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ABSTRACT  

Geothermal energy production confronts persistent challenges tied to undesirable events occurring during geothermal fluid/steam 
production, including flow instability, scaling and corrosion issues. Conventional monitoring and preventive methodologies have proven 

insufficient, necessitating innovative approaches for the prediction and identification of these undesirable events. This paper introduces a 

novel application of machine learning techniques to address this issue. Specifically, the utilization of supervised classification methods, 

such as K-Nearest Neighbor (KNN), Random Forest, Artificial Neural Networks (ANNs), and Support Vector Machines (SVMs), is 

proposed for the identification and prediction of undesirable events in geothermal fluid/steam production processes. 

To demonstrate the effectiveness of this approach, a substantial and comprehensive dataset, namely the 3W Petrobras Oil Production 

Dataset, was leveraged. This dataset encompasses an extensive range of operational data with corresponding undesirable events  that 

occurred, enabling the training and evaluation of machine learning models across diverse real-world scenarios. The results obtained 

underscore the significant potential of machine learning in the identification and prediction of undesirable events. The core of the analysis 

centered on the utilization of temperature and pressure data recorded by sensors located both at the bottom of the well and at the wellhead. 
By employing these vital variables as model inputs, remarkable performance in terms of F1 scores, precision, and recall was achieved. 

These results highlight the importance of advanced data analytics techniques in geothermal energy production for the identification and 

prediction of undesirable events. 

This research contributes to the field of geothermal energy by introducing a data-driven approach for the identification and prediction of 

undesirable events during geothermal fluid/steam production. The successful application of machine learning algorithms, as demonstrated 
through the case study employing the 3W Petrobras Dataset, represents a significant advancement in ensuring the sustainability and 

efficiency of geothermal energy production processes. Furthermore, the insights gained from this study lay the foundation for proactive 

measures to identify and predict these undesirable events, ultimately enhancing the reliability and economic viability of geothermal power 

generation. 

1. INTRODUCTION 

Geothermal energy stands as a promising renewable resource, offering a sustainable alternative to traditional energy sources . The efficient  

and uninterrupted extraction of geothermal fluids and steam is paramount for ensuring the viability and productivity of geothermal power 

plants (Tester et al., 2006). However, the occurrence of undesirable events during geothermal fluid and steam p roduction, such as 

corrosion, scaling, and reservoir decline, poses significant challenges to operational stability and overall efficiency. Predicting and 

preventing these events is crucial for maintaining the longevity and effectiveness of geothermal energy systems. In this context, the 
integration of machine learning techniques presents a promising avenue to forecast and prevent such occurrences. This paper introduces 

a comprehensive analysis leveraging the 3W Petrobras Oil Production Dataset  (Vargas et al., 2019), aiming to utilize machine learning 

models to predict and mitigate these undesirable events, thereby contributing to the stability and efficiency of geothermal energy  

production. 

Anticipating and preventing such events is crucial for the longevity and optimal functioning of geothermal systems. Traditionally, these 

issues have been mitigated through reactive approaches, where monitoring and corrective measures were implemented after the occurrence 

of the events. However, this approach is not only costly but also may lead to downtimes and inefficiencies in the energy production 

process. Advancements in data analytics, particularly in the field of machine learning, offer a proactive and potentially more effective 

solution (Marins et al., 2021). By analyzing historical data from geothermal production, these techniques could forecast potential issues 

before they occur, allowing for preventive measures to be taken, thus maintaining the operational s tability and efficiency of geothermal 

power plants. 

The integration of machine learning into the geothermal energy domain holds substantial promise (Okoroafor et al., 2022). Leveraging 

the vast amount of data collected from various sensors, production logs, and operational parameters during geothermal fluid and steam 
extraction, machine learning techniques can decipher patterns, detect anomalies, and predict potential undesirable events. By  employing 

predictive models on historical data, these techniques offer the potential to enhance operational efficiency, reduce maintenance costs, and 

prolong the productive life of geothermal systems. The utilization of machine learning for geothermal energy represents a paradigm shift 
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from reactive approaches to a more proactive and predictive framework, facilitating the early identification and mitigation of issues that 

might affect the stability and efficiency of geothermal power production. 

The paper unfolds into several sections to encapsulate the methodology and findings of this study. A comprehensive review of existing 

literature on geothermal energy production, emphasizing undesirable events and the significance of machine learning in this domain is 

provided in the next section. This review provides a foundation for understanding the context and significance of the study in the broader 

spectrum of geothermal energy research. The subsequent sections delve into the methodology employed, outlining the data collection, 
preprocessing steps, feature selection, and engineering strategies, along with a detailed exploration of various machine learning models  

employed. 

The analysis and results section presents a detailed examination of the dataset, offering a descriptive analysis of its components, and 

subsequently, an evaluation of the performance of the machine learning models employed. The efficacy of these models in predicting and 

preempting undesirable events is highlighted, providing insights into the potential implications for the geothermal energy sector. 
Additionally, the discussion section delves deeper into the interpretation of results, exploring the practical implications for geothermal 

fluid and steam production, while also addressing the limitations of the study and outlining potential avenues for future research. 

2. UNDESIRABLE EVENTS IN GEOTHERMAL PRODUCTION 

For over a century, geothermal energy has played a crucial role in sustainable power generation. However, the development of geothermal 

resources has not been without its substantial cost (Khankishiyev et al., 2023) and challenges (Vivas & Salehi, 2021). Operational 
difficulties manifest in various forms, extending beyond technical complexities to encompass political, cultural, and environmental 

concerns. The chemistry of geothermal fluids, which can occasionally contain significant concentrations of minerals and gases, poses a 

considerable risk to the integrity of wells and surface installations through which the geothermal fluids flow. This is primarily due to the 

potential for scaling and corrosion, emerging as the most frequent technical issues in geothermal utilization (Khankishiyev & Salehi, 

2023). Addressing these challenges is imperative for the successful and sustainable utilization of geothermal energy. 

Geothermal wells can face various production problems that may affect their efficiency and output. Some common issues include: 

Scaling and Mineral Deposition: Minerals present in geothermal fluids can precipitate and form scales on the wellbore and production 

equipment, reducing the flow of geothermal fluids. Geothermal fluids often carry dissolved minerals that can precipitate and deposit on 

wellbore surfaces and within the reservoir, resulting in scaling and reduced permeability (Klap per et al., 2019). Scaling can impede fluid 

flow, decrease heat transfer efficiency, and lead to equipment failure (Stahl et al., 2000). 

Corrosion: Well casing and production equipment made from steel corrodes due to the chemical nature of geothermal fluids. Super-hot 

geothermal environments often involve exposure to corrosive and abrasive fluids. The presence of aggressive chemicals and high-velocity  

fluid flows can lead to corrosion and erosion of wellbore materials, including casing, drill bits, and downhole equipment (Karlsdóttir et 

al., 2019). Previously, a lot of corrosion and scaling related problems in geothermal wells have been reported in several literature. (Ocampo 

et al., 2005; Zhao et al., 2023) 

Casing and Tubing Erosion: The high-velocity flow of geothermal fluids can cause erosion of the wellbore, leading to reduced well 

integrity and increased maintenance needs. Erosion-corrosion occurs during the transport of two-phase flow at high velocities. This 

phenomenon happens when abrasive particles, moving at an angle to the substrate surface, result in wear. The extent of erosion-corrosion 

tends to increase with higher flow rates and presence of solid particles in the fluid (Nogara & Zarrouk, 2018). Severe erosion corrosion 

may occur if the protective coating, primarily composed of corrosion products, is incapable of continuous and rapid reformation. 
According to Kurata et al. (1992), erosion-corrosion accounts for 25.4% of reported damages in geothermal power systems in Japan. Table 

1 provides a summary of the corrosion, cavitation and erosion findings from KJ-39, IDDP-1, and IDDP-2 wells in Iceland, highlight ing 

the severity of the corrosion problem in geothermal environments.  

Wellbore Leaks: Leaks in the wellbore, due to severe casing corrosion/erosion or faulty connections, can result in the escape of 

geothermal fluids into surrounding formations. Reduction of casing wall thickness from severe corrosion may lead to casing buckling and 
leaks. Such leaks, often caused by corrosion, poor welding, inadequate cementing, thermal cycling, wear from drill pipes, or erosion, can 

have severe and costly impacts (Phi et al., 2019). In the upper well section, a leak could lead to the production of steam and fluid into the 

annulus between casing strings. If not promptly addressed, a leakage p ath to the surface could, in extreme cases, cause a dangerous steam 

eruption, throwing mud and rocks and leaving a large crater (Kalvenes, 2017).  

Reservoir Decline: Over time, geothermal reservoirs may undergo a decline in both temperature and pressure, resulting in diminished 
energy production. This decline in reservoir conditions poses a significant challenge to sustained geothermal power generation. As the 

reservoir's thermal energy decreases, the efficiency of energy extraction diminishes, leading to lower overall power output  (Zais & 

Bodvarsson, 1980). Additionally, decreasing pressure levels contribute to reduced fluid flow, further impacting the system's performance. 

Effective reservoir management becomes crucial to counteracting this natural decline. Reinjection of produced fluids is the main method 

to maintain reservoir pressure and temperature can be employed to mitigate the effects of reservoir decline (Beckers et al., 2017). 

To identify and address these issues effectively, a combination of proper design, regular maintenance, and advanced monitoring techniques 

is essential in the operation of geothermal wells. The majority of the undesirable events listed above impact the temperature, pressure, and 

flow rate of the steam/fluid during production from the well. Identifying those issues using physical models is incredibly challenging due 

to the complexity of the model and the number of physical factors that need to be considered. However, when the pressure and temperature 
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at the bottomhole and at the wellhead, and flow rate at the wellhead is recorded and labeled accordingly, the machine learning algorithms 

can be utilized to train the model and predict the issues, even during the transition stage.  

Table 1. Summary of corrosion findings from KJ-39, IDDP-1 and IDDP-2 wells in Iceland 

Well Name / Location IDDP-2, Reykjanes, Iceland IDDP-1, Krafla, Iceland KJ-39, Krafla, Iceland 

MD, m/ft 4650 / 15256 2102 / 6896 2800 / 9186 

Temp., °C/ °F 427 / 800 450 / 858 350 / 662 

Casing / Tubing Size, 

in 

Casing: 9 5/8" 

 Perforated liner: 7" 

 Tubing: 3.5 in 

Casing: 9 5/8" 

 Slotted liner: 

9 5/8" 

Casing: 9 5/8" 

 Slotted liner: 

7 5/8" 

Casing/Tubing 

Material 

Casing and perforated liner: 

Carbon steel, L80, BTC 

 Tubing: Carbon steel, API 5DP 

PSL1 grade G-105 

Casing: Carbon steel, K55, Hydril 

563 

 Liner: Carbon steel, K55, BTC 

Casing: Carbon steel, API 5L 

K55 

 Liner: Carbon steel, API 5L 

K55 

Failure mode 

Axial cracks in tool joints 

distributed evenly on the 

circumferential of the joint boxes, 

uniform, and pitting corrosion in 

pipe bodies 

Erosion caused by SiO2 

precipitation, corrosion of 
production liner, nozzles in 

wellhead, hydrogen embrittlement 

of API K55 casing material. 

Master valve failure due to 

corrosion, API T95 were less 
affected by sulfide corrosion and 

hydrogen embrittlement. 

Cavitation damage and 

corrosion inside and the outside 

surfaces of the pipes that started 

only a few weeks after the 

opening of the fluid flow from 
the well 

Damage location 

A hole was created on casing 

because of corrosion at 2300 m 

(7545.932 ft), corrosion damage 

is observed in injection string 
from 4000 m (13123.36 ft) to 

4659 m (15285.43 ft) that was 

inside a perforated liner 

Slotted liner, production casing, 

wellhead equipment 

Wellbore was blocked at 1600 m 

(5249.34 ft) due to parts of the 

carbon steel liner corroding and 

breaking in the well. The liner 
was broken in half at 1600 m 

(5249.34 ft) when trying to 

retrieve it 

Damage cause 
Sulfide stress corrosion cracking, 
thermal stresses, sulfide corrosion 

Hydrochloric acid and sulfide 

stress corrosion cracking, pitting 

corrosion, horizontal cracks, and 

fissures parallel to the surface, 
hydrogen embrittlement, 

aggressive silicate precipitation, 

thermal stresses 

Uniform and pitting corrosion, 

hydrochloric acid and sulfide 

stress corrosion, cavitation 
corrosion, hydrogen 

embrittlement and cracking, 

thermal stresses 

Chemical 
composition 

3.0E-07 mg/L H2S and 23.7 mg/L 
CO2 gas in formation steam, 12 

ppm O2 in injection fluid 

732 ppm CO2, 339 ppm H2S, 93 
ppm HCl, 10 ppm H2 gas in 

formation steam 

4085 ppm CO2, 560 ppm H2S, 
330 ppm HCL, 75 ppm N2, 60 

ppm H2 gas in formation steam 

References 

(Friðleifsson et al., 2017), 

(Karlsdóttir et al., 2019) 
 

(Friðleifsson et al., 2015), 

(Markússon & Hauksson, 2015), 
(Hauksson et al., 2014) 

(Karlsdóttir & Thorbjornsson, 
2012)  

3. MACHINE LEARNING IN DETECTION OF UNDESIRABLE EVENTS 

Machine learning (ML), a component of artificial intelligence (AI), centers on discerning patterns from historical data to forecast outcomes 

in novel datasets. In contrast to the broader scope of AI, which includes reasoning, planning, and perception, ML is geared explicitly 

toward predictive tasks. By leveraging past information, ML excels at anticipating future trends and results, making it an invaluable asset 
in disciplines like petroleum engineering. Different ML models have been developed and applied in the energy industry (Hu et al., 2023).  

Supervised learning is the utilization of machine learning algorithms for addressing problems where a known dependent variable is 

involved. The detection of flow instability is a classification problem because the dependent variable (undesirable event) is categorical, 
the class label. 

3.1. Machine learning workflow 

The machine learning workflow is a systematic process that involves several key stages, from dat a preparation to model deployment. 
Once the database is initialized, the first step is pre-processing. It is the procedure of shaping the data set to meet specific needs for further 

applications. Pre-processing consists of several steps. In the first pre-processing step, data wrangling involves cleaning, structuring data, 

addressing missing values, and modifying or deleting variables. The second step is transforming the prepared data into a format suitable 



Khankishiyev et al.  

 4 

for machine learning algorithms. Lastly, transforming feature scales ensures the dataset's uniformity by translating each feature's mean to 
zero and adjusting its variance to the unit scale. Here is an overview of the typical machine learning workflow: 

  

Figure 1: Machine Learning Workflow (Carvalho, 2021) 

3.2. Machine Learning model selection criteria 

The initial phase of model selection involves creating a roster of classification algorithms. This process kicks off by opting for more 

straightforward options like Decision Tree (DT) and Random Forest (RF). Importantly, these algorithms necessitate minimal 

hyperparameter tuning and boast scalability. Transitioning beyond simplicity, Adaptive Boosting (AdaBoost) and Support Vector  
Machines (SVM) present distinct strengths, notably showing reduced vulnerability to overfitting.  

In the realm of non-linear challenges, Extreme Learning Machine (ELM) and Multilayer Perceptron (MLP) neural networks emerge as 

suitable solutions. Additionally, the k-Nearest Neighbors, a non-parametric algorithm with sparse hyperparameters, consistently 
demonstrates robust performance. Adding to the array of classifiers, the Random Forest algorithm stands out for its adaptability and 

stability, contributing to a comprehensive and diversified model selection process. Hyperparameters are internal settings of an algorithm 

unrelated to training data, while parameters are learned values from data used for predictions. The optimization or tuning of  

hyperparameters is the process of identifying the optimal attributes for each algorithm to achieve maximum classification performance. 

Grid search is a commonly employed method for this purpose, systematically evaluating the model across all points in a chosen subspace 
(the grid) to pinpoint the best configuration for a model. Another critical phase in model selection is feature selection, a process proven 

to enhance classifier performance on a subset of the original features. This step not only improves the algorithm's speed when working 

with trained models but also addresses challenges associated with feature extraction. While feature extraction often increases problem 

dimensionality and leads to sparser data, making it more challenging to determine the optimal model parameters, feature selection helps 
mitigate these side effects. 

Feature selection encompasses three main algorithmic groups: i) filter (ranking), ii) wrapper, and iii) embedded(Kumar & Minz, 2014). 

In the filter approach, the exploration of data occurs independently of the classifier, often involving the analy sis of feature variances. 

Wrapper methods, on the other hand, leverage the relationship between data and classifier, employing the classifier to identify the most 

suitable features. Finally, embedded methods conduct feature selection during the training phase, seamlessly integrating the process with 
the model development. Hyperparameters, distinct from parameters derived from training data, are internal algorithm settings. Parameters, 

learned from data, guide predictions. Hyperparameter optimization, crucial for achieving optimal classification performance, involves  

fine-tuning algorithm attributes. Grid search, a widely employed method, systematically evaluates the model across various points in a 
selected subspace (grid), aiding in the identification of the optimal model fit (Lerman, 1980). 

 

Figure 2. Hughes’ phenomenon - curse of dimensionality (Debie & Shafi, 2019) 

Within the broader framework of feature engineering, both feature extraction and feature selection face the challenge of the curse of 

dimensionality, often referred to as Hughes' phenomenon. This phenomenon posits that an algorithm's performance improves with an 

increasing number of features up to a certain threshold, beyond which it starts to deteriorate (Figure 2). To navigate this issue, sequential 
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feature selection (SFS) acts as a wrapper algorithm, dynamically adjusting the selected feature group by either adding (forward) or 
removing (backward) one feature at a time until there is no discernible improvement in overall performance. Consequently, the 

incorporation of feature selection is not only essential for optimizing the model but also becomes a necessity to effectively address Hughes' 

phenomenon. 

3.3. Performance evaluation 

One of the crucial tasks in machine learning is model evaluation, which compares models and helps practitioners make decisions by 
calculating performance measures. Fundamentally, the assessment method aims to gauge a model's performance on unobserved data by 

evaluating its generalization ability to minimize error and apply previously learned knowledge to new observations. In addition, choosing 

the right metric for a specific situation is only one aspect of proper result interpretation; another is the methodology employed in 

calculating the metric. 80% of the cleaned dataset is usually used for model selection, with the remaining 20% being set aside for testing 

or model evaluation. By assessing the model's performance using never-before-seen data, this division guarantees a thorough review of 
the model's efficacy in real-world scenarios. It offers valuable insights for decision-making in the machine learning workflow. 

4. A CASE STUDY USING 3W PETROBRAS OIL PRODUCTION DATASET 

Due to the scarcity of production data with labeled undesirable events from the geothermal fields, an open-source oil production dataset 

was used to demonstrate the applicability and efficiency of the proposed workflow. It is noteworthy that machine learning algorithms are 
often agnostic to the specific domain of production (oil or geothermal) if the underlying patterns and characterist ics are captured by the 

data. Therefore, the choice of an oil production dataset for demonstration purposes does not compromise the generalizability of the 

proposed workflow to geothermal production scenarios, as the algorithms focus on learning patterns and relationships within the data 

rather than the specific production domain. 

4.1. 3W Petrobras Dataset 

The open-source 3W dataset, gathered and published by Petrobras1, aims to optimize the identification of undesirable events in offshore 

well production. Its primary goal is to enhance the efficiency of monitoring well and subsea system integrity, crucial for preventing 

substantial losses to people, the environment, and the company's reputation. The detailed description of the dataset is published by Vargas 

et al. (2019). The dataset comprises three distinct types of instances categorized based on their sources: real, simulated, and hand-drawn. 

Real instances correspond to events that occurred in Petrobras' current wells during oil production. The inclusion of simulat ed and hand-
drawn instances serves a fundamental purpose—to mitigate the initial imbalance in the dataset, which was initially dominated by real 

instances, a common characteristic in industrial data. This diversification enhances the dataset's representativeness and contributes to more 

robust machine learning model training by incorporating a broader range of scenarios. The dataset comprises following variables collected 

(or simulated) from temperature and pressure sensors located in downhole, wellhead, and the production platform (See Figure 3 below 

for sensor placement):  

 P-PDG: pressure variable at the Permanent Downhole Gauge (PDG);  

 P-TPT: pressure variable at the Temperature and Pressure Transducer (TPT);  

 T-TPT: temperature variable at the Temperature and Pressure Transducer (TPT);  

 P-MON-PCK: pressure variable upstream of the production choke (PCK);  

 T-JUS-PCK: temperature variable downstream of the production choke (PCK);  

 P-JUS-CKGL: pressure variable upstream of the gas lift choke (CKGL);  

 T-JUS-CKGL: temperature variable upstream of the gas lift choke (CKGL);  

 QGL: gas lift flow rate;  

 Class: undesirable event observations labels 

 

Figure 3. S implified schematic of a typical offshore naturally flowing well  (Vargas et al., 2019) 

                                                                 

1 https://github.com/petrobras/3W 
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The types of undesirable events selected to be predicted with Machine Learning algorithms, taken from 3W dataset, are outlined below. 
It is crucial to note that there may not always be a unanimous consensus on the terminology and interpretation of these undesirable events, 

even among experts. To validate the actual occurrences of each identified type of undesirable event, Petrobras well monitoring 

professionals typically analyze time windows of varying sizes. The estimated durations for these time windows are detailed in Table 2. 

Table 2. Estimates of time window sizes needed to confirm occurrences of undesirable events (Vargas et al., 2019) 

TYPE OF UNDESIRABLE EVENT TIME WINDOW TO CONFIRM THE EVENT 

Label 1 – Abrupt increase of Basic Sediment and Water (BSW) 12 h 

Label 2 – Spurious closure of the Downhole Safety Valve (DHSV) 5 min–20 min 

Label 3 – Severe slugging 5 h 

Label 4 – Flow instability  15 min 

Label 5 – Rapid productivity loss 12 h 

Label 6 – Quick restriction in Production Choke (PCK) 15 min 

Label 7 – Scaling in Production Choke (PCK) 72 h 

Label 8 – Hydrate formation in production line 30 min–5 h 

Early identification of these events, either before issues occur or during transient stages would save a lot of production downtime and is 

essential for improving the efficiency of monitoring well and subsea system integrity. 

4.2 Data pre-processing 

The number of real, simulated and hand drawn instances is shown in Table 3 below. Each instance is recorded as a time series data, 

resulting in millions of observations. Fortunately, most of those datapoints can be used to train and test the machine learning algorithm. 

However, before feeding the data to the algorithm, missing values and outliers must be handled. The variables related to the gas lift are 

removed from the dataset since only  a small number of the wells had the data. Next, any raw containing missing values is removed on a 
row-wise basis. While various techniques exist for handling missing data, such as propagating the last known number forward or utilizing 

the mean from the last known values, these methods may introduce additional noise to the signal. The decision to drop rows with missing 

values resulted in the removal of approximately 14.8% (1,472,177 observations) from the normal operation dataset. The identical event 

classes for steady state and transient states were combined. Since the number of merged clean datapoints is big, a subset of 50,000 data 

points, stratified by classes, was randomly selected from the total pool of 50,000,000 data points to save processing time, and avoid 
computing crashes. Additional filtering involved removing rows with P-TPT values exceeding 40,000,000 Pa (5800 psi) and T-JUS-CKP 

values above 150°C (302°F). The final number of observations for each undesirable event class is shown in Table 3 below. The matrix 

scatterplot in Figure 4 demonstrates the classification of labels 0 to 8 where the simulated data for class 8 stands out among others. 

Table 3. The number of instances, datapoints and randomly selected folds for each class of undesirable event 

Class 
Number of Instances Number of all points 

after missing value 

removal 

Merged  
Randomly 

Selected Fold  Real Simulated Hand Drawn 

Label 0 Normal Operation 597 - - 9822473  9822473  11604  

Label 1 
Steady 

5 114 10 
2909702  

8196087  9605  
Transient 5286385  

Label 2 
Steady 

22 16 - 
348621  

415528  493  
Transient 66907  

Label 3 Steady 32 74 - 4833360  4833360  5683  

Label 4 Steady 
344 - - 

2460270  2460270  2865  

Label 5 
Steady 10552143  

12972403  15309  
Transient 12 439 - 2420260  

Label 6 
Steady 

6 215 - 
12951  

19203  23  
Transient 6252  

Label 7 
Steady 

4 - 10 
110289  

2233418  2602  
Transient 2123129  

Label 8 
Steady 

3 81 
 603141  

2041120  2430  
Transient 1437979 
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Figure 4. Matrix Scatterplot to visualize the classification of labels 0 to 8. S imulated data (class 8) stands out among others. 

4.3. Algorithms for classification 

The K-Nearest Neighbor (KNN), Random Forest, Artificial Neural Network (ANN), and Support Vector Machine (SVM) supervised 

classification models were exported from an open-source scikit-learn library2. The train and test split ratio were set to 80%/20% of the 

randomly selected fold for all models. Accuracy, Recall and F-1 scores were used to compare the model results and Hyperparameter 

optimization and Cross-validation were performed for all models to improve the performance. The proportion of event classes in randomly 
selected stratified dataset is shown in Figure 5. Class 6 and Class 2 have the lowest number of datapoints, thus lower classification 

performance is expected for them. 

 
Figure 5. Proportion of event classes in randomly selected stratified dataset 

                                                                 

2 https://scikit-learn.org/stable/ 

https://scikit-learn.org/stable/
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4.3.1 K-Nearest Neighbor 

K-Nearest Neighbors (KNN) is a non-parametric and versatile algorithm used for both classification and regression tasks in machine 
learning. It makes predictions by assigning the majority class or mean value of the k-nearest data points to the query point, where k is a 

user-defined parameter. K values from 5 to 500 were tested in Grid Search and best performance was observed when k was 50 without 

overfitting. The precision and recall values versus increasing K values were plotted for each class in Figure 6 (left and middle) below. As 

shown in the confusion matrix in Figure 6 (right), predicted labels match the True labels for all classes, except Class 6 (Quick restriction 

in Production Choke) due to a very low number of datapoints (0.46% of the dataset) used to train the model. F1 Scores obtained over 10-
Fold Cross-validation using KNN Classification with an optimal set of parameters were consistent.  

 

Figure 6. Precision (left), Recall (middle) and Confusion Matrix (right) for KNN Classification 

4.3.2 Random Forest 

Random Forest is an ensemble learning algorithm that builds multiple decision trees and merges their predictions to enhance accuracy  
and reduce overfitting. By introducing randomness in both data sampling and feature selection during the tree-building process, Random 

Forest creates a robust and versatile model for classification and regression tasks. The Figure 7 (left) showed that T-JUS-CKP: temperature 

variable upstream of the gas lift choke (CKGL) is the least important variable in classification process, while T-TPT: temperature variable 

at the wellhead and P-PDG: pressure variable at the bottomhole are the most important variables. Maximum depth of 3 to 10 (a higher 
depth allows the trees to make more complex splits, capturing intricate patterns in the training data) and number of estimators of 100 to 

500 (with higher number of trees, the model tends to become more robust and stable, reducing overfitting and improving the overall 

performance) was used in cross validation to optimize these parameters (Figure 7 (right)). Although seemed like the results got better, it 

was observed that the higher maximum depth resulted in overfitting and the higher number of estimators consumed significantly more 

computational power. Thus, maximum depth was set to 8 and number of estimators was set to 100. 

 

Figure 7. Feature Importance Bar Plot (left), Out-of-Bag Error for different maximum depth and number of trees (right) 



Khankishiyev et al.  

 9 

 

Figure 8. Precision, recall and f1-score for all classes (left) and Confusion Matrix (right) for RF Classification 

The Random Forest model yielded a similar F-1 score across all classes except class 6 with overall 95% accuracy and according to the 

confusion matrix in Figure 8 (right), the model predicted the undesirable events very well. The highest confusion occurred when 

predicting the Class 0 - normal operation mainly as Class 1 or Class 5.  

4.3.3 Artificial Neural Networks 

Artificial Neural Networks (ANN) are computational models inspired by the structure and function of the human brain. Comprising 

interconnected nodes organized in layers, ANNs are designed for tasks such as pattern recognition, classification, and regression. Through 

a process of training and learning from labeled data, neural networks adapt their internal weights to make accurate predictions and uncover 

complex patterns in diverse datasets. Hyperparameter optimization was carried out for the number of hidden layers, learning rate and 

epochs. Increasing the size of the hidden layers increased the classification performance but it became much more time-consuming during 

model running. Meanwhile, the optimized hyperparameters resulted in consistent F-1 score over 10-fold cross-validation and overall 93% 

accuracy, 93% precision and 86% recall were achieved (Figure 9).  

 

Figure 9. Precision, recall and f1-score for all classes (left) and F1 Scores obtained over 10-Fold Cross-validation (right) 

4.3.4 Support Vector Machine 

Support Vector Machines (SVM) works by finding the optimal hyperplane that maximally separates different classes in the feature space. 

It is particularly effective in high-dimensional spaces and can handle both linear and non-linear relationships through kernel functions. 

SVM algorithm was originally developed for classification problems of two classes. Later, it was extended for regression and multi-class  

classification.  

Cross-validation was used to find the optimal values for kernel and gamma hyperparameters only, because optimizing all other 

hyperparameters required huge run time. However, consistent F-1 scores were obtained over 10-fold cross-validation. The 92% accuracy  

and 86% recall values provided by the SVM are the smallest in comparison with previous models and it was not able to predict Class 6 at 
all.  

4.3.5 ML Performance Summary 

Table 4 below summarizes the performance of four machine learning models used in this study . Overall, KNN had the best performance 

in terms of precision, recall, f1-score and accuracy. Another advantage of KNN was that it required the least computational power. On 

the other hand, SVM took the most amount of time to run, had a lot of hyperparameters to optimize and performed with the smallest 

accuracy compared to three other models used in this study.  
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Table 4. Summary of the performance of machine learning methods used in the study 

Model Precision Recall F-1 Score Accuracy 
Computational Power 

Requirement 

K-Nearest Neighbor 0.97 0.89 0.91 0.97 Low 

Random Forest 0.96 0.95 0.95 0.95 Moderate 

Artificial Neural Networks 0.93 0.86 0.88 0.93 High 

Support Vector Machine 0.81 0.79 0.8 0.92 High 

 

CONCLUSION 

In conclusion, this research pioneers a data-driven approach to address challenges in geothermal fluid/steam production, focusing on 

identifying and predicting undesirable events. Leveraging machine learning techniques, including K-Nearest Neighbor (KNN), Decision 

Tree (DT), Random Forest (RF), Artificial Neural Networks (ANNs), and Support Vector Machines (SVMs), our study demonstrates the 

efficacy of these methods in enhancing the reliability and efficiency of geothermal energy production. 

The analysis, based on the 3W Petrobras Oil Production Dataset, underscores the superior performance of KNN in precision, recall, F1-

score, and accuracy. Notably, KNN exhibits exceptional results while requiring minimal computational power, making it a practical choice 

for real-world applications. DT and RF also showcase commendable performance, offering a balance between accuracy and comp utational 

efficiency. In contrast, SVM exhibits drawbacks, such as prolonged runtime, numerous hyperparameters, and lower accuracy. The study 

emphasizes optimizing computational resources, with KNN emerging as the optimal choice for efficiency and performance. 

Insights gained extend to the practical implementation of machine learning algorithms in the geothermal industry. The success ful 

identification of undesirable events, demonstrated using temperature and pressure data, provides a foundation for proactive measures in 

geothermal energy production. Continuous monitoring and expertly labeled training datasets are crucial for algorithm effectiveness. 

Future research can explore unsupervised classification methods to evaluate the potential of machine learning algorithms in identifying 

clusters associated with such production challenges. The findings contribute significantly to advancing sustainability and efficiency in 

geothermal power generation, marking a crucial step towards ensuring the success of geothermal energy production processes. 
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