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ABSTRACT

We present a global sensitivity analysis with an entropy production objective function to improve our understanding of transient thermo-
hydraulic processes in geothermal reservoirs under epistemic uncertainties. The entropy production describes the contributions of the
irreversible heat transfer and the fluid flow friction. As a global sensitivity analysis demands numerous model runs to measure the
significance of each physical parameter, we employ the non-intrusive reduced basis method to construct a surrogate model to decrease
the computational cost. We test the application for a geothermal reservoir study in The Hague, Netherlands. The use of a surrogate model
provides more than eight orders of magnitude speed-up, enabling an efficient global sensitivity analysis. With the use of the entropy
production as the objective function, we can capture important parameters contributing to both the thermal and the hydraulic process for
all time steps. Theuse of either only the pressure or the temperature stateas an objective function in the global sensitivity analysis fails
toidentify important parameters contributing to the thermo-hydraulic process.

1. INTRODUCTION

Global sensitivity analyses have been used before to improve the understanding of physical processes, captured via numerical simulations,
by characterizing the contribution of input parameters on the variations of an objective function (Saltelli et al., 2019). However, they
provide us with the challenge is of selecting a comprehensive objective function that leverages the understanding of the desired physical
processes (Degen et al., 2021b; Wainwright, 2014). For improving the knowledge of transient thermo-hydraulic processes in geothermal
reservoirs, the entropy production provides useful insight (Borsing et al., 2017; Bejan, 2013; Regenauer-Lieb et al., 2010). The entropy
production, derived from the Second Law of Thermodynamics, characterizes the thermodynamic stateand the irreversibility of a system
(Borsing et al., 2017; Bejan, 2013; Regenauer-Lieb et al., 2010). It offers an abstraction to describe multi-physics processes, including
thermo-hydraulic processes, in geothermal applications. Huang and Wellmann (2021), Niederau et al. (2019), Bérsing et al. (2017), and
Wellmann and Regenauer-Lieb (2012) successfully utilize the entropy production to identify instabilities in hydrothermal systems, to
discern a shift from conductive to convective processes, and to indicate variations in geometries and the heterogeneity of the permeability.
Inthis paper, we use the entropy production to gain an understanding of the transient thermo-hydraulic process in The Hague, Netherlands,
in the context of the heat extraction process.

The spatio-temporal understanding of the thermo-hydraulic process in geothermal applications is often gained through numerical
simulations as measurement data is limited and sparse (Beer et al., 2023; Degen et al., 2023; Willcox et al., 2021; Degen et al., 2021b;
Schulte et al., 2020). The numerical simulation inherently carries uncertainties, particularly epistemic uncertainties (uncertainties caused
by inaccurate characterization of physical parameters and incomplete knowledge of physical processes) (Degen et al., 2022., 2021c;
Willcox et al., 2021; Schulte et al., 2020). Inspired by the work of Niederau et al. (2019) and Bérsing et al. (2017), we can further use the
entropy production to analyze which material properties dominate the transient thermo-hydraulic process. This, in turn, will help for future
analysis investigating the epistemic uncertainties.

Theglobal sensitivity analysis (GSA) becomes an essential tool for this purpose (Degen et al., 2021b; Wainwright, 2014). It characterizes
the impact of parameters and their correlation with respect to an objective function that is used for improving the system understanding
(Degen et al., 2022, 2021c; Saltelli et al., 2019; Wainwright, 2014). We use the variance-based Sobol sensitivity analysis (Sobol, 2001)
since the transient thermo-hydraulic problem is non-linear, which eliminates the use of local sensitivity analyses (Degen et al. 2022;
2021c; Saltelli etal., 2019).

Given the computational cost of performing global sensitivity analyses (Degen et al., 2021a; 2021b; 2021c), we use a surrogate model
constructed through the non-intrusive reduced-basis (NI-RB) method. The NI-RB method is a model order reduction (M OR) technique
that reduces the spatial and temporal degrees of freedom of parameterized partial differential equations (PDEs) such as thermo-hydraulic
problems. It represents the solution of these PDEs as a linear combination of basis functions and weights (Swischuk et al., 2019; Wang et
al., 2019; Hesthaven and Ubbiali, 2018). The basis functions contain the structure of the physical processes, and the weights are calculated
using a non-intrusive approach, such as a machine learning model (Swischuk et al., 2019; Wang et al., 2019; Hesthaven and Ubbiali,
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2018). This method ensures physical consistency in the surrogate model’s predictions (Degen et al., 2023; Willcox et al., 2021; Swischuk
et al., 2019; Wang et al., 2019; Hesthaven and Ubbiali, 2018).

We aim to understand the transient thermo-hydraulic process in The Hague, Netherlands under the influence of epistemic uncertainties
using global sensitivity analysis. The Hague, Netherlands is in the West Netherland basin where the main interest for the heat extraction
process is on the Delft Sandstone (Lower Cretaceous layer) (Willems et al., 2020; Mottaghy et al., 2011). The recoverable heat from the
Delft sandstone is expected to provide heating for 6000 houses in the DenHaag Zuidwest district and the planned heat extraction process
involves an injection-production procedure using a doublet setup (Mottaghy et al., 2011).

The structure of this paper is as follows: In Section 2, we show the thermo-hydraulic formulation and present the concepts of entropy
production and global sensitivity analyses. The sensitivity analysis results are shown in Section 3. It is followed by discussions in Section
4 and conclusions in Section 5.

2. MATERIALS AND METHODS

In this section, we first present the thermo-hydraulic formulation, describing the heat extraction process. It is then followed by introducing
the concept of entropy production for hy drothermal flow characterization. We also provide a brief introduction to the concept of variance-
based global sensitivity analysis. For the surrogate modelling construction, we illustrate the concept of the non-intrusive reduced-basis
method.

2.1 Transient thermo-hydraulic process

We solve a 3-D coupled fluid flow in a porous medium and the heat transfer equation for modeling the transient thermo-hydraulic
processes in geothermal reservoirs as it is presented in Cacace and Jacquey (2017). The fluid density and fluid viscosity are dependent
on the pressure and temperature, following the IAPWS correlation (Cacace and Jacquey, 2017). The solid thermal conductivity is
dependent on the temperature, and is mathematically expressed as follows (Clauser, 2003):
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where Agefis the reference solid thermal conductivity at 20 °C and T is the temperature. We use the finite element method with a
hexahedral grid (HEX8) to solve for the pressure and temperature states. To perform these computations, we utilize the open-source
software GOLEM, a MOOSE-based application (Lindsay et al., 2022), developed by Cacace and Jacquey (2017).

A= 1)

2.2 Entropy production

According tothe Second Law of Thermodynamics, the entropy isa measure of the molecular disorder or randomness of a system (Kern
and Weisbrod, 1967). Bejan (2013) further formulates the volumetric rate of the total entropy production (S), a measure of increase in
entropy associated with irreversible processes, in a saturated porous medium. It is expressed as a linear combination of the irreversible
heat transfer Sy, ¢, and the fluid flow friction S,,;,. contribution:
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where A is the fluid thermal conductivity, 7 is the fluid dynamic viscosity, k is permeability, v is the velocity, T,,,, is the temperature at
the top boundary, Tyystom 1S the temperature at the bottom boundary .

With the use of the entropy production concept, Borsing et al. (2017) show the temporal evolution of a system from a conductive to a
convective state. Furthermore, Niederau et al. (2019) and Wellmann and Regenauer-Lieb (2012) demonstrate the use of the entropy
production to analyze the impact of permeability and geometric uncertainties on transient thermo-hydraulic processes. Considering the
success of these works, we further use the entropy production as an objective function in global sensitivity analyses, to improve our
understanding of the transient thermo-hydraulic processin The Hague, Netherlands. This understanding is important to ensure safe and
efficient injection-production operations in this region.

2.3 Global Sensitivity Analysis

The idea behind global sensitivity analyses is to identify parameters that have a significant impact on the model responseand determine
potential parameter correlations based on their contributions to the variation of an objective function. Through this identification, we can
gain insights into the physical processes occurring in our system (Degen et al., 2021b; Wainwright, 2014).

The identification of significant parameters is based on sensitivity indices, defined in Sobol (2001). The total sensitivity index S; measures
the contribution of each parameter on an objective function, including its interaction with other parameters. It is mathematically expressed
as
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where f(p; t) is an objective function focusing on, for instance, physical processes, Var[-] is the variance, E[-] is the expectation, and p._;
represents all parameters except the i-th parameter. The first-order sensitivity index S measures the contribution of each parameter without
considering its correlation with other parameters, mathematically written as:
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The detailed algorithm and sampling method to compute the sensitivity indices is presented in Saltelli (2002). We utilize the SALib Python
library for conducting variance-based global sensitivity analysis, employing the Saltelli sampling method (Herman and Usher, 2017). To
reduce statistical error, we use 100,000 realizations per parameter, resulting in 2,800,000 total realizations for the entire global sensitivity
analysis.

2.4 Case study: reservoirsimulation for The Hague, Netherlands

We are interested in improving our understanding of the transient thermo-hydraulic process in The Hague, Netherlands, specifically in
the Delft sandstone layer, during the injection-production process using doublet setup. For this purpose, Mottaghy et al. (2011) develop
two geological models: a regional geological model and a reservoir model. The regional geological model is used for investigating the
temperature distribution across the region before the extraction process and the reservoir model, embedded within the regional geological
model, is employed to evaluate the heat produced during the injection-production process.

Based on Mottaghy etal. (2011), the regional geological model of The Hague, Netherlands spans 22.5 km east-west and 24.3 km north-
southas depicted in Figure 1. It consists of nine layers with a total model depth of 5 km and has 2,485,913 nodes (hexahedral grid), see
Figure 1. The solid density for all layers is 2,570 kg/m?®, the solid heat capacity 960 J/(kg K), the porosity is 0.001, and the permeability
is 1 x 10717 m?. The uncertain parameters in the regional model are the solid thermal conductivity of each layer (shown in Table 1) and
the heatflow at the bottom of the model, which varies between 0.06 and 0.07 W/m? (M ottaghy et al., 2011).
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Figure 1: The geological model of The Hague, Netherlands, adopted from Mottaghy etal. (2011). The top model (denotedwith a
light blue font color) is the regional geological model andthe lower model (denoted with a purple font color) is the reservoir
model.

The reservoir model has an extend of 5.5 km x 3.5 km x 1.1 km, and 21,275 nodes (hexahedral grid), see Figure 1. It consists of five
layers (Figure 1). Thesolid density and solid heat capacity for all layers in the reservoir model are the same as in the regional model. The
uncertain parameters in the reservoir model are the permeability of the Delft Sandstone and the solid thermal conductivities of the adjacent
layers (Table 1). The thermal conductivity of the Rodenrijs Claystone and the Delft Sandstone is set to their mean values.
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Table 1: The rock properties for each layerin the regional geological model and the reservoir model in The Hague, Netherland,
obtained from Mottaghy etal. (2011).

Regional geological model Reservoir model
. Solidthermal . Solidthermal L
(f?oer:)]I ?&'}Cﬁ: L?%‘forrsn) conductivity (ffoer:)]l E[)SF')C?(: L‘ng;) conductivity Porosity Pe mEfni?l lity
[Wi(m K] [Wi(m K]
North Sea Supergroup Lower Cretaceous -3 —17
(N) 1.8-40 Supergroup (KN) 1.8-37 1 x 10 1 x 10
Upper Cretaceous Rodenrijs Claystone -3 17
Supergroup (CK) 1.7-3.0 (RC) 35 1 x 10 1 x 10
Lower Cretaceous Delft Sandstone 3 x 107 -
Supergroup (KN) 18-37 (DS) 5.6 0.15 2 x 10712
Jurassic Supergroup (S) 23-49 Jurassic (Ssu)pergroup 23-49 1x 1073 1x 107Y
Altena -3 -17
Altena (AT) 16-27 (AT) 16-27 1 x 10 1 x 10
Lower Germanic Trias
Group (RB) 15-41
Zechstein (ZE) 1.7-50
Rotliegend (RO) 20-48
Basement (DC) 15-3.9

Both the regional and the reservoir model are saturated with water, which has a density of 1,000 kg/m?®, a thermal conductivity of 0.65
W/(m K), and a heat capacity of 4193.5 J/(kg K). The injection-production activity is conducted only in the Delft Sandstone layer with an
injection rate of 41.67 — 45.83 L/s and an injection temperature 35 — 40 °C. The range for the injection rate and the injection temperature
are obtained by combining values from Veldkamp et al. (2016) and Mottaghy et al. (2011).

While utilizing the same models as M ottaghy et al. (2011), our study incorporates different scenarios, with aparticular focus on modifying
the top and bottom boundary conditions of the reservoir model. Unlike the fixed top boundary condition of the reservoir model of 55.8 °C
in Mottaghy et al. (2011), we recognize that the top reservoir layer is part of the Lower Cretaceous Supergroup (KN), and this layer
features an uncertain thermal conductivity. Similarly, we refrain from assigning a fixed value for the bottom boundary condition of the
reservoir model. Variability in the top and bottom boundary condition values yields variability in pressure and temperature state. The
procedures to include these uncertain boundary conditions into the transient thermo-hydraulic simulations for The Hague is the following
(for each realization):

1. Conduct a steady-state thermal simulation of the regional geological model to obtain the entire temperature state.

2. Transfer thetemperature values at the depth slice corresponding to the top of the reservoir model to establish the top boundary
condition for the reservoir model. Consequently, the temperature at the top boundary varies spatially.

3. Calculate the heat flow at the depth slice corresponding to the bottom of the reservoir model and transfer these values to
determine the bottom boundary condition of the reservoir model. Hence, the calculation of heat flow at the bottom boundary
considers a spatial variation of the temperature.

4. Execute a transient thermo-hydraulic simulation of the reservoir model using the boundary values obtained from the regional
geological model.

With this setup, we provide a more accurate characterization of the produced heat, accounting for uncertainties of the reservoir model’s
boundary conditions. Moreover, we do not merge the two models since we do not have enough measurement data to extrapolate the
reservoir model layers into the regional model layers.

2.4.1 Objective functions

In this paper, we aim to investigate the influence of various objective functions for the global sensitivity analysis to improve our
understanding of thermo-hydraulic processes. In Figure 2, we illustrate all performed global sensitivity analyses.

We split the period of analysis into two phases:
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o  Before injection: in this period, since the The Hague region is conductive, there is no flow occurring (Mottaghy et al., 2011).
The main heat transfer mechanism here is the heat conduction.

e  During injection: in this period, there is a flow due to the injection and production process in the doublet setting.
For each period, we perform the global sensitivity analysis with four different objective functions:

e  Total thermal energy: The total thermal energy is calculated as the sum of the temperature of the entire model. This objective
function produces a sensitivity analysis illustrating changes in the overall temperature distribution of the reservoir model,
treating each region equally.

e  Totalkinetic energy: This objective function is computed as the sum of the pressure of the entire model. It generates a sensitivity
analysis that outlines changes in the overall pressure distribution of the reservoir model, with equal consideration given to every
region.

e  Totalthermal and Kinetic energy: We propose this objective function to capture simultaneous changes in both the pressure and
the temperature, this objective function assigns equal weights to the temperature and pressure responses across the entire
reservoir model. It is calculated as the sum of the temperatureand pressure of the entire model.

e  Total entropy production: Inspired by the derivation in Section 2.2, this objective function has a similar purpose as the "total
thermal and Kinetic energy " objective function. However, for the total entropy production, the gradient of the temperature and
pressureis used instead of the temperature and pressure themselves.

Thermo-hydraulic process
in The Hague, Netherlands

Period: Before injection

A

During injection

Total thermal
energy

Total kinetic
energy

Total thermal and
kinetic energy

Total entropy
production

Total thermal and
kinetic energy

Total kinetic
energy

Total thermal
energy

Total entropy

Objective functions: .
production

Figure 2: Analysis phases and objective functions usedin the global sensitivity analysis for understanding the thermo-hydraulic
process in The Hague, Netherlands.

2.5 The non-intrusive reduced-basis method

The non-intrusive reduced-basis (N1-RB) method constructs a surrogate model that provides a map from the parameters u and the time t
to the solution of, for instance, a thermo-hydraulic problem, which is represented by the pressure P and the temperature T. Using the
temperature and pressure state, we create an additional mapping to a quantity of interest, the entropy production S. There are 13
parameters, including uncertain rock properties and operation-related parameters (injection rate and injection temperature), which serve
as the inputs of the surrogate model.

The NI-RB method expresses a solution as a linear combination of basis functions and coefficients, which is mathematically written as
follows:

Z(x; t; ﬂ) = Z;:lvk(x) ak(tJ”)r (3)

where z(x,t; u) € R¥t*Nx js the solution. Here N, are the number of time steps and N,, are the number of nodes, x are the spatial
coordinates, ¥ (x) € RN~*" are the basis functions with+ being the reduced dimension, and er(t, w) € R™ ** being the coefficients. The
basis functions are obtained by applyingaProper Orthogonal Decomposition (POD) on the snapshots of either the solution of the thermo-
hydraulic problem or a quantity of interest. For calculating the coefficients, we use a Neural Network. The detailed construction steps are
described in Wang et al. (2019). Figure 3 shows an example of the NI-RB surrogate model for the temperature state. We use the Tensorflow
Python library (Abadi et al., 2015) to construct the Neural Network and Bayesian Optimization with Hyperband (BOHB), developed by
Falkner et al. (2018), implemented in the bohb-hpo Python library (Karakash, 2020). The BOHB method is used to optimize the
hy perparameters of the Neural Network (e.g. learning rate, number of epochs, number of neurons, number of layers, and batch size). To
construct the NI-RB surrogate model for The Hague, we utilize 300 training samples and 75 test samples, each comprising 302 time steps.
The generation of these training and test samples was carried out on 48 cores of the CLAIX High-Performance Computing (HPC)

5



Santoso et al.

infrastructure, leveraging Intel Xeon Platinum 8160 Processors ("SkyLake"). The computational process consumed 96 GB RAM and an
average compute time of 5 hours for each realization.
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Figure 3: The NI-RB surrogate model for the temperature distribution of The Hague case study. We only show the Delft
Sandstone layer in the basis functions to highlight the injection-production process.

3. RESULTS

In this section, we present the results of our global sensitivity analyses, leveraging the NI-RB surrogate models to significantly reduce
computational costs. Initially, we present the performance metrics of the surrogate models employed for the global sensitivity analysis.
This is followed by the global sensitivity analysis results themselves.

3.1 Performances of surrogate models

Before performing any global sensitivity analysis, it is imperative to ensure the efficiency of evaluating our objective function. In this
context, we approximate the pressure, temperature, and entropy production, consecutively, using the NI-RB method. The entropy
production is a quantity derived from the pressure and temperature state. The entropy production surrogate model is constructed to
facilitate a later comparison of the efficiency between calculating the entropy production function usingboth the pressure and temperature
surrogate models and using the dedicated entropy production surrogate model. The performance metrics for each surrogate model are
presented in Table 3 and the corresponding architectures are shown in Table 4. The offline time is defined as the time needed to construct
a surrogate model including the time for the generation of training and test samples. The online time is defined as thetime spent to predict
anew case. Thetraining of the surrogate model and online phaseare conducted using a single core on an Apple Macbook Prowitha M 1-
chip and 8 GB RAM.

The computation of the entropy production from a given pressure and temperature solution (coming from the pressure and temperature
surrogate models), utilizing a finite-difference scheme for the gradient calculation, requires 2.03 seconds of computation time. The overall
offline time is 4.6 x 103 seconds + 8.4 x 103seconds + 6.8 x 10°seconds = 6.81 x 10° seconds, accounting for the construction
of both the pressure and temperature surrogates and the generation of the training and test samples. In contrast, usingan entropy production
surrogate model, we can predict a new entropy production solution at a single time step within 1.3 x 1073 seconds with 3.4 x 10*
seconds + 6.8 x 10°seconds = 6.83 x 10°seconds of offline time. Therefore, it is more efficient to use an entropy production surrogate
model to performthe global sensitivity analysis, especially considering that the offline phases of both approaches require a similar amount
of resources.

Table 3: Performance of the surrogate models used in the global sensitivity analysis. The values denoted with a red font color
represent the total time neededto generate the training andtest samples, while the black color represents the time needed
to construct asurrogate model. The values in the brackets denote the time neededfor a trained surrogate model to predict
a new case with 302 time steps and the ones outside the brackets denote the time neededto predict a new case for a single

time step.
Surrogate model Number_of basis Approximation Offline time [s] Online time[s]
functions error L,

2 3 6 63 x 10°*
Pressure 31 34 x 10 46 X 10°+6.8 x 10 (19 x 107Y
- 59 x 107*

2 3 6
Temperature 80 34 x 10 84 X 10°+6.8 x 10 (17 x 107
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Entropy production 380 29 x 1073 34 x 10*+6.8 x 10° 13 x 107

' : : (40 x 107h
Table 4: Architectures and hyperparameters of surrogate models usedin global sensitivity analysis.
Surrogate model Neurons in Neurons in Learning rate Number of Batch size
layer1 layer?2 epochs

Pressure 92 119 29 x 107 46,459 5,337

Temperature 52 140 15 x 107* 46,768 2,330

Entropy production 48 124 38 x 107° 41,506 31,613

3.2 Influence of different objective functions at before injection period

In Figure 4a, we show the total sensitivity indices obtained with different objective functions. We only show the total sensitivity indices
since there is no significant difference between the first-order values and their associated total sensitivity values, indicating minimal
correlations. It is essential to note that, during this period, there is no fluid flow and the heat conduction is the governing process regulating
the temperature in the entire reservoir. Since there is no flow before the injection period, we cannot obtain the sensitivity result with the
total kinetic energy objective function. The total sensitivity indices depicted in Figure 4a yield the same results for both the total thermal
energy, and thermal and kinetic energy objective functions. Using the total thermal and kinetic energy objective function, equal weights
assigned to temperature and pressure responses, the sensitivity result is dominated by the temperature response. Parameters, including
Ans Acko Akns Asy Q, emerge as significant. Specifically, Ay, Acx characterize the heat loss from the reservoir, Q@ describes the heat entering
the reservoir, and A¢ controls the heat influx to the reservoir. Despite the inclusion of the Altena layer (depicted in red in Figure 1) in the
reservoir model, its significance is masked by the Jurassic layer (depicted in blue in Figure 1). This is attributed to the fact that the Altena
layer is surrounded by the Jurassic layer, making the Jurassic layer the primary contributor controlling the heat influx to the reservoir.
Consequently, only the Jurassic layer emerges as a significant parameter.

Uponemployingthe total entropy production as the objective function, a similar ranking is obtained compared to the total thermal energy,
and thermal and kinetic energy objective functions, with the addition of the significant parameter k. Notably, even in the absence of fluid
flow before the injection period, a pressure gradient of static water exists within the reservoir. In the entropy production formulation
(Equation 2), permeability explicitly appears,and given the pressure gradient of static water, permeability becomes a significant factor,
impacting the entropy production. With the importance of permeability, we can now see the contribution of fluid flow towards the transient
thermo-hydraulic process in The Hague, Netherlands.

We now compare the use of total entropy production and thermal energy objective functions on the total sensitivity values. The total
sensitivity value of the heat flow Q with the total entropy production as the objective function decreases while A increases, compared
with the use of the total thermal energy as the objective function. It is attributed to the calculation of T+, in Equation 2, which utilizes
the temperature at the bottom boundary, consisting of the Jurassic and Altena layers, rather than the basement (note that the reservoir
spans from the Lower Cretaceous layer to at the Altena layer). Despite this change, both the Jurassic layer and the heat flow Q remain
significant since the temperatureat at the Jurassic and Altena layers is strongly influenced by the heat flow Q.

The total sensitivity value of Ay, A increases with the use of total entropy production objective function compared to the use of total
thermal energy objective function. It is because the calculation for T,,, in Equation 2 utilizes temperature at the top boundary, at the
intersection between the Upper Cretaceous and Lower Cretaceous layers. This intersection is directly connected to the North Sea layer
that controls the heat loss. Consequently, the North Sea layer also emerges as a significant parameter.

As the permeability of Delft sandstone, located in the Lower Cretaceous layer, is the highest and has a range value, the entropy production
in the Lower Cretaceous layer is characterized by two components: irreversible thermal and fluid flow friction. The contribution of thermal
decreases as the contribution of fluid flow appears, hence, Ay, is significant with smaller value than one from total thermal energy
objective function and k is significant.

3.3 Influence of different objective functions duringinjection period

We observe no change in the sensitivity results over time, hence, we only show the global sensitivity analysis at time step 600 months.
Similar to the before injection period, we do not observe significant correlations among parameters, hence, we only show the total
sensitivity index (see Figure 4b). The global sensitivity analysis with the total thermal energy, and the total thermal and Kinetic energy
objective functions during injection period produce the same sensitivity results as the one before the injection period. They indicate the
systemundergoes the same physical processes before and during the injection period.

Using total kinetic energy objective function, we obtain the same significant parameters as the use of total entropy production objective
function, however, with different total and first-order sensitivity values. Note that, the calculation of pressure requires fluid density, which
is a function of temperature. Hence, Ay, Ack, Ay, 4s, Q, significant parameters identified using total thermal energy objective function,
emerge as significant here. Since Ay, Ack, Ay, As, @ do not directly affect the pressure, the total and first-order sensitivity values are less
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than the one with total thermal energy objective function. In Darcy’s law, permeability explicitly appears in pressure calculation, therefore,
thesignificance of permeability k is the highest. Thesignificance of k here is higher than the one from total entropy production objective
function because the total entropy production objective function account for contributions of both the thermal and hydraulic component.
While the global sensitivity analysis with total entropy production for all time steps during the injection period are the same as the one
before injection period. It again indicates that the system undergoes the same physical processes until 600 months.
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Figure 4: The total sensitivity index obtained through global sensitivity analysiswith different objective functions: (a) before
injection period, and (b) during injection periodt = 600 months. The sensitivity results using the total thermal energy, the total
kineticenergy, the total thermal andkineticenergy, andthe total entropy production as objective functions are denoted by
thermal, Kinetic, combined, and entropy consecutively. The pink boxes highlight the significant parameters.

4. DISCUSSIONS

Theentropy production provides acomprehensive insight in the transient thermo-hydraulic process since it describes the state of a system
based on the thermodynamics law. It combines the information from the pressure and the temperature state in a thermodynamical way,
not just simply adding the pressureand temperature stateas it is done in the combined objective function. Hence, the use of the entropy
production as an objective function in global sensitivity analysis provides more information. The sensitivity results obtained with the total
entropy production objective function fall between those of the total thermal energy and kinetic energy objectives. With the total thermal
energy objective function, we can only identify Ay, Ack, Axn, As, Q as significant parameters, strongly tied with the heat conduction
process. With the total kinetic energy objective function, we additionally identify k as significant parameter. However, with this function,
we cannot obtain any result before the injection period since there is no flow. This objective function can only highlight the fluid flow
contribution. On the other hand, the total entropy production objective function captures both heat conduction and fluid flow contributions
simultaneously. Therefore, the use of the entropy production as the objective function in global sensitivity analyses is suitable for capturing
the transient thermo-hydraulic process.

The primary challenge in employing theentropy production as an objective function for global sensitivity analyses lies in the calculation
of the gradients. Asdepicted in Equation 2, the entropy production requires the calculation of the pressureand the temperature gradients.
If we calculate the entropy production using the pressureand the temperature solutions directly, the global sensitivity analysis becomes
computationally intensive. This is because, in each realization, we must employ a finite-difference scheme on the spatio-temporal pressure
and temperature solutions, leading to a long computational time. Alternatively, we could create a surrogate model using pre-calculated
entropy production values. In this approach, entropy production is computed during the generation of the training samples. It is worth
noting that the entropy production solution can exhibit significant spatial and temporal variations spanning almost four orders of
magnitude, necessitating a log transformation. However, achieving a substantial reduction with the Proper Orthogonal Decomposition
(POD) becomes challenging with this log transformation, resulting in an increased offline time. In our case, utilizing an entropy production
surrogate model proves to be a more efficient strategy for global sensitivity analyses, especially considering the need for a considerable
number of realizations to avoid statistical errors.

The Delft Sandstone experiences thermo-hydraulic process, indicated by significant contribution of A4, and k from the thermodynamic
perspective. It undergoes the same physical process (involving contributions from both irreversible thermal and fluid flow friction
components) until 600 months, as indicated by the constant total sensitivity index values across all time steps. If injection-production
operations were to be conducted in this layer, we can anticipate no significant changes in the reservoir due to these operations.

5. CONCLUSIONS

A global sensitivity analysis with an entropy production objective function is essential for enhancing our understanding of the thermo-
hydraulic processes in geothermal reservoirs. This analysis identifies significant parameters based on the thermodynamic state of the
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system, taking into account the contributions of the irreversible thermal and the fluid flow friction. It outperforms the use of the pressure
and the temperature states as objective functions in global sensitivity analyses for comprehending transient thermo-hydraulic processes.

Given the computational cost for conducting global sensitivity analyses, the use of the non-intrusive reduced basis method is essential.
The non-intrusive reduced-basis method gives a significant speed-up in calculating the entropy production of a new case and ensures
accurate predictions with a small number of training samples.
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