumed 96 GB RAM and an 

average compute time of 5 hours for each realization.  

 

Figure 3: The NI-RB surrogate model for the temperature distribution of The Hague case study. We only show the Delft 

Sandstone layer in the basis functions to highlight the injection-production process. 

3. RESULTS 

In this section, we present the results of our global sensitivity analyses, leveraging the NI-RB surrogate models to significantly reduce 

computational costs. Initially, we present the performance metrics of the surrogate models employed for the global sensitivity analysis. 

This is followed by the global sensitivity analysis results themselves. 

3.1 Performances of surrogate models 

Before performing any global sensitivity analysis, it is imperative to ensure the efficiency of evaluating our objective function. In this 

context, we approximate the pressure, temperature, and entropy production, consecutively, using the NI-RB method. The entropy 

production is a quantity derived from the pressure and temperature state. The entropy production surrogate model is constructed to 

facilitate a later comparison of the efficiency between calculating the entropy  production function using both the pressure and temperature 

surrogate models and using the dedicated entropy  production surrogate model. The performance metrics for each surrogate model are 
presented in Table 3 and the corresponding architectures are shown in Table 4. The offline time is defined as the time needed to construct 

a surrogate model including the time for the generation of training and test samples. The online time is defined as the time spent to predict 

a new case. The training of the surrogate model and online phase are conducted using a single core on an Apple Macbook Pro with a M1-

chip and 8 GB RAM.  

The computation of the entropy production from a given pressure and temperature solution (coming from the pressure and temperature 
surrogate models), utilizing a finite-difference scheme for the gradient calculation, requires 2.03 seconds of computation time. The overall 

offline time is 4.6 ×  103 seconds + 8.4 ×  103 seconds + 6.8 ×  106 seconds = 6.81 ×  106 seconds, accounting for the construction 

of both the pressure and temperature surrogates and the generation of the training and test samples. In contrast, using an entropy production 

surrogate model, we can predict a new entropy  production solution at a single time step within 1.3 ×  10−3 seconds with 3.4 ×  104 

seconds + 6.8 ×  106 seconds = 6.83 ×  106 seconds of offline time. Therefore, it is more efficient to use an entropy  production surrogate 

model to perform the global sensitivity analysis, especially considering that the offline phases of both approaches require a similar amount 

of resources.  

Table 3: Performance of the surrogate models used in the global sensitivity analysis. The values denoted with a red font color 

represent the total time needed to generate the training and test samples, while the black color represents the time needed 

to construct a surrogate model. The values in the brackets denote the time needed for a trained surrogate model to predict 

a new case with 302 time steps and the ones outside the brackets denote the time needed to predict a new case for a single 

time step. 

Surrogate model 
Number of basis 

functions 

Approximation 

error 𝑳𝟐 
Offline time [s] Online time [s] 

Pressure 31 3.4 ×  10−2 4.6 ×  103 + 6.8 × 106 
6.3 ×  10−4  

(1.9 ×  10−1) 

Temperature 80 3.4 ×  10−2 8.4 ×  103 + 6.8 × 106  
5.9 ×  10−4  

(1.7 ×  10−1) 
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Entropy production 380 2.9 ×  10−3 3.4 ×  104 + 6.8 × 106 
1.3 ×  10−3  

(4.0 ×  10−1) 

Table 4: Architectures and hyperparameters of surrogate models used in global sensitivity analysis . 

Surrogate model 
Neurons in 

layer 1 

Neurons in 

layer 2 
Learning rate 

Number of 

epochs 
Batch size 

Pressure 92 119 2.9 ×  10−5 46,459 5,337 

Temperature 52 140 1.5 ×  10−4 46,768 2,330 

Entropy production 48 124 3.8 ×  10−5 41,506 31,613 

 

3.2 Influence of different objective functions at before injection period 

In Figure 4a, we show the total sensitivity indices obtained with different objective functions. We only show the total sensitivity indices  

since there is no significant difference between the first-order values and their associated total sensitivity values, indicating minimal 
correlations. It is essential to note that, during this period, there is no fluid flow and the heat conduction is the governing process regulating 

the temperature in the entire reservoir. Since there is no flow before the injection period, we cannot obtain the sensitivity result with the 

total kinetic energy objective function. The total sensitivity indices depicted in Figure 4a yield the same results for both the total thermal 

energy, and thermal and kinetic energy objective functions. Using the total thermal and kinetic energy objective function, equal weights 

assigned to temperature and pressure responses, the sensitivity result is dominated by the temperature response.  Parameters, including 

𝜆𝑁, 𝜆𝐶𝐾, 𝜆𝐾𝑁 , 𝜆𝑆, 𝑄, emerge as significant. Specifically, 𝜆𝑁, 𝜆𝐶𝐾  characterize the heat loss from the reservoir, 𝑄 describes the heat entering 

the reservoir, and 𝜆𝑆 controls the heat influx to the reservoir.  Despite the inclusion of the Altena layer (depicted in red in Figure 1) in the 

reservoir model, its significance is masked by the Jurassic layer (depicted in blue in Figure 1). This is attributed to the fact that the Altena 
layer is surrounded by the Jurassic layer, making the Jurassic layer the primary contributor controlling the heat influx to the reservoir. 

Consequently, only the Jurassic layer emerges as a significant parameter. 

Upon employing the total entropy production as the objective function, a similar ranking is obtained compared to the total thermal energy, 

and thermal and kinetic energy objective functions, with the addition of the significant parameter 𝑘. Notably, even in the absence of fluid 

flow before the injection period, a pressure gradient of static water exists within the reservoir. In the entropy  production formulation 

(Equation 2), permeability explicitly appears, and given the pressure gradient of static water, permeability becomes a significant factor, 
impacting the entropy production. With the importance of permeability, we can now see the contribution of fluid flow towards the transient 

thermo-hydraulic process in The Hague, Netherlands. 

We now compare the use of total entropy production and thermal energy objective functions on the total sensitivity values.  The total 

sensitivity value of the heat flow 𝑄 with the total entropy production as the objective function decreases while  𝜆𝑆 increases, compared 

with the use of the total thermal energy as the objective function. It is attributed to the calculation of 𝑇𝑏𝑜𝑡𝑡𝑜𝑚 in Equation 2, which utilizes 

the temperature at the bottom boundary, consisting of the Jurassic and Altena layers, rather than the basement (note that the reservoir 

spans from the Lower Cretaceous layer to at the Altena layer). Despite this change, both the Jurassic layer and the heat flow 𝑄 remain 

significant since the temperature at at the Jurassic and Altena layers is strongly influenced by the heat flow 𝑄.  

The total sensitivity value of 𝜆𝑁 , 𝜆𝐶𝐾 increases with the use of total entropy production objective function compared to the use of total 
thermal energy objective function. It is because the calculation for 𝑇𝑡𝑜𝑝  in Equation 2 utilizes temperature at the top boundary, at the 

intersection between the Upper Cretaceous and Lower Cretaceous layers. This intersection is directly connected to the North Sea layer 

that controls the heat loss. Consequently, the North Sea layer also emerges as a significant parameter.  

As the permeability of Delft sandstone, located in the Lower Cretaceous layer, is the highest and has a range value, the entropy production 

in the Lower Cretaceous layer is characterized by two components: irreversible thermal and fluid flow friction. The contribut ion of thermal 

decreases as the contribution of fluid flow appears, hence, 𝜆𝐾𝑁  is significant with smaller value than one from total thermal energy 

objective function and 𝑘 is significant.                      

3.3 Influence of different objective functions during injection period 

We observe no change in the sensitivity results over time, hence, we only show the global sensitivity analysis at time step 600 months. 
Similar to the before injection period, we do not observe significant correlations among parameters, hence, we only show the total 

sensitivity index (see Figure 4b). The global sensitivity analysis with the total thermal energy, and the total thermal and kinetic energy 

objective functions during injection period produce the same sensitivity results as the one before the injection period. They  indicate the 

system undergoes the same physical processes before and during the injection period.  

Using total kinetic energy objective function, we obtain the same significant parameters as the use of total entropy production objective 
function, however, with different total and first-order sensitivity values. Note that, the calculation of pressure requires fluid density , which 

is a function of temperature. Hence, 𝜆𝑁 , 𝜆𝐶𝐾 , 𝜆𝐾𝑁 , 𝜆𝑆 , 𝑄, significant parameters identified using total thermal energy objective function, 

emerge as significant here. Since 𝜆𝑁 , 𝜆𝐶𝐾 , 𝜆𝐾𝑁 , 𝜆𝑆 , 𝑄 do not directly affect the pressure, the total and first-order sensitivity values are less 
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than the one with total thermal energy objective function. In Darcy’s law, permeability explicitly appears in pressure calculation, therefore, 

the significance of permeability 𝑘 is the highest. The significance of  𝑘 here is higher than the one from total entropy production objective 

function because the total entropy production objective function account for contributions of both the thermal and hydraulic component. 
While the global sensitivity analysis with total entropy production for all time steps during the injection period are the same as the one 

before injection period. It again indicates that the system undergoes the same physical processes unt il 600 months.  

  

(a) (b) 

Figure 4: The total sensitivity index obtained through global sensitivity analysis with different objective functions : (a) before 

injection period, and (b) during injection period t = 600 months. The sensitivity results using the total thermal energy, the total 
kinetic energy, the total thermal and kinetic energy, and the total entropy production as objective functions are denoted by 

thermal, kinetic, combined, and entropy consecutively. The pink boxes highlight the significant parameters. 

4. DISCUSSIONS 

The entropy production provides a comprehensive insight in the transient thermo-hydraulic process since it describes the state of a system 

based on the thermodynamics law. It combines the information from the pressure and the temperature state in a thermodynamical way, 
not just simply adding the pressure and temperature state as it is done in the combined objective function. Hence, the use of the entropy 

production as an objective function in global sensitivity analysis provides more information. The sensitivity results obtained with the total 

entropy production objective function fall between those of the total thermal energy and kinetic energy objectives. With the total thermal 

energy objective function, we can only identify 𝜆𝑁, 𝜆𝐶𝐾, 𝜆𝐾𝑁, 𝜆𝑆, 𝑄 as significant parameters, strongly tied with the heat conduction 

process. With the total kinetic energy objective function, we additionally identify 𝑘 as significant parameter. However, with this function, 

we cannot obtain any result before the injection period since there is no flow. This objective function can only highlight the fluid flow 

contribution. On the other hand, the total entropy production objective function captures both heat conduction and fluid flow contributions 
simultaneously. Therefore, the use of the entropy production as the objective function in global sensitivity analyses is suitable for capturing 

the transient thermo-hydraulic process.     

The primary challenge in employing the entropy production as an objective function for global sensitivity analyses lies in the calculation 

of the gradients. As depicted in Equation 2, the entropy production requires the calculation of the pressure and the temperature gradients. 

If we calculate the entropy production using the pressure and the temperature solutions directly, the global sensitivity analysis becomes  
computationally intensive. This is because, in each realization, we must employ a finite-difference scheme on the spatio-temporal pressure 

and temperature solutions, leading to a long computational time. Alternatively, we could create a surrogate model using pre-calculated 

entropy production values. In this approach, entropy production is computed during the generation of the training samples. It is worth 

noting that the entropy production solution can exhibit significant spatial and temporal variations spanning almost four orders of 

magnitude, necessitating a log transformation. However, achieving a substantial reduction with the Proper Orthogonal Decomposition 
(POD) becomes challenging with this log transformation, resulting in an increased offline time. In our case, utilizing an ent ropy production 

surrogate model proves to be a more efficient strategy for global sensitivity analyses, especially considering the need for a considerable 

number of realizations to avoid statistical errors. 

The Delft Sandstone experiences thermo-hydraulic process, indicated by significant contribution of 𝜆𝐾𝑁  and 𝑘 from the thermodynamic 

perspective. It undergoes the same physical process (involving contributions from both irreversible thermal and fluid flow friction 

components) until 600 months, as indicated by the constant total sensitivity index values across all time steps. If injection-production 

operations were to be conducted in this layer, we can anticipate no significant changes in the reservoir due to these operations.    

5. CONCLUSIONS  

A global sensitivity analysis with an entropy  production objective function is essential for enhancing our understanding of the thermo-

hydraulic processes in geothermal reservoirs. This analysis identifies significant parameters based on the thermodynamic state of the 
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system, taking into account the contributions of the irreversible thermal and the fluid flow friction. It outperforms the use of the pressure 

and the temperature states as objective functions in global sensitivity analyses for comprehending transient thermo-hydraulic processes.  

Given the computational cost for conducting global sensitivity analyses, the use of the non-intrusive reduced basis method is essential. 

The non-intrusive reduced-basis method gives a significant speed-up in calculating the entropy production of a new case and ensures 

accurate predictions with a small number of training samples.   
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