PROCEEDINGS, 49" Workshop on Geothermal Reservoir Engineering
Stanford University, Stanford, California, February 12-14,2024
SGP-TR-227

Machine Learning-Based Rock Facies Prediction Using Geothermal Data: A Comparative
Analysis of Algorithms

Zeming Hu, Cesar Vivas, Salehi Salehi, Orkhan Khankishiyev
Hot Lab, 1101 Lexington Ave, Norman, OK 73069, The university of Oklahoma
zeming.hu-1@ou.edu, cesar.vivas@ou.edu, salehi@ou.edu. orkhan@ou.edu

Keywords: Rock Facies, Geothermal Exploration, Machine Learning, well logs

ABSTRACT

An approach to predicting rock facies has been generated. M achine learning techniques have generated a novel approach to predicting
rock facies. The objective was to develop a reliable facies predictor capable of categorizing rocks into 5 distinct facies: Sand, sandy
shale, shady sand, volcanic sand, and shale. To achieve this, electric logs, including gamma-ray, resistivity, and density, were utilized to
generate a synthetic facies log that could accurately represent the true geological facies. The study evaluated the performance of four
machine learning algorithms: k-nearest Neighbors (KNNs), Random Forest (RF), Decision Tree, and Stochastic gradient descent (SGD).
These algorithms were employed to build predictive models using the Utah FORGE geothermal project data as input. The goal was to
determine which algorithm performed better in accurately predicting rock facies based on the electric logs. The study results indicate
that the developed facies prediction model successfully generated a synthetic facies log that closely matched human-defined facies logs.

Moreover, the comparative analysis revealed insights into the strengths and weaknesses of the various machine learning algorithms in
the context of rock facies prediction. This research has significant implications for geology and geothermal energy exploration, as it
offers a data-driven approach to enhance our understanding of subsurface rock formations. By leveraging machine learning, we can
improve the accuracy and efficiency of facies prediction, ultimately aiding geothermal resource assessment and development.

1. Introduction

Geothermal energy has the potential to play an essential role in the global transition to renewable and sustainable energy sources. By
tapping into the Earth's natural heat via underground reservoirs, geothermal power generation emits no greenhouse gases and operates
continuously regardless of weather conditions or time of day. Despite the known advantages, geothermal energy comprises only 0.24%
of U.S. energy consumption, with petroleum and natural gas dominating at 68% (Khankishiyev et al 2023).

As we venture into the era of advanced exploration and production techniques, geothermal resources worldwide are being unlocked,
revealing a renewable resource with untapped potential for reliable, baseload energy. The traditional approach of analyzing litholo gy
logs from well drilling has served us well in characterizing subsurface formations. Nevertheless, the advent of machine learning
techniques promises a revolution in classifying and interpreting these logs. These cutting-ed ge computational methods hold the potential
to significantly enhance the accuracy and efficiency of geothermal reservoir characterization, thereby optimizing resource development.
This innovative approach could be the key to overcoming the limitations imposed on conventional data collection by harsh downhole
environments.

Machine learning has already proven its worth in several research studies that utilized surface drilling data and well logs to predict rock
properties in geothermal wells. For instance, Ishitsuka et al. (2021) successfully employed neural networks to predict deep temperature
distribution based on resistivity data. Similarly, Vivas and Salehi (2021) presented a machine learning approach to estimate thermal
conductivity using surface drilling parameters. Hu et al. (2021) took it a step further by using machine learning and computer vision
techniques to predict the thermal diffusivity of subsurface rocks. Shahdi et al. (2021) explored the use of machine learning methods to
predict subsurface temperature and geothermal gradient in the Northeastern United States using oil and gas well logs data and
Khankishiyev et al. (2024) proposed machine learning algorithms to predict undesirable events happening during geothermal
production. These practical applications of machine learning techniques underscore their potential in revolutionizing geothermal
reservoir exploration.

Machine learning algorithms such as k-Nearest Neighbors (KNN), Decision Trees (DT), Random Forests (RF), and Stochastic Gradient
Descent (SGD) have emerged as powerful tools for lithology classification based on well logs. Each of these algorithms brings unique
advantages to the table. KNN, for instance, leverages the inherent patterns and relationships present in well log data to autonomously
categorize litholo gical formations, reducing the reliance on manual interpretation and subjective analysis. DT and RF, on the other hand,
provide interpretable insights into lithology classifications and enhance accuracy by aggregating the predictions of multiple trees. SGD
optimizes lithology classification through iterative optimization, adjusting model parameters to minimize classification errors.
Collectively, these algorithms represent a significant advancement in geothermal reservoir exploration.

The KNN algorithm, a non-parametric and instance-based approach, identifies lithological patterns by comparing the similarities
between data points in the feature space (Guo et al., 2003). DF utilizes a tree-like model to partition data based on key features,
providing interpretable insights into lithology classifications (Song and Ying2015). RF, an ensemble method of Decision T rees, further
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enhances accuracy by aggregating the predictions of multiple trees (Neale and Kremer 2011). SGD optimizes lithology classification
through iterative optimization, adjusting model parameters to minimize classification errors (Rajkumar and Agarwal 2012).

Applying machine learning methods, such as KNN, DT, RF, and SGD, in geothermal reservoir exploration is significant due to their
ability to efficiently analyze vast amounts of well-log data. These algorithms can discern intricate lithological patterns, identify
anomalies, and predict subsurface compositions with precision that traditional methods may need help to achieve. This streamlines the
exploration process and enhances the understanding of geological complexities within geothermal reservoirs.

2. METHODLOGY

The workflow is shown below. Our method started at collecting well log, the preprocessing data, such as rock facies re-labeling. Then
we processed the data for generating model. The optimal hyperparameters are essential for the model, so we will select the
hyperparameters. Then we will split and train data with 7:3 ratio. Then we will compare theresults from different models.

2.1 Data Collection

We utilized the well logs and lithology logs of well 21-31 from Utah forge geothermal project Location of the 21-31 to learn, generate,

Porosity, Density,

11 logs: GR, SP, Resistivity, ROP, WOB, CO2,

lithology
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data
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Figure 1: The Workflow

evaluate a lithology log in Figure 2. The depth of well logs is from 130 — 6180 ft.
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Figure 2: The Location of Well 21-31 in Red Box (Blankenship etal 2016)

All the information collected from the FORGE project is public and available on the Geothermal Data Repository website
(https://gdr.openei.org). For this specific study, the data analyzed was collected by Sandia National Laboratories (2020).

2.2 Data Pre-Processing and Cleaning

The dataset contains 14 variables and 11 rock classifications. Table 1 shows the summary of the dataset. The total count for each
varibles are 5668.

Table 1: the summary of the data with statistics analysis

Lable Relable GR NPHI RHOB DPHI SPHI HMIN HMNO WOB co2
count 5668 568.000000 5668.000000 56 5668.000000 5668.000000 5668.000000 5668.000000 5668.000000 5668.000000 5668.000000 566 5668.000000 5668.000000
mean 35.7508! X 3 3.275406 44.688051 0.370088 23 3 -0.534044 J 23 7 .8382 415667 566.010
1.875190 23 1 046 0.178386 .3 2 .216183 43237 9 54 9 5
301.000000 1.000000 1.000000 A06 18.031000 0.091200 i 99 9 999.. 1.000000 -4.000000  181.000000
1717.750000 1.000000 1.000000 53400 35.514450 0.230300 627 u .0623! .2416 b 7 28.000000 2.000000  407.000000
3134.500000 5.000000 5.000000 -667.259600 6 3 3.13 si 3 49.000000 9.000000  575.000000

4551.250000 (X ] 00000 -6 44600 4 £ 6 . 7 608475 6 7 122.000000 18.000000  710.000000

5978.000000 11.000000 5.000000 -479.899000  158.114200 0.981600 6281 L z 26. 14. 881.000000 30.000000 1519.000000

Rock types, showing in Fiugure 3 contains sand, clay, clayst, sandst, volcsedi, andesite, tuffcrys,basalt,rhyolite,dacite, and tuffash. In
order to keep data balanced, the rock types have been shrunk into 5 classes from 12 classes, which are the clay, sand, clays, sands, and
vouched. They are stored in ReLable varible. The count of rock types in the ReLable variable is shown in Figure 2. Clay (1) has 1239,
sand (2) has 64, Clasyst (3)has 228, stanstone (4) is 63, and the volcanic sandstone (5) is 2883.
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Figure 3: The Distribution of rock type in ReLable

Table 2 shows the description of well logs that applied for the prediction.

Well logs Description Unit
GR Gramma Ray API
NPHI Netroun porosity %
SP Spontaneous potential logging mV
RHOB Density gcc
DPHI Density Porosity %
HMIN HIP Micro Inverse Resistivity OHMM
HMNO HIP Micro Normal Resistivity OHMM
ROP Rate of Penetration ft/hr
CO2 CcO2 N/A
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WOB Weight of bit klb
Lable Lables of rock types N/A
Relable Adjusted lables of rock types N/A

The statistical technique employed in this study to assess the relationship between two variables was the Pearson correlation coefficient,
as described by Benesty et al. (2008). This coefficient quantifies the strength of a linear correlation between the variables under
investigation. Coefficients closer to 1 indicate a strong positive correlation, coefficients closer to -1 indicate a strong negative
correlation, and coefficients closer to zero suggest no significant correlation between the variables. Then, by checking the impacts of
variables on the rock types, SPHI does not have a high positive or negative impact. Also, the rest of the variables are below 30% in the
impact factor. Therefore, only variables higher than 20 and standard well logs are selected to predict the rock lithology log, as shown in
Figure 4. So, only Sonic porosity, HMIN, and HMNO will not be on the list to predict the lithology. Also, CO2 will not be on the list

due to thelack of knowledge of CO2.
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Figure 4: Heat map showing the correlation of the different variables.

Then, the outlier detection has been operated, and found that the values are in the appropriate range, showing in figure 5.
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Figure S: The boxplot for showing variables.

The better way to understand the relationship between two variables is to plot as 2D graph. In general view, most of them do not have a
dominant trend, expect the relationship between DPHI and RHOB, the relationship between DPHI and NPHI. They are in an inverse

proportional relationship.
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Figure 6. The relationship among the rock type, and well logs

Upon identifying influential factors, the subsequent step involves determining optimal hyperparameters for each model. Notably, the
KNN model assumes prominence in this context, as selecting the optimal K value is crucial for achieving higher accuracy. We used
accuracy and prediction with different K methods to find optimal K. The graphical representation of accuracy across different K values
reveals a noteworthy trend — as K increases, there is a corresponding decrease in model accuracy. This observation underscores the
importance of cautiously selecting K to maximize the model's predictive capabilities.

Further analysis involves plotting predictions across different K values for each rock type, facilitating the identification of the K value
that yields superior accuracy. Upon examination of the plotted data, it becomes evident that at K = 3, each rock typ e exhibits a relatively
high accuracy, as illustrated in Figure 7. This specific K value is a favorable choice for the KNN model in this lithology classification
task. The visual representation of accuracy across various K values and rock types is a valuab le tool in refining the hyperparameter
selection process, ultimately enhancing the overall performance and reliability of the classification models.
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Precision in Test Dataset for Different K
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Figure 7. The selection of Optimal K and topmial depth for RF

In addition, determining the optimal depth for the Random Forest model is crucial. Through an accuracy plot varying the depth
parameter, it was observed that the default maximum depth provided the highest accuracy. M oreover, configuring the model with 200
estimators contributed to optimal performance. The plot's trend indicates that default depth settings are most favorable for this lithology
classification task. The use of 200 estimators enhances the model's robustness. Table 2 also includes the rest of hyperparameters in the
each model.

Table 2. The hypermeters in each model

Model Hypermeters

KNN K=3

SGD Loss = hinge; penalty=I2; max iter=5

Random forest Maximum depth = default; n_estimator = 200

Decision tree Min_sample leaf = 1; Min_sample split =
2;gini

Then 70% of data was trained using 4 models and 30% of data was tested based on these models. After that, the performance of the
model was compared.
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3 ANALYSIS/EVALUATION OF CLASSIFICATION METHODS

3.1 KNN Performance

In Figure 7 (left plot), the provided classification report presents a detailed analysis of the model's performance across multiple classes.
Precision measures the accuracy of optimistic predictions; recall assesses the model's ability to capture all positive instances, and the
F1-score balances precision and recall. The model's overall accuracy is 0.85, indicating a solid classification performance across all
classes. The macro-average F1-score (0.75) and weighted average F1-score (0.85) suggest a generally balanced and accurate model.
However, the discrepancies in precision and recall for specific classes, notably sand, and sandstone, could be higher due to the small
dataset. The plot on Figure 7 (right), which is the confusion matrix plot, shows that the prediction for each rock type has a high accuracy
of the value of each rock type.
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Figure 7. The performance of the KNN model

3.2 RF Performance

In Figure 8, the model demonstrates overall solid performance with an accuracy of 0.86 across five classes. Class 5 shows exc ellent
precision, recall, and F1-score (0.89, 0.94, and 0.92), indicating high accuracy in identifying instances of this class. Class 1 also exhibits
good precision, recall, and F1-score (0.83, 0.82, and 0.83). However, there are notable variations in performance across other classes.
Class 2 has a high precision (0.88) but a lower recall (0.52), resulting in an F1-score of 0.65. Class 3 shows balanced precision and
recall (0.79 and 0.77) with an F1 score of 0.78. Class 4 has a lower precision (0.68) and recall (0.46), contributing to an F 1-score of
0.55. The macro-average Fl-score (0.75) and weighted average Fl-score (0.86) suggest a generally balanced model performance.
However, the lower recall in class 2 and class 4 indicates potential challenges in correctly identifying instances of these classes,
warranting further investigation and potential model refinement for enhanced performance in those specific categories. The confusion
matrix also shows this fact as well.
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Figure 8. The performance of the RF model.

3.3 DT Performance

Figure 9 (left plot) outlines the model's performance across five classes, achieving an overall accuracy of 0.82. Class 5 has high
precision, recall, and F1-score (0.86, 0.91, and 0.89), indicating its effective identification. Class 1 exhibits a slightly lower precision
(0.80) and recall (0.72), yielding an F1-score of 0.76. Class 2 demonstrates moderate precision (0.61) and recall (0.59), resulting in an
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F1 score of 0.60. Class 3 shows higher recall (0.82) but lower precision (0.67), contributing to an F1-score of 0.74. Class 4 presents
balanced precision and recall (0.59 and 0.57) with an F1 score of 0.58. The macro-average F1-score (0.71) and weighted average F1-
score (0.81) reflect a reasonably balanced model performance, with potential for improvement in specific classes through further
analysis and refinement.
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Figure 9. The performance of DT

3.4 SGD Performance

In Figure 10, this model achieved an overall accuracy of 0.71. Class 5 stands out with solid precision, recall, and F1-score (0.82, 0.79,
and 0.80), indicating accurate identification within this class. However, challenges are apparent in other classes, particularly in class 2,
where precision (0.20) and recall (0.01) are minimal, resulting in a low F1-score of 0.03. Class 4 shows negligible precision, recall, and
F1-score, indicating limitations in identifying instances of this class. In the confusion matrix, it shows a similar result.
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Figure 10, The performance of the SGD

Combined Figure 11 and Figure 12, the model, KNN, SGD, RF, and DT, reveals distinct strengths and weaknesses across various
classes. KNN and RF emerge as robust performers, exhibiting high precision for dominant lithological classes such as VOLCSEDI and
CLAYST. KNN achieves a balanced accuracy of 0.8 and a prediction accuracy of 0.8, showcasing its reliability. On the other hand,
SGD encounters challenges, displaying low precision across all classes and resulting in the lowest accuracy of 0.7 and prediction
accuracy of 0.4. With impressive precision for VOLCSEDI (0.94198) and overall accuracy of 0.4, RF stands out as a promising model.
However, both SGD and DT models share similar accuracy metrics, suggesting potential areas for improvement, particularly in
precision. This comprehensive analysis offers valuable insights into each model's performance, guiding recommendations for further
refinement and optimization, such as tuning hyperparameters and evaluating the importance of features to enhance lithology
classification accuracy.
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KNN SGD RF

CLAY 0781759 0521173 0.820847
SAND 0594203 0057971 0521739 0.594203
CLAYST 0.778947 0.136842 0.778947 0.821053
SANDST 0642857 0071429 0535714 0.571429
VOLCSEDI 0.922639 094198 0.94198 0.906712
Accuracy 08 0.7 04 04

Prediction 0.8 04 0.82 04

Figure 11. The Summary of the each model with different rock type.

RF emerges as the optimal model for lithology log prediction, primarily attributed to its elevated accuracy. Despite its efficacy, certain
limitations warrant consideration. One significant challenge arises from the inherent imbalance in rock types, potentially leading the
model to misinterpret certain rock types, akin to the issues encountered with SGD. Additionally, the model's reliance on a solitary well
for training introduces limitations associated with dataset scarcity. An ideal scenario involves utilizing multiple wells for training and
validation, ensuring a more representative dataset. Furthermore, incorporating a separate well for blind testing is crucial to assess the
model's predictive prowess in real-world scenarios accurately. This comprehensive approach, encompassing balanced rock types and a
diverse dataset, is pivotal for refining and validating lithology prediction models with enhanced reliability and generalization
capabilities.
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Figure 12. Comparison of prediced lithology log with different models.

4. CONCLUSION

Our study employed four algorithms to train lithology log prediction models, ultimately selecting KNN as the most effective. Despite
this success, limitations like data imbalance and dataset size persist. Future studies will prioritize addressing these issues to enhance
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model robustness. Balancing data representation, particularly for less prevalent lithological classes, is crucial to improvin g predictive
accuracy. Additionally, recognizing the importance of dataset size, our strategy involves expanding with more drilling logs and diverse
well-log types. This enrichment aims to provide a more nuanced understanding of geological variations, ensuring our models excel
across broader scenarios. Our further study lies in refining and expanding the dataset continuously. By mitigating biases, incorporating
additional information, and leveraging diverse features, we aim to elevate the accuracy and applicability of our lithology prediction
models. This iterative approach ensures adaptability to the complexities of various geological formations and drilling conditions,
advancing our capacity to deliver accurate predictions in geothermal well applications
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