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ABSTRACT

Geothermal energy production confronts persistent challenges tied to undesirable events occurring during geothermal fluid/steam
production, including flow instability, scaling and corrosion issues. Conventional monitoring and preventive methodologies have proven
insufficient, necessitating innovative approaches for the prediction and identification of these undesirable events. This paper introduces a
novel application of machine learning techniques to address this issue. Specifically, the utilization of supervised classification methods,
such as K-Nearest Neighbor (KNN), Random Forest, Artificial Neural Networks (ANNSs), and Support Vector Machines (SVMSs), is
proposed for the identification and prediction of undesirable events in geothermal fluid/steam production processes.

To demonstrate the effectiveness of this approach, a substantial and comprehensive dataset, namely the 3W Petrobras Oil Production
Dataset, was leveraged. This dataset encompasses an extensive range of operational data with corresponding undesirable events that
occurred, enabling the training and evaluation of machine learning models across diverse real-world scenarios. The results obtained
underscore the significant potential of machine learning in the identification and prediction of undesirable events. The core of the analysis
centered on the utilization of temperature and pressure data recorded by sensors located both at the bottom of the well and at the wellhead.
By employing these vital variables as model inputs, remarkable performance in terms of F1 scores, precision, and recall was achieved.
These results highlight the importance of advanced data analytics techniques in geothermal energy production for the identification and
prediction of undesirable events.

This research contributes to the field of geothermal energy by introducing a data-driven approach for the identification and prediction of
undesirable events during geothermal fluid/steam production. The successful application of machine learning algorithms, as demonstrated
through the case study employing the 3W Petrobras Dataset, represents a significant advancement in ensuring the sustainability and
efficiency of geothermal energy production processes. Furthermore, the insights gained from this study lay the foundation for proactive
measures to identify and predict these undesirable events, ultimately enhancing the reliability and economic viability of geothermal power
generation.

1. INTRODUCTION

Geothermal energy stands as a promising renewable resource, offering a sustainable alternative to traditional energy sources . The efficient
and uninterrupted extraction of geothermal fluids and steam is paramount for ensuring the viability and productivity of geothermal power
plants (Tester et al., 2006). However, the occurrence of undesirable events during geothermal fluid and steam production, such as
corrosion, scaling, and reservoir decline, poses significant challenges to operational stability and overall efficiency. Predicting and
preventing these events is crucial for maintaining the longevity and effectiveness of geothermal energy systems. In this context, the
integration of machine learning techniques presents a promising avenue to forecast and prevent such occurrences. This paper introduces
a comprehensive analysis leveraging the 3W Petrobras Qil Production Dataset (Vargas et al., 2019), aiming to utilize machine learning
models to predict and mitigate these undesirable events, thereby contributing to the stability and efficiency of geothermal energy
production.

Anticipatingand preventing such events is crucial for the longevity and optimal functioning of geothermal systems. Traditionally, these
issues have been mitigated through reactive approaches, where monitoring and corrective measures were implemented after the occurrence
of the events. However, this approach is not only costly but also may lead to downtimes and inefficiencies in the energy production
process. Advancements in data analytics, particularly in the field of machine learning, offer a proactive and potentially more effective
solution (Marins et al., 2021). By analyzing historical data from geothermal production, these techniques could forecast potential issues
before they occur, allowing for preventive measures to be taken, thus maintaining the operational stability and efficiency of geothermal
power plants.

The integration of machine learning into the geothermal energy domain holds substantial promise (Okoroafor et al., 2022). Leveraging
the vast amount of data collected from various sensors, production logs, and operational parameters during geothermal fluid and steam
extraction, machine learning techniques can decipher patterns, detect anomalies, and predict potential undesirable events. By employing
predictive models on historical data, these techniques offer the potential to enhance operational efficiency, reduce maintenance costs, and
prolong the productive life of geothermal systems. The utilization of machine learning for geothermal energy represents a paradigm shift
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from reactive approaches to a more proactive and predictive framework, facilitating the early identification and mitigation of issues tha
might affect the stability and efficiency of geothermal power production.

The paper unfolds into several sections to encapsulate the methodology and findings of this study. A comprehensive review of existing
literature on geothermal energy production, emphasizing undesirable events and the significance of machine learning in this domain is
provided in the next section. This review provides a foundation for understanding the context and significance of the study in the broader
spectrum of geothermal energy research. The subsequent sections delve into the methodology employed, outlining the data collection,
preprocessing steps, feature selection, and engineering strategies, along with a detailed exploration of various machine learning models
employed.

The analysis and results section presents a detailed examination of the dataset, offering a descriptive analysis of its components, and
subsequently, an evaluation of the performance of the machine learning models employed. The efficacy of these models in predicting and
preempting undesirable events is highlighted, providing insights into the potential implications for the geothermal energy sector.
Additionally, the discussion section delves deeper into the interpretation of results, exploring the practical implications for geothermal
fluid and steam production, while also addressing the limitations of the study and outlining potential avenues for future research.

2. UNDESIRABLE EVENTS IN GEOTHERMAL PRODUCTION

For over a century, geothermal energy has played a crucial role in sustainable power generation. However, the development of geothermal
resources has not been without its substantial cost (Khankishiyev et al., 2023) and challenges (Vivas & Salehi, 2021). Operational
difficulties manifest in various forms, extending beyond technical complexities to encompass political, cultural, and environmental
concerns. The chemistry of geothermal fluids, which can occasionally contain significant concentrations of minerals and gases, poses a
considerable risk to the integrity of wells and surface installations through which the geothermal fluids flow. This is primarily due to the
potential for scaling and corrosion, emerging as the most frequent technical issues in geothermal utilization (Khankishiyev & Salehi,
2023). Addressing these challenges is imperative for the successful and sustainable utilization of geothermal energy.

Geothermal wells can face various production problems that may affect their efficiency and output. Some common issues include:

Scalingand Mineral Deposition: Minerals present in geothermal fluids can precipitate and form scales on the wellbore and production
equipment, reducing the flow of geothermal fluids. Geothermal fluids often carry dissolved minerals that can precipitateand deposit on
wellbore surfaces and within the reservoir, resulting in scaling and reduced permeability (Klap peretal., 2019). Scaling can impede fluid
flow, decrease heat transfer efficiency, and lead to equipment failure (Stahl et al., 2000).

Corrosion: Well casing and production equipment made from steel corrodes due to the chemical nature of geothermal fluids. Super-hot
geothermal environments often involve exposure to corrosive and abrasive fluids. The presence of aggressive chemicals and high-velocity
fluid flows can lead to corrosion and erosion of wellbore materials, including casing, drill bits, and downhole equipment (Karlsdottir et
al., 2019). Previously, a lot of corrosion and scaling related problems in geothermal wells have been reported in several literature. (Ocampo
et al., 2005; Zhaoet al., 2023)

Casing and Tubing Erosion: The high-velocity flow of geothermal fluids can cause erosion of the wellbore, leading to reduced well
integrity and increased maintenance needs. Erosion-corrosion occurs during the transport of two-phase flow at high velocities. This
phenomenon happens when abrasive particles, moving at an angle to the substrate surface, result in wear. The extent of erosion-corrosion
tends toincrease with higher flow rates and presence of solid particles in the fluid (Nogara & Zarrouk, 2018). Severe erosion corrosion
may occur if the protective coating, primarily composed of corrosion products, is incapable of continuous and rapid reformation.
According to Kurataet al. (1992), erosion-corrosion accounts for 25.4% of reported damages in geothermal power systems in Japan. Table
1 provides a summary of the corrosion, cavitation and erosion findings from KJ-39, IDDP-1,and IDDP-2wells in Iceland, highlighting
the severity of the corrosion problem in geothermal environments.

Wellbore Leaks: Leaks in the wellbore, due to severe casing corrosion/erosion or faulty connections, can result in the escape of
geothermal fluids into surrounding formations. Reduction of casing wall thickness from severe corrosion may lead to casing buckling and
leaks. Such leaks, often caused by corrosion, poor welding, inadequate cementing, thermal cycling, wear from drill pipes, or erosion, can
have severe and costly impacts (Phiet al., 2019). In the upper well section, a leak could lead to the production of steam and fluid into the
annulus between casing strings. If not promptly addressed, a leakage pathto the surface could, in extreme cases, cause a dangerous steam
eruption, throwing mud and rocks and leaving a large crater (Kalvenes, 2017).

Reservoir Decline: Over time, geothermal reservoirs may undergo a decline in both temperature and pressure, resulting in diminished
energy production. This decline in reservoir conditions poses a significant challenge to sustained geothermal power generation. As the
reservoir's thermal energy decreases, the efficiency of energy extraction diminishes, leading to lower overall power output (Zais &
Bodvarsson, 1980). Additionally, decreasing pressure levels contribute to reduced fluid flow, further impacting the system's performance.
Effective reservoir management becomes crucial to counteracting this natural decline. Reinjection of produced fluids is the main method
tomaintain reservoir pressure and temperature can be employed to mitigate the effects of reservoir decline (Beckers et al., 2017).

Toidentify and address these issues effectively, acombination of proper design, regular maintenance, and advanced monitoring techniques
is essential in the operation of geothermal wells. The majority of the undesirable events listed above impact the temperature, pressure, and
flow rate of the steam/fluid during production from the well. Identifying those issues using physical models is incredibly challenging due
tothe complexity of the model and the number of physical factors that need to be considered. However, when the pressure and temperature
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at the bottomhole and at the wellhead, and flow rate at the wellhead is recorded and labeled accordingly, the machine learning algorithms
can be utilized to train the model and predict the issues, even during the transition stage.

Table 1. Summary of corrosion findings from KJ-39, IDDP-1 and IDDP-2 wellsin Iceland

Well Name / Location

IDDP-2, Reykjanes, Iceland

IDDP-1, Krafla, Iceland

KJ-39, Krafla, Iceland

uniform, and pittingcorrosion in
pipe bodies

Master valve failure due to
corrosion, API T95 were less
affected by sulfide corrosion and
hydrogen embrittlement.

MD, m/ft 4650 / 15256 2102 / 6896 2800 /9186
Temp., °C/ °F 427 /800 450/ 858 350/ 662
. . . Casing: 9 5/8" Casing: 9 5/8" Casing: 9 5/8"
GRSt Til:]bmg Sl Perforated liner: 7" Slotted liner: Slotted liner:
Tubing: 3.5in 95/8" 75/8"
Casing and perforated liner: . - Casing: Carbon steel, API5L
Casing/Tubing Carbon steel, L80, BTC Casing: Carbon556t§el, K55, Hydril K55
Material Tubing: Carbon steel, API 5DP Liner: Carbon steel. K55. BTC Liner: Carbon steel, AP15L
PSL1 grade G-105 | ' ' K55
Erosion caused by SiO2
precipitation, corrosion of Cavitation damace and
Axial cracks in tool joints production liner, nozzles in Lo % .
. - corrosion inside and the outside
distributed evenly on the wellhead, hydrogen embrittlement surfaces of the pines that started
Failure mode circumferential of the joint boxes, of API K55 casing material. P1p

only a few weeks after the
opening of the fluid flow from
the well

Damage location

A hole was created on casing
because of corrosion at 2300 m
(7545.932 ft), corrosion damage

is observed in injection string

from 4000 m (13123.36 ft) to

4659 m (15285.43 ft) that was

inside a perforated liner

Slotted liner, production casing,
wellhead equipment

Wellbore was blocked at 1600 m
(5249.34 ft) due to parts of the
carbon steel liner corroding and
breaking in the well. Theliner
was broken in half at 1600 m
(5249.34 ft) when trying to
retrieve it

Damage cause

Sulfide stress corrosion cracking,
thermal stresses, sulfide corrosion

Hydrochloric acid and sulfide
stress corrosion cracking, pitting
corrosion, horizontal cracks, and

fissures parallel to the surface,

hydrogen embrittlement,
aggressive silicate precipitation,
thermal stresses

Uniform and pittingcorrosion,
hydrochloric acid and sulfide
stress corrosion, cavitation
corrosion, hydrogen
embrittlement and cracking,
thermal stresses

3.0E-07 mg/L H2S and 23.7 mg/L

732 ppm CO2,339 ppmH2S, 93

4085 ppmCO2,560 ppmH2S,

(Haukssonet al., 2014)

Chem!c_al CO2 gas in formation steam, 12 ppmHCI, 10 ppmH2gas in 330 ppmHCL, 75 ppmN2, 60
composition L . . - -
ppmO2in injection fluid formation steam ppmH2gas in formation steam
(Fridleifsson et al., 2017), (Fridleifsson et al., 2015), . .
References (Karlsdottir et al., 2019) (Markulsson & Hauksson, 2015), (Karlsdéttir & Thorbjornsson,

2012)

3. MACHINE LEARNING IN DETECTION OF UNDESIRABLE EVENTS

M achine learning (ML), acomponent of artificial intelligence (Al), centers on discerning patterns from historical datato forecast outcomes
in novel datasets. In contrast to the broader scope of Al, which includes reasoning, planning, and perception, ML is geared explicitly
toward predictive tasks. By leveraging past information, M L excels at anticipating future trends and results, making it an invaluable asset
in disciplines like petroleum engineering. Different M L models have been developed and applied in the energy industry (Huet al., 2023).

Supervised learning is the utilization of machine learning algorithms for addressing problems where a known dependent variable is
involved. The detection of flow instability is a classification problem because the dependent variable (undesirable event) is categorical,

the class label.

3.1. Machine learning workflow

The machine learning workflow is a systematic process that involves several key stages, from data preparation to model deployment.
Once the database is initialized, thefirst step is pre-processing. It is the procedure of shaping the data set to meet specific needs for further
applications. Pre-processing consists of several steps. In thefirst pre-processing step, datawrangling involves cleaning, structuring data,
addressing missing values, and modifying or deleting variables. The second step is transforming the prepared data into a format suitable
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for machine learning algorithms. Lastly, transforming feature scales ensures the dataset's uniformity by translating each feature's mean to
zero and adjusting its variance to the unit scale. Here is an overview of the typical machine learning workflow:
Model selection

Classifier
selection

Data preprocessing

Model
evaluation

L Feature Scaling & optimization

processing & extraction Standardization
wrangling

Dataset Final model

Figure 1: Machine Learning Workflow (Carvalho, 2021)

3.2. Machine Learning model selection criteria

The initial phase of model selection involves creating a roster of classification algorithms. This process kicks off by opting for more
straightforward options like Decision Tree (DT) and Random Forest (RF). Importantly, these algorithms necessitate minimal
hyperparameter tuning and boast scalability. Transitioning beyond simplicity, Adaptive Boosting (AdaBoost) and Support Vector
Machines (SVM) present distinct strengths, notably showing reduced vulnerability to overfitting.

In the realm of non-linear challenges, Extreme Learning Machine (ELM) and M ultilayer Perceptron (M LP) neural networks emerge as
suitable solutions. Additionally, the k-Nearest Neighbors, a non-parametric algorithm with sparse hyperparameters, consistently
demonstrates robust performance. Adding to the array of classifiers, the Random Forest algorithm stands out for its adaptability and
stability, contributing toa comprehensive and diversified model selection process. Hyperparameters are internal settings of an algorithm
unrelated to training data, while parameters are learned values from data used for predictions. The optimization or tuning of
hyperparameters is the process of identifying the optimal attributes for each algorithm to achieve maximum classification performance.
Grid search is a commonly employed method for this purpose, systematically evaluating the model across all points ina chosen subspace
(the grid) topinpoint the best configuration for a model. Another critical phase in model selection is feature selection, a process proven
to enhance classifier performance on a subset of the original features. This step not only improves the algorithm's speed when working
with trained models but also addresses challenges associated with feature extraction. While feature extraction often increases problem
dimensionality and leads to sparser data, making it more challenging to determine the optimal model parameters, feature selection helps
mitigate these side effects.

Feature selection encompasses three main algorithmic groups: i) filter (ranking), ii) wrapper, and iii) embedded (Kumar & Minz,2014).
In the filter approach, the exploration of data occurs independently of the classifier, often involving the analy sis of feature variances.
Wrapper methods, on the other hand, leverage the relationship between data and classifier, employing the classifier to identify the most
suitable features. Finally, embedded methods conduct feature selection during the training phase, seamlessly integrating the process with
the model development. Hyperparameters, distinct from parameters derived from training data, are internal algorithm settings. Parameters,
learned from data, guide predictions. Hyperparameter optimization, crucial for achieving optimal classification performance, involves
fine-tuning algorithm attributes. Grid search, a widely employed method, systematically evaluates the model across various points in a
selected subspace (grid), aiding in the identification of the optimal model fit (Lerman, 1980).

Model Performance

Number of Features

Figure 2. Hughes’ phenomenon - curse of dimensionality (Debie & Shafi, 2019)

Within the broader framework of feature engineering, both feature extraction and feature selection face the challenge of the curse of
dimensionality, often referred to as Hughes' phenomenon. This phenomenon posits that an algorithm's performance improves with an
increasing number of features up toa certain threshold, beyond which it starts to deteriorate (Figure 2). To navigate this issue, sequential

4
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feature selection (SFS) acts as a wrapper algorithm, dynamically adjusting the selected feature group by either adding (forward) or
removing (backward) one feature at a time until there is no discernible improvement in overall performance. Consequently, the
incorporation of feature selection is not only essential for optimizing the model but also becomes a necessity to effectively address Hughes'
phenomenon.

3.3. Performance evaluation

One of the crucial tasks in machine learning is model evaluation, which compares models and helps practitioners make decisions by
calculating performance measures. Fundamentally, the assessment method aims to gauge a model's performance on unobserved data by
evaluating its generalization ability to minimize error and apply previously learned knowledge to new observations. In addition, choosing
the right metric for a specific situation is only one aspect of proper result interpretation; another is the methodology employed in
calculating the metric. 80% of the cleaned dataset is usually used for model selection, with the remaining 20% being set aside for testing
or model evaluation. By assessing the model's performance using never-before-seen data, this division guarantees a thorough review of
the model's efficacy in real-world scenarios. It offers valuable insights for decision-making in the machine learning workflow.

4. ACASESTUDYUSING 3W PETROBRAS OIL PRODUCTION DATASET

Due to the scarcity of production data with labeled undesirable events from the geothermal fields, an open-source oil production dataset
was used to demonstrate the applicability and efficiency of the proposed workflow. It is noteworthy that machine learning algorithms are
often agnostic to the specific domain of production (0il or geothermal) if the underlying patterns and characteristics are captured by the
data. Therefore, the choice of an oil production dataset for demonstration purposes does not compromise the generalizability of the
proposed workflow to geothermal production scenarios, as the algorithms focus on learning patterns and relationships within the data
rather than the specific production domain.

4.1. 3W Petrobras Dataset

The open-source 3W dataset, gathered and published by Petrobras?, aims to optimize the identification of undesirable eventsin offshore
well production. Its primary goal is to enhance the efficiency of monitoring well and subsea system integrity, crucial for preventing
substantial losses to people, the environment, and the company's reputation. The detailed description of the dataset is published by Vargas
et al. (2019). The dataset comprises three distinct types of instances categorized based on their sources: real, simulated, and hand-drawn.
Real instances correspond to events that occurred in Petrobras' current wells during oil production. The inclusion of simulated and hand-
drawn instances serves a fundamental purpose—to mitigate the initial imbalance in the dataset, which was initially dominated by real
instances, a common characteristic in industrial data. This diversification enhances the dataset's representativeness and contributes to more
robust machine learning model training by incorporating abroader range of scenarios. The dataset comprises following variables collected
(or simulated) from temperature and pressure sensors located in downhole, wellhead, and the production platform (See Figure 3 below
for sensor placement):

P-PDG: pressure variable at the Permanent Downhole Gauge (PDG);

P-TPT: pressure variable at the Temperature and Pressure Transducer (TPT);
T-TPT:temperature variable at the Temperature and Pressure Transducer (TPT);
P-M ON-PCK: pressure variable upstream of the production choke (PCK);
T-JUS-PCK: temperature variable downstream of the production choke (PCK);
P-JUS-CKGL: pressure variable upstream of the gas lift choke (CKGL);

e  T-JUS-CKGL:temperature variable upstream of the gas lift choke (CKGL);

o  QGL: gas lift flow rate;

e  Class: undesirable event observations labels

. PRODUCTION
- LINE

ELECTRO-
HYDRAULIC =
UMBILICAL

SUBSEA
_» CHRISTMAS
~ TREE

™\, PRODUCTION
TUBING

Figure 3. Simplifiedschematic of a typical offshore naturally flowingwell (Vargas etal., 2019)

L https://github.com/petrobras/3W
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The types of undesirable events selected to be predicted with Machine Learning algorithms, taken from 3W dataset, are outlined below.
It is crucial to note that there may not always be a unanimous consensus on the terminology and interpretation of these undesirable events,
even among experts. To validate the actual occurrences of each identified type of undesirable event, Petrobras well monitoring
professionals typically analyze time windows of varying sizes. The estimated durations for these time windows are detailed in Table 2.

Table 2. Estimates of time window sizes needed to confirm occurrences of undesirable events (Vargas et al., 2019)

TYPE OF UNDESIRABLE EVENT TIME WINDOW TO CONFIRM THE EVENT

Label 1 — Abrupt increase of Basic Sediment and Water (BSW) 12 h
Label 2 — Spurious closure of the Downhole Safety Valve (DHSV) 5 min—20 min

Label 3 — Severe slugging 5h

Label 4 — Flow instability 15 min
Label 5 — Rapid productivity loss 12h

Label 6 — Quick restriction in Production Choke (PCK) 15 min
Label 7 — Scaling in Production Choke (PCK) 72h

Label 8 — Hydrate formation in production line 30 min-5 h

Early identification of these events, either before issues occur or during transient stages would save a lot of production downtime and is
essential for improving the efficiency of monitoring well and subsea system integrity.

4.2 Data pre-processing

The number of real, simulated and hand drawn instances is shown in Table 3 below. Each instance is recorded as a time series data,
resulting in millions of observations. Fortunately, most of those datapoints can be used to train and test the machine learning algorithm.
However, before feeding the data to the algorithm, missing values and outliers must be handled. The variables related tothe gas lift are
removed from the dataset since only a small number of the wells had the data. Next, any raw containing missing values is removed on a
row-wise basis. While various techniques exist for handling missing data, such as propagating the last known number forward or utilizing
the mean from the last known values, these methods may introduce additional noise to thesignal. The decision to drop rows with missing
values resulted in the removal of approximately 14.8% (1,472,177 observations) from the normal operation dataset. The identical event
classes for steady state and transient states were combined. Since the number of merged clean datapoints is big, a subset of 50,000 data
points, stratified by classes, was randomly selected from the total pool of 50,000,000 data points to save processing time, and avoid
computing crashes. Additional filtering involved removing rows with P-TPT values exceeding 40,000,000 Pa (5800 psi) and T-JUS-CKP
values above 150°C (302°F). The final number of observations for each undesirable event class is shown in Table 3 below. The matrix
scatterplot in Figure 4 demonstrates the classification of labels 0 to 8 where the simulated data for class 8 stands out among others.

Table 3. The number of instances, datapoints and randomly selectedfolds for each class of undesirable event

Number of Instances Number of all points
Class - after missing value | Merged s Flzandgn::lyl d
Real | Simulated |Hand Drawn T elected Fo

Label 0 Normal Operation| 597 - - 9822473 9822473 11604
Steady 2909702

Label 1 5 114 10 8196087 9605
Transient 5286385

Label 2 Steady 29 16 i 348621 415528 493
Transient 66907

Label 3 Steady 32 74 - 4833360 4833360 5683

Label 4 Steady 2460270 2460270 2865

344 - -

Label 5 (220 10552143 12972403 | 15309
Transient 12 439 - 2420260

Label 6 [2220Y 6 215 - 12951 19203 23
Transient 6252
Steady 110289

Label 7 4 - 10 2233418 2602
Transient 2123129

bel 8 Steady 3 8 o031A1 2041120 2430

Labe 1 411 4

Transient 1437979
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Figure 4. Matrix Scatterplot to visualize the classification of labels 0 to 8. Simulated data (class 8) stands out among others.

4.3. Algorithms for classification

The K-Nearest Neighbor (KNN), Random Forest, Artificial Neural Network (ANN), and Support Vector Machine (SVM) supervised
classification models were exported from an open-source scikit-learn library2. The train and test split ratio were set to 80%/20% of the
randomly selected fold for all models. Accuracy, Recall and F-1 scores were used to compare the model results and Hyperparameter
optimization and Cross-validation were performed for all models to improve the performance. The proportion of event classes in randomly
selected stratified dataset is shown in Figure 5. Class 6 and Class 2 have the lowest number of datapoints, thus lower classification
performance is expected for them.

Figure 5. Proportion of eventclasses in randomly selected stratified dataset

2 https:/iscikit-learn.org/stable/
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4.3.1 K-Nearest Neighbor

K-Nearest Neighbors (KNN) is a non-parametric and versatile algorithm used for both classification and regression tasks in machine
learning. It makes predictions by assigning the majority class or mean value of the k-nearest data points to the query point, where K is a
user-defined parameter. K values from 5 to 500 were tested in Grid Search and best performance was observed when k was 50 without
overfitting. The precision and recall values versus increasing K values were plotted for each class in Figure 6 (left and middle) below. As
shown in the confusion matrix in Figure 6 (right), predicted labels match the True labels for all classes, except Class 6 (Quick restriction
in Production Choke) due to a very low number of datapoints (0.46% of the dataset) used to train the model. F1 Scores obtained over 10-
Fold Cross-validation using KNN Classification with an optimal set of parameters were consistent.

Precision in Test Dataset for Different K Recall in Test Dataset for Different K Confusion Matrix
10 10 = S — 3000
2500
08 08
—— Class 0
Class 1 2000
§ 06+ © 064 — cass2 ||| 5
@ 8 — Class 3 9
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£ o4 g:assu o 04 Class 6 =
lass 1
—— Class 7
— Class 2 Class 8 1000
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024 — Class4 02
— Class5 500
Class 6
—— Class7
00 Class 8 00 0
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Values of K Values of K Predicted label

Figure 6. Precision (left), Recall (middle) and Confusion Matrix (right) for KNN Classification

4.3.2 Random Forest

Random Forest is an ensemble learning algorithm that builds multiple decision trees and merges their predictions to enhance accuracy
and reduce overfitting. By introducing randomness in both data sampling and feature selection during the tree-building process, Random
Forest creates a robust and versatile model for classification and regression tasks. The Figure 7 (left) showed that T-JUS-CKP: temperature
variable upstream of the gas lift choke (CKGL) is the least important variable in classification process, while T-TPT: temperature variable
at the wellhead and P-PDG: pressure variable at the bottomhole are the most important variables. Maximum depth of 3 to 10 (a higher
depthallows the trees to make more complex splits, capturing intricate patterns in the training data) and number of estimators of 100 to
500 (with higher number of trees, the model tends to become more robust and stable, reducing overfitting and improving the overall
performance) was used in cross validation to optimize these parameters (Figure 7 (right)). Although seemed like the results got better, it
was observed that the higher maximum depth resulted in overfitting and the higher number of estimators consumed significantly more
computational power. Thus, maximum depthwas set to 8 and number of estimators was set to 100.

Feature Importance Bar Plot Random Forest Out-of-Bag Emor for Different max_depth
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Figure 7. Feature Importance Bar Plot (left), Out-of-Bag Error for different maximum depth and number of trees (right)
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Figure 8. Precision, recall andfl-score for all classes (Ieft) and Confusion Matrix (right) for RF Classification

The Random Forest model yielded a similar F-1 score across all classes except class 6 with overall 95% accuracy and according to the
confusion matrix in Figure 8 (right), the model predicted the undesirable events very well. The highest confusion occurred when
predicting the Class 0 - normal operation mainly as Class 1 or Class 5.

4.3.3 Artificial Neural Networks

Artificial Neural Networks (ANN) are computational models inspired by the structure and function of the human brain. Comprising
interconnected nodes organized in layers, ANNs are designed for tasks such as pattern recognition, classification, and regression. Through
a process of training and learning from labeled data, neural networks adapt their internal weights to make accurate predictions and uncover
complex patterns in diverse datasets. Hyperparameter optimization was carried out for the number of hidden layers, learning rate and
epochs. Increasing thesize of the hidden layers increased the classification performance but it became much more time-consuming during
model running. Meanwhile, the optimized hy perparameters resulted in consistent F-1 score over 10-fold cross-validation and overall 93%
accuracy, 93% precision and 86% recall were achieved (Figure 9).

precision recall fil-score  support F1 Scores obtained over 10-Fold Cross-validation
using ANN Classification with an optimal set of parameters
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Figure 9. Precision, recall andfl-score for all classes (left) and F1 Scores obtained over 10-Fold Cross-validation (right)

4.3.4 Support Vector Machine

Support Vector Machines (SVYM) works by finding the optimal hy perplane that maximally separates different classes in the feature space.
It is particularly effective in high-dimensional spaces and can handle both linear and non-linear relationships through kernel functions.
SVM algorithm was originally developed for classification problems of two classes. Later, it was extended for regression and multi-class
classification.

Cross-validation was used to find the optimal values for kernel and gamma hyperparameters only, because optimizing all other
hyperparameters required huge run time. However, consistent F-1 scores were obtained over 10-fold cross-validation. The 92% accuracy

and 86% recall values provided by the SVM are the smallest in comparison with previous models and it was not able to predict Class 6 at
all.

4.3.5 ML Performance Summary
Table 4 below summarizes the performance of four machine learning models used in this study . Overall, KNN had the best performance
in terms of precision, recall, f1-score and accuracy. Another advantage of KNN was that it required the least computational power. On

the other hand, SVM took the most amount of time to run, had a lot of hyperparameters to optimize and performed with the smallest
accuracy compared to three other models used in this study.
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Table 4. Summary of the performance of machine learning methods usedin the study

Computational Power

Model Precision Recall F-1 Score Accuracy Requirement

K-Nearest Neighbor 0.97 0.89 091 0.97 Low

Random Forest 0.96 0.95 0.95 0.95 M oderate

Artificial Neural Networks 0.93 0.86 0.88 0.93 High

Support Vector Machine 0.81 0.79 0.8 0.92 High
CONCLUSION

In conclusion, this research pioneers a data-driven approach to address challenges in geothermal fluid/steam production, focusing on
identifying and predicting undesirable events. Leveraging machine learning techniques, including K-Nearest Neighbor (KNN), Decision
Tree (DT), Random Forest (RF), Artificial Neural Networks (ANNs), and Support Vector Machines (SVMs), our study demonstrates the
efficacy of these methods in enhancing thereliability and efficiency of geothermal energy production.

The analysis, based on the 3W Petrobras Oil Production Dataset, underscores the superior performance of KNN in precision, recall, F1-
score, and accuracy . Notably, KNN exhibits exceptional results while requiring minimal computational power, making it a practical choice
for real-world applications. DT and RF also showcase commendable performance, offering a balance between accuracy and comp utational
efficiency. In contrast, SVM exhibits drawbacks, such as prolonged runtime, numerous hyperparameters, and lower accuracy. The study
emphasizes optimizing computational resources, with KNN emerging as the optimal choice for efficiency and performance.

Insights gained extend to the practical implementation of machine learning algorithms in the geothermal industry. The successful
identification of undesirable events, demonstrated using temperature and pressure data, provides a foundation for proactive measures in
geothermal energy production. Continuous monitoring and expertly labeled training datasets are crucial for algorithm effectiveness.

Future research can explore unsupervised classification methods to evaluate the potential of machine learning algorithms in identifying
clusters associated with such production challenges. The findings contribute significantly to advancing sustainability and efficiency in
geothermal power generation, marking a crucial step towards ensuring the success of geothermal energy production processes.
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