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ABSTRACT

Efficient drilling of geothermal wells hinges on a thorough comprehension of temperature distribution along the wellbore, vital for
preventing tool failures and reducing non-productive time (NPT). This involves ascertaining the requisite mud cooling at the surface and
optimizing circulation flow rates to extract heat effectively. While extensive theoretical work exists in temperature profiling, practical
implementations have been limited. This paper introduces a field-deployable model addressing these challenges through the
implementation of a Physics-Informed Machine Learning (PIML) method. This innovative approach distinguishes itself by integrating a
physics-based model with real-time data, resulting in a notable enhancement in temperature prediction accuracy. The refined predictions
facilitate precise determination of required wellbore cooling and mud flow rates, consequently aiding in extending the lifespan of
downbhole tools during drilling operations.

The physics-based temperature model is developed, considering critical factors such as heat transfer in both axial and radial directions, as
well as friction between the fluid and casings/ drill pipes. This construction harnesses the 3D finite difference method (FDM). A dynamic
simulation framework seamlessly integrates essential data for development and simulation assimilation, encompassing wellbore survey
data, bottom hole assembly (BHA) data, mud properties, and additional contextual information. Real-time data, continuously streamed
every second from the drilling rig, undergoes discrete event simulation (DES). Subsequently, this data undergoes processing utilizing an
FDM-based engine, generating a dynamic temperature profile of the fluid every five-minute interval at a minimum, if not quicker due to
state change. The assimilation of the FDM model is accomplished through the calibration of the geothermal gradient using Ensemble
Kalman Filter (EnKF). Observed data, including inlet mud temperature (utilized as FDM input) and outlet mud temperature (compared to
FDM output), is incorporated into the assimilation process. This comprehensive approach ensures an accurate representation of downhole
temperature dynamics, facilitating proactive measures for enhanced downhole tools functionality and drilling optimization.

After constructing the model, validation was conducted using the Utah FORGE dataset to showcase the predictive capability of the FDM
model in estimating outlet mud temperature over specific time intervals through assimilation. The assimilated temperature history
simulated closely mirrored the actual field data. This algorithm not only showcased proficiency in the temperature prediction but also
introduced an innovative approach for calibrating and identifying other input parameters, such as fluid properties in response to potential
temperature variations and geothermal gradient. Essentially, the proposed technique leverages the FDM model in inverse, serving as a
soft sensor. This approach provides valuable insights for control, planning, and understanding by elucidating parameters that are typically
challenging to determine.

1. INTRODUCTION

Geothermal drilling, a crucial element of clean energy infrastructure, poses a distinctive challenge: the intense temperatures encountered
during the exploration of deep underground reservoirs. The primary focus here is on maintaining an optimum temperature for the drilling
mud, a vital component in geothermal wells. This fluid serves a dual purpose by facilitating smooth drilling operations through the removal
of cuttings and lubrication of the drill string, while also managing formation pressure. However, as the drilling delves deeper, the
temperature of the mud sharply rises. This thermal escalation not only jeopardizes the essential rheological properties of the mud,
potentially impeding drilling efficiency, but also poses a threat to critical downhole tools. This leads to an accelerated deterioration of
bearings, seals, and other delicate electronic components (Mitchell & Miska, 2011). The core of the challenge lies in the precise
measurement and control of this formidable adversary. Traditional mud pulse telemetry (MPT)-based thermometry encounters difficulties
in the demanding borehole environment, primarily due to an increased risk of downhole tool failures (Kruszewski & Wittig, 2018).

Predicting the temperature profile within a geothermal well is a complex balancing act, akin to navigating a thermal maze. Researchers
have tackled this challenge with a diverse toolbox of modeling techniques, each bringing unique strengths and limitations. Numerical
simulations like finite element models (FEMs) and finite difference methods (FDMs) excel at capturing intricate heat transfer, but their
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computational burdens often limit their real-time application (Chen & Novotny, 2003). Analytical (Hasan & Jang, 2021) and semi-
analytical (Polat, 2022) models offer swift predictions, but their accuracy hinges on simplifying assumptions that can overlook crucial
factors like complex wellbore geometries and transient thermal behavior during the drilling operation. Data-driven approaches, powered
by machine learning, hold promise for mining historical data and adapting to changing conditions, but their effectiveness relies heavily
on data quality and their interpretability can be challenging (Kshirsagar & Sanghavi, 2022). Despite these advancements, a critical gap
remains between theoretical models and practical needs. Extensive hydraulic-thermal models exist, but their cumbersome nature and static
input requirements make them impractical for real-time decision-making during a dynamic drilling operation (Gonzalez Angarita, 2020)
where the rig states and operational parameters (mud flow rate, drill string rotation, location of bit with respect to hole depth, etc.) change
quite frequently. This is where our proposed Physics-Informed Machine Learning (PIML) model comes in, offering a new approach to
bridge this gap. This innovative technique marries the power of a physics-based FDM model (Hasan, Kabir, & Sarica, 2018) with real-
time data, yielding an unprecedented level of accuracy in predicting mud temperature distribution throughout the wellbore.

FDM have established themselves as a workhorse in simulating heat transfer within wellbores. Their strength lies in discretizing the
wellbore geometry into a grid, allowing for the precise evaluation of heat conduction, convection, and radiation across each individual
point (Holmes & Swift, 1970). This granular approach captures a multitude of factors critical to geothermal drilling, including fluid flow
dynamics, formation properties, and frictional heating (Zhang, Xiong, & Guo, 2018). The resulting temperature profiles offer detailed
insights into the thermal landscape within a wellbore (Zhou, 2013). However, this integration comes with its own set of uncertainties.
FDM models rely heavily on accurate input parameters, including rock and material thermal properties, fluid rheology (Merlo, Maglione,
& Piatti, 1995), and wellbore geometry (Hasan, Kabir, & Wang, 2009). Unfortunately, in the often-murky depths of geothermal reservoirs,
obtaining precise data can be a Sisyphean task. Limited downhole measurements, complex geological formations, and dynamic fluid
behavior contribute to a significant degree of uncertainty, introducing potential discrepancies between model predictions and real-world
temperature profiles. Calibrating these models further intensifies the challenge and involves a laborious process of fine-tuning individual
input parameters, commonly based on iterative trial-and-error method, until the simulated temperature profile aligns with limited
observations, like outlet mud temperature (Tekin, 2010). However, with numerous and often poorly constrained parameters, this approach
can be akin to searching for a needle in a thermal haystack. The potential for overfitting becomes a looming threat, as adjustments to one
parameter might simply compensate for inaccuracies in another, masking underlying issues in the model or data. This conundrum of
uncertainties and calibration hurdles underlines the critical need for a new systematic calibration method.

Traditionally, FDM model calibration has been a static process, relying on limited data points to adjust key parameters. This approach,
however, fails to capture the dynamic nature of geothermal wells while drilling, where fluid flow, formation properties, wellbore geometry
and heat transfer constantly evolve. To address this limitation, we propose a real-time data assimilation framework that integrates live
measurements into the FDM model, enabling continuous calibration and adaptation. At the heart of this framework lies the concept of
feedback. Real-time data, such as inlet and outlet mud temperatures, is directly fed back into the model, allowing it to adjust its predictions
as the drilling progresses. This continuous feedback loop acts as a perpetual calibration mechanism, mitigating uncertainties and
preventing overfitting. Discrepancies between model predictions and observations are promptly addressed, ensuring the model remains
faithfully in tune with the actual downhole thermal dynamics. One of the most powerful tools for this data assimilation is the Ensemble
Kalman Filter (EnKF) (Tureyen, Onur, ve Dogal, & Bol, 2011). Such methods have shown advantages in calibrating physics-based
simulations across various scientific and engineering disciplines (Roth, Hendeby, Fritsche, & Gustafsson, 2017). Unlike traditional single-
point adjustments, EnKF works with an ensemble of model realizations, each representing a plausible scenario within the realm of
uncertainties. By comparing this ensemble's predictions with real-time data, EnKF statistically updates the entire ensemble, effectively
guiding the model towards a more accurate representation of the true downhole temperature profile. This probabilistic approach not only
provides robust and realistic predictions but also quantifies the remaining uncertainties, offering valuable insights for informed decision-
making throughout the drilling process.

The subsequent sections of this manuscript unfold a comprehensive framework for advancing temperature prediction in geothermal
drilling. All the codes presented were developed using Python. We commence by detailing the development of FDM models dedicated to
temperature prediction. Subsequently, our focus shifts to the implementation of an FDM-based engine, facilitating dynamic simulation by
capturing the evolving thermal dynamics within the wellbore. The integration of a Discrete Event Simulation (DES) framework further
enhances our methodology, harmonizing it with real-time data assimilation for continuous calibration. The efficacy of this framework will
be rigorously evaluated through the calibration of field data, leveraging the Utah FORGE dataset (McLennan, Nash, Moore, Skowron, &
Woolsey, 2021). Results and discussions will provide insights into the model's performance, culminating in a nuanced understanding of
its strengths and limitations. The manuscript concludes by outlining avenues for future work, aiming to continually refine and extend the
proposed framework for enhanced accuracy and adaptability in geothermal drilling applications.

2. HYDROTHERMAL MODELING WITH FDM

2.1 Geometry Model and Domain Discretization

The simulation considers a coaxial well represented by concentric cylinders in 3D with mud flowing through the drill pipe and rising up
to the surface through the annular region between drill pipe and casing. Figure 1a illustrates the schematic of the geometry model based
on the Utah FORGE Dataset, specifically referencing wellbore 16A(78)-32. The drillstring components and casing program for sections
using BHA 9 are detailed in Table 1. The simulation encompasses a directional well trajectory, incorporating both vertical and horizontal
sections. The model is treated as a symmetric problem around the well axis. The Borehole Heat Exchanger (BHE) is modeled as several
1D line components, including inside the drill string/pipe, the annular and external pipe wall, casing, and cement layers. The surrounding
rock is simulated in both radial and axial directions. Utilizing a 1D line source to represent the BHE requires fewer nodes and less
computational time, a critical consideration for this model. While this assumption introduces some degree of simplification, its impact on
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model accuracy will be appropriately addressed in the assimilation phase. The model accounts for an axial offset into the rock formation
beyond the bottom of the well. In the radial direction, the length of the formation is sufficiently large — 30 times the wellbore radius. This
design ensures that the temperature at the outer radial boundary remains constant and mirrors the surrounding rock, especially far from
the wellbore. Such considerations contribute to a more accurate representation of thermal behavior in both axial and radial dimensions.

For radial discretization, the domain grid is generated with initial dimensions following the diameter and thickness specifications outlined
in Table 1 for the wellbore components. As the grid extends into the rock formation, the spacing gradually increases outward, reaching a
maximum value of 0.5 m before maintaining a constant spacing. In the axial direction, discretization is determined by data points along
the well trajectory, ensuring alignment with the bit motion during drilling. This approach establishes a consistent and accurate
representation of the model, harmonizing with the dynamic nature of the drilling process.
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Figure 1: (a) 2D schematic of a coaxial borehole heat exchanger, and (b) schematic of a 2D cross section through 3D model of
the discretization of FDM grid.

Table 1: Basic data of drill string assembly and casing program for wellbore 16A(78)-32.

Wellbore Parameter Inner diameter (mm) Quter Diameter (mm) Depth (m)

BHA 9 Drill Pipe 110 127 Variable
First Casing 220 240 1062.5
Second Casing 320 340 116.4
Third Casing 480 510 39.3

2.2 Governing Equations

The borehole is modeled to capture thermal interactions between the wellbore and the surrounding rock. The model is built on the
following key assumptions: (i) the drilling fluid is treated as incompressible, maintaining constant density, specific heat capacity, and
thermal conductivity; and (ii) the velocity of the drilling fluid in the drilling string and annulus is considered solely in the axial direction,
while the radial velocity is disregarded. Governing equations (1) to (5) describe the heat flow in the fluid inside the drill string, the drill
string pipe, the fluid in the annular space, the first layer of casing, and the casing/cement/surrounding formation, respectively. While these
equations form the backbone of the model, it is essential to acknowledge that they have been extensively covered in the literature (Zhang,
Xiong, & Guo, 2018). To maintain brevity, we highlight key aspects of the modeling process, directing readers to the provided references
for a more comprehensive understanding of the equations and their derivations.

A(p1cavpTy) | 2hy(T=Ty) ap _ 9(piciTy)
- + 4= n
0z 1 nry at

9 (1p0T; 20, (T3=T)1r,  2hy(T,=Try _ 3(pyc,Ty)

e + 2_.2 - 2__2 - (2)
dz \ 0z ry-r] =T at

9(p3vacsTs) + 2h3(Ty—T3)rs 20y (T3—Ty)ry 9a _ _ 9(p3csT3) 3)

dz rZ-r} r2-r} n(rZ-r2) at

i( aﬂ) + 2h5(Ts—Ty) _ 2h3(Ty=T3)1s _ 9(P4CaTa) @)
az\"% 8z r2-r? rZ-r2 at



Naderi et al.

F] (/1 ﬂ) n li(li’ i+1 raT) _ 9(piciT) %)

9z\"az) T v or \Meffective’ 5 at

Here, r and z denote radial and axial coordinates, respectively. In Equations (1) to (4), the subscript numbers follow the layer order
illustrated in Figure 1a, while the subscript i in Equation (5) denotes the layer number in casing/cement/surrounding formation. In the
context of the equations, T, h, A, ¢ and p represent temperature, convective heat transfer coefficient, thermal conductivity, specific heat

capacity, and density, respectively. The conductivity coefficient between layer i and i + 1, denoted as ALt is calculated using the

ef fective>
thermal-electrical analogy (Brown, Cassidy, Egan, & Griftiths, 2021), employing the following formulation:

1 1 1
Reffective =R+ Ry, = n + ) (6)

Reffective = Aesrective’

This expression signifies that the thermal resistivity of the effective layers can be considered analogous to electrical resistivity in series.
The next section details the calculation of q,, and q,, representing friction-induced heat source in drilling pipe and annular, respectively.

2.3 Calculation of Heat Source Terms

The calculation of the friction-induced heat source involves considerations of fluid dynamics within the drilling pipe and the annulus
(Zhang, Xiong, & Guo, 2018). Numerous empirical and analytical models exist for this purpose. Here, the Reynolds number (Re) as a
crucial parameter is defined as (Durst & Arnold, 2008):

_ PpvDp
Re = B ™

where u is the dynamic viscosity of the mud, and D, and v are the hydraulic diameter and fluid velocity respectively. It should be noted
that for the annular flow, D, = 4 (d% - d3)/(ds + d;), where d; represents the diameter of the wellbore, and d,, is the outer diameter
of the drill string. For laminar flow (Re < 2000), the coefficient of friction resistance (f) is calculated as:

Fole ®)

" Re

In turbulent flow (Re > 2000), f is determined using the empirical Darcy friction factor equation:

— = 4log(Re,[f) — 03.95 ©)
Jr
The frictional resistance pressure drop in the drill string is then computed using:
AP _ 2f pvi
YN (10)
where L denotes the flow distance of drilling fluid. Similarly, in the annular region, the pressure drop is determined by:
AP _ 2fpvi
AL~ di—d, an
Finally, the heat source term (q) in Equations (1) and (3) is quantified by:
AP
q="2 (12)

where Q is the volume flow rate of drilling fluid.

2.4 Boundary and Initial Conditions

The initial temperature in the formation is determined by a linearly increasing geothermal gradient (G). Although a linear, continuous
relationship is assumed, adjustments like including stepwise changing G can be made in the assimilation process, as discussed later in the
following sections.

The inlet temperature is known and can be measured directly on the ground:

T(z=0,t) =T, (13)

At the bottom of the well, the annulus drilling fluid temperature is equal to the drilling fluid temperature inside the drill string and the drill
string temperature:

Ty (z = z5,t) = Tp(z = 7, t) =T5(z = z;,t) (14)

where z; is the vertical depth at the bottom of the well. There is no heat exchange between the formation and the atmosphere at the surface:
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im0 =0 (15)

The formation temperature far away from the wellbore is undisturbed and is equal to the initial formation temperature. This condition is
described at 1y, the end of the rock domain in the radial direction:

aT
;Ir—n‘f =0 (16)

2.5 Numerical Solution and implementation

The FDM employed in this work for solving the governing equations utilizes a first-order forward difference scheme for temporal
discretization and a central difference scheme for spatial discretization. These choices ensure first-order stability, which is crucial for
explicit methods. In our framework, stability concerns are further amplified due to the model's real-time update using live data received
at per-second intervals. To address this, an adaptive time step approach is implemented. This dynamically adjusts the time step based on
CFL (Courant-Friedrichs-Lewy) condition (Moura & Kubrusly, 2012) dependent on grid spacing, and data frequency, guaranteeing both
computational stability and efficiency while remaining consistent with the underlying physical processes. While the specific details of
FDM implementation have been extensively documented in the literature, the novelty lies in our new time step adaptation strategy
specifically tailored for real-time data assimilation within the geothermal wellbore context.

3. FDM-BASED ENGINE FOR DYNAMIC SIMULATION

3.1 Overview of Engine Structure

The FDM-based engine for dynamic simulation serves as the conductor in our geothermal temperature prediction orchestra, blending
static and dynamic data seamlessly to deliver an accurate and real-time symphony of downhole behavior. As schematically illustrated in
Figure 2, this engine comprises two distinct compositions:

1. Static Data-Based Model: This foundational component establishes the computational groundwork for the initiation of
dynamic model. The time-step determination for this segment is independent from the data frequency. It is worth mentioning
that the choice between explicit and implicit methods should align with the system's overall dynamism.

2. Dynamic Data-Based Model: Extending from the surface to the wellbore's bottom, this section integrates live measurements
into its simulation. Data assimilation, a critical process fusing observations with model predictions, operates exclusively within
the targeted wellbore, focusing on real-time dynamics. The time step for this dynamic model aligns directly with the data
frequency (1 second) of the thermal-hydro model, ensuring continuous synchronization with real-time conditions.
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Figure 2: Schematic representation of the integrated framework, illustrating the dynamic assimilation of real-time data into
the forward-marching explicit numerical solution.

This dynamic core operates through a dedicated Assimilation Process (AP), occurring exclusively within the targeted wellbore to capture
dynamic simulation aspects. This targeted approach ensures that real-time data influences the section critical for accurate predictions.
Establishing initial temperatures for both static and dynamic models involve careful consideration: For the static model, the initial
temperature across the wellbore and surrounding formation typically aligns with the initial formation temperature. For the dynamic model,
two options exist for initial conditions — either inherit the temperature field from the static model, creating a smooth transition between
foundational and real-time components or known temperatures, if available, can be directly prescribed as the starting point for the dynamic
simulation.
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Figure 2 illustrates the interaction among various components in our framework, orchestrating a harmonious integration of data and model
predictions. At the core of this workflow is a two-fold FDM engine. The first module acts as the foundational conductor, employing static
data to establish the initial thermal landscape of the wellbore and surrounding formation. This initial temperature profile transitions to the
second FDM module, where it forms the basis for real-time simulations. In this dynamic phase, real time measurements, a vital component
of our approach, is continuously input into the FDM model at a rate of one data point per second, denoted as d;p... The real-time influx
of information is integrated into the forward-marching explicit numerical solution, ensuring the model remains in perfect harmony with
the evolving subsurface conditions. Concurrently, when there are changes in drilling contextual data and/or rig state and operational
parameters or merely on the lapse of update-time dt,pqae (here five-minute intervals), a subset of this observed data is directed to the ML
module, facilitating the assimilation process, considered occurring at time intervals d#;.qg.-. State changes such as connection and tripping
or change in mud flowrate are identified using a robust methodology utilizing Bayesian network and their duration is identified as d#sze.
This continuous feedback loop enhances the synergistic capabilities of FDM and ML, progressively refining the representation of
downhole thermal dynamics whose data are stored at time intervals dfupu:. Although dt,paae and dtoupu: may be user defined, and dt;pu, is
determined by practical limitations of rig data acquisition systems, following conditions are helpful to understand the working of this
framework: dtyigger is the minimum of dfssaze and dtupdare. Also, the maximum value of dfoupu 1S dtiigger.

3.2 Input Data Integration

As shown in the Figure 3, the input data is composed of three main modules: (i) raw field data (observed data) including real-time drilling
data, drilling survey and temperature data at inlet and outlet; (ii) primary inputs including well geometry, drillstring information, physical
properties of material, operational parameters, etc., and ; (iii) secondary inputs including calculation of friction-induced heat source based
on Reynold Number for the fluids inside the drill string and the annulus. In terms of how they are linked: the raw data needs to be pre-
processed including filtering (if necessary), re-constructing data format, unit conversion, etc. Then, the data will populate into the primary
data. Based on this information some additional parameters will be calculated such radii, conductivity coefficient, equivalent resistance,
etc. The key point in the primary data set is that some of them can be treated as dynamic live data as required while the other static dataset
parameters remain unchanged during assimilation. The structure allows a better data integrate-ability and management in terms of code
development.

Figure 3 illustrates the coordination of input data within our framework, outlining the constraints and composition of essential
information. Three distinct modules integrate, each contributing vital data:

e Raw Field Data (Observed Data): This initial step involves the unprocessed wellbore data, including drilling survey data and
real-time data. Prior to integration into the predictive model, pre-processing procedures are applied to cleanse the data, eliminate
noise, and ensure compatibility with other components.

e  Primary Inputs: Serving as the foundational elements, this core module accommodates critical parameters such as wellbore
geometry, physical properties of the formation, operational details, and constants. Dynamic live data continuously refreshes the
simulation with the latest subsurface information, while static parameters remain unaltered during assimilation, imparting
stability to the evolving thermal predictions. Notably, in Figure 3, selected parameters are labeled as "Live Data" for illustrative
purposes, demonstrating how this approach can be implemented.

e  Secondary Inputs: Expanding on the primary data, this module introduces calculated values derived from primary input data.
Formulas, such as the calculation of friction-induced heat source based on Reynolds number for both drill string and annular
fluid flows, contribute additional complexity to the data landscape.

This organized structure of input data ensures efficient integration and management within the framework's code, facilitating a clear and
coordinated performance.
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Figure 3: A schematic overview of the input data integration framework.

4. DES FRAMEWORK INTEGRATED WITH DATA ASSIMILATION FOR CALIBRATION

Discrete Event Simulation (DES) stands as a computational modeling approach designed to analyze and comprehend the intricate
dynamics of complex systems. Unlike continuous simulations, where changes unfold continuously over time, DES focuses on events that
occur at distinct points in time, capturing the discrete nature of operations and interactions within a system. This is particularly relevant
in well construction where rig state change and operational parameter changes constitute discrete events. At its core, DES operates on the
principle of simulating individual events and their effects on the system. These events represent occurrences that prompt changes in the
system's state or trigger specific actions. Here, events include triggering calibration/assimilation event at least once every five minutes
based on observed data. In a DES framework, several key components play integral roles in shaping the system's dynamics. Central to
this structure are Events, defining essential occurrences that exert influence on the system. These events span the spectrum from initiating
drilling operations to identifying anomalies in temperature readings. Entities, representing the various objects or components within the
system, respond to these events. Queues, acting as waiting lines for entities not immediately processed, play a significant role in managing
the workflow. Finally, the Clock discretely advances, symbolizing the progression of time within the system. Events unfold at precise
moments, synchronized with the progress of this simulation clock, providing a temporal framework for the dynamic interactions within
the system.

The integration of DES with the EnKF introduces a dynamic dimension to real-time system analysis (Budgaga, et al., 2016). DES,
proficient in capturing discrete events and interactions, synergizes with the probabilistic and ensemble-based characteristics of EnKF
(Lang, Kuetgens, Reichardt, & Reggelin, 2021). This integration enhances the representation of the geothermal drilling environment,
enabling the modeling of uncertainties and variations in a manner that aligns with the stochastic nature of drilling operations, such as
during connection and tripping operations. At the core of our integrated framework is the EnKF, a multivariate, sequential Monte Carlo
method designed to reconcile live measurements with the predictions of our physics-based model. Departing from traditional single-point
adjustments, our EnKF methodology integrates with DES, fostering a probabilistic approach through an ensemble of model realizations.
This ensemble-based approach, within the DES framework, encapsulates a spectrum of plausible scenarios, providing a statistically robust
foundation for model calibration. The synergy between this ensemble-based approach and the dynamic nature of DES enables the model
to adapt to real-time events and changes within the geothermal system. The integration ensures effective capture of uncertainties and
variability intrinsic to dynamic drilling operations, collectively enhancing the accuracy and reliability of our model's predictions.

The assimilation process for the geothermal gradient (G) unfolds through a series of steps:

1. Ensemble Initialization: The algorithm initiates a loop, iterating for a specified number of cycles. Within each cycle, a set of
simulations with an ensemble size is generated, representing diverse and plausible system states.

2. Forward Model Simulation: For each ensemble member, the algorithm performs a forward model simulation using the
physics-based FDM. Simulated mud temperatures are generated based on the current system state.

3. Observation Integration: Simulated ensemble states are compared with observed real-time mud temperatures. The innovation,
depicting the difference between simulated and observed temperatures, is calculated.

4. Kalman Gain Calculation: The Kalman gain, a vital statistical parameter, is computed using the covariance between
geothermal gradients and simulated temperatures. Normalized by the variance of simulated temperatures, this gain quantifies
the optimal balance between trusting model predictions and incorporating observed data.
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5.  Ensemble Update: The ensemble of geothermal gradients undergoes adjustments based on the Kalman gain and innovation,
refining the representation of geothermal gradients within the ensemble.

6. Convergence Check: The algorithm verifies convergence based on a specified threshold for the mean of the innovation. If the
convergence criterion is satisfied, the iteration halts, signaling a refined estimate of the system's current state.

The iterative nature of this assimilation process allows the ensemble to adapt and learn from real-time data, progressively improving the
accuracy of the model predictions in capturing the dynamics of the system. It is important to highlight that the ensemble state can
encompass various parameters, including fluid properties or other input parameters for the FDM, allowing for a comprehensive calibration
of the FDM by considering multiple variables.

5. EVALUATION AND CALIBRATION WITH UTAH FORGE DATASET

In configuring the model for evaluation and calibration using the Utah FORGE dataset, the static segment of the framework was defined
from the surface down to the section corresponding to BHA 9 — the region chosen for assimilation performance assessment. Raw data
underwent trimming and filtering procedures to enhance data quality. The envisioned drilling scenario encompasses a continuous
operation transitioning from the static to dynamic phases. This approach ensures fluid progression, with the static model furnishing initial
conditions for the dynamic component. The circulation time for the static model was established at 24 hours, a duration sufficiently ample
to establish initial conditions consistent with the assimilation phase's temperature starting point.

It is noteworthy that the model can be configured for more complex scenarios, and the DES framework can be tailored to accommodate
various events beyond calibration, such as drilling pauses or failures. However, this work focuses on presenting the fundamental aspects
of the methodology rather than delving into an exhaustive array of potential applications, opting for a simplified setup for clarity. Figure
3 provides essential data, encompassing geometry, physical parameters, operational details, and other relevant factors. For this benchmark
case, fixed values of 0.035 m?/s for the flow rate and 37.92 °C for the temperature of the inlet mud were set for the sake of simplicity.

In Figure 4a the measurements from the wellbore 16A(78)-32 within BHA 9 section is presented and the time interval for which the DES
framework is validated. During this period, two phases of drilling operation is separated by a connection operation. In Figure 4b the
assimilated results for outlet mud temperature are presented, providing a comparative analysis with observed temperatures. Simulated
data points, plotted at 5-minute intervals, offer a detailed overview of outlet mud temperature predictions. The figure provides insights
into the efficacy of our data assimilation framework. The assimilated results closely align with the observed temperature throughout the
entire time series, highlighting the framework's ability to predict dynamic temperature changes. This successful assimilation process
indicates the framework's capability to refine model predictions by incorporating real-world data, resulting in temperature estimates that
accurately capture the dynamic nature of the geothermal wellbore during drilling.
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Figure 4. (a) Realtime measurement of well 16A(78)-32 within BHA 9 section highlighted for model validation, and
(b) Comparison of the output mud temperature calibrated by PIML to the value measured in the field.

As observed in Figure 4b, upon closer examination of the dynamic behavior, the assimilated temperatures exhibit reduced fluctuations
compared to the observed data. While this initially suggests improved predictability, it also unveils the model's potential limitations in
adapting to real-time changes. These limitations manifest in two distinct forms:

1. Local Nonlinearity (within £5°C): Real-time fluctuations within a range of less than 5°C, potentially representing variations
in mud and formation properties during drilling, are smoothed out by the assimilation process. This suggests the model struggles
to capture these subtle, non-linear changes in the wellbore environment. Addressing this limitation could involve: (i) enhancing
the ensemble state with additional parameters sensitive to mud and formation properties; and (ii) incorporating local
nonlinearities in the physics-based model such as nonlinear geothermal gradient relationship.
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2. Drastic Temperature Changes (exceeding +20°C): The model tends to underestimate or overestimate temperature shifts
exceeding ~ 20°C, likely indicative of interruptions in the drilling operation, here a connection. Mitigating this limitation could
involve: (i) including a broader range of potential events within the DES framework to better capture the drilling operational
changes and disruptions; and (ii) modifying the data assimilation algorithm to be more responsive to significant deviations.

While these limitations highlight areas for improvement, they also underscore the valuable role of a physics-based model and real time
data within the data assimilation process. By acting as a constraint, the model offers guidance to the machine learning algorithms,
preventing potentially erroneous interpretations and overfitting of the observed data. This synergy between physics and machine learning
paves the way for robust and reliable real-time predictions in such complex systems.

It is worthy to note the DES framework considered here, powered by FDM and EnKF, was run on a MacBook with an Apple M1 chip
and 16GB RAM with an average execution time for each iteration (here, 5 mins of actual operational time) of less than a minute. However,
a tradeoff between computational effort and continuous temperature estimation must be made during edge deployment on a rig — tuned
using dtinpu and dtyigger.

6. CONCLUSIONS AND FUTURE WORK

e  Traditional approaches to wellbore temperature modelling often grapple with computational inefficiencies or an inability to adapt to
real-time changes. This study addresses these limitations through the development of a pioneering framework that seamlessly
integrates a precise FDM model with the EnKF within a DES architecture.

e The DES framework, marrying the accuracy of FDM with EnKF's data assimilation capabilities, excels in capturing dynamic
temperature changes across the wellbore, from surface to bottom, in real-time. This innovation overcomes the challenges faced by
conventional methods and offers a more responsive and adaptable solution for wellbore temperature modelling during drilling
operations.

e  Using geothermal gradient calibration as a representative case, we showcased the efficacy of the DES framework in augmenting the
accuracy of the FDM model. The integration of live data through EnKF resulted in significantly improved temperature predictions
compared to traditional methodologies. This successful demonstration underscores the potential for broader applications in diverse
scenarios.

e  Our DES framework, beyond enhancing accuracy, demonstrates promising potential to act as a “soft sensor” by analyzing calibrated
parameters like fluid and rock properties, providing valuable insights into downhole conditions. The real-time prediction capabilities
of the framework also open avenues for integration into semi- or fully-automated drilling systems, thereby enhancing operational
efficiency and safety.

e  Our investigation revealed two primary limitations within the DES framework. Firstly, the current set of input variables for EnKF
may be insufficient to comprehensively capture the FDM model's response in specific scenarios. Secondly, the DES framework's
simulation engine could benefit from a more diverse range of drilling scenarios to ensure responsiveness across different contexts.
Future research will focus on addressing these limitations by:

—  Expanding the ensemble state with additional parameters sensitive to fluid properties and rock thermal properties.

—  Enriching the DES with a wider variety of drilling events and data patterns.

—  Enhancing the FDM model by incorporating additional physics or modifying governing equations to improve accuracy and
realism.

— Refining the geothermal gradient relationship through investigation and adjustments.

—  Optimizing the EnKF algorithm by exploring parameter adjustments or refining the algorithm itself. This may involve
investigating the incorporation of previously calibrated parameters into the ensemble state for continuous assimilation.

e  Future work will also involve the validation of the enhanced framework with more complex drilling trajectories, including inclined
and horizontal sections. Opportunities for additional validation studies will explore the robustness of the developed framework under
different geological conditions or wellbore configurations.

e  Proposals for collaboration with industry partners or participation in data-sharing initiatives will be pursued to enhance model
validation and broaden the dataset. Collaborative efforts can provide diverse scenarios and data inputs that further strengthen the
framework's applicability and reliability.
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NOMENCLATURE
Abbreviations
BHA Bottom Hole Assembly
BHE Borehole Heat Exchanger
CFL Courant-Friedrichs-Lewy
DES Discrete Event Simulation
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EnKF Ensemble Kalman Filter

FEM Finite Element Model
FDM Finite Difference Method
ML Machine Learning
MPT Mud Pulse Telemetry
NPT Non-Productive Time
PIML Physics-Informed Machine Learning
3D 3 Dimensional
1D 1 Dimensional
Variables
R Analogical thermal-electrical resistance
h Convective heat transfer coefficient
p Density
Z Depth
d Diameter
f Friction resistance coefficient
AP Frictional resistance pressure drop
G Geothermal gradient
q Heat source term
Dy Hydraulic diameter
r Radius
Re Reynolds number
c Specific heat capacity
Temperature
A Thermal conductivity
t Time
dt Timestep
v Viscosity
Units
°C Degree Celsius
K Kelvin
kg Kilogram
m Meter
mm Millimeter
Pa Pascal
s Second
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