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ABSTRACT

The power density method simplifies geothermal resource assessments to just reservoir temperature, resource area, and tectonic
environment, using trends observed in a collection of global analog fields to predict power potential in undeveloped areas. For geothermal
explorers, the procedural simplicity of power density over other resource estimation methods holds great attraction. However, the degree
of variability in the field data used to define power density relationships suggests a non-trivial level of uncertainty in predictions made
using traditional power density curves or related resource calculators. Power density also lacks a clear linkage to factors like drilling costs
that greatly influence geothermal project economics. This study revisits the power density method by first evaluating its predictive
performance in its three-variable form and then expanding the field data using multiple global databases. Representative values for
subsurface characteristics like reservoir temperature and target depth are combined with features describing the surface plant design and
climate conditions to paint a more complete picture of each field location. The data are analyzed to reveal the most important features for
predicting power production in aggregate by field and on an individual power plant basis. New models created from these features maintain
a low level of complexity appropriate for exploration. Furthermore, they are easily tuned to predict novel power metrics like power per
drill length that incorporate project economic drivers toaid in geothermal strategy and portfolio-building efforts.

1. INTRODUCTION

Geothermal exploration activities serve to reduce the uncertainty in subsurface thermal potential available for direct use or power
production. Still, preliminary estimates of the accessible heat-in-place are critical to justifying any budget spent on these activities,
particularly investments in costly drilling operations. Explorers must often rely on simplified geothermal resource models to screen
opportunities and prioritize which prospects to evaluate further. Of the most common resource estimation methods, the USGS volumetric
heat-in-place calculation offers a well-documented and consistent process for determining thermal and electric power potential (M uffler,
1979). The USGS procedure considers the subsurface reservoir as a homogeneous heat store, and calculations combine earth properties
and correction factors, each described either deterministically or with a representative value distribution. Depending on the derivation, the
list of input variables may include reservoir temperature, reservoir areal extent and thickness, porosity, dual-phase fluid fraction, density
and specific heat capacity of reservoir and fluids, recovery factor, heat-to-power conversion efficiency, plant capacity factor, and life of
field (Ciriaco et al., 2020; Muffler, 1979; Sanyal & Sarmiento, 2005). However, defining appropriate values for each of these variables
can be challenging in the data-limited context of early exploration work. This diminishes the applied value of well-parameterized
estimators like the USGS method over lower-comp lexity measures tied to global analog data.

One example analog-driven alternative is the power density method, which uses power potential per unit area across a range of geothermal
reservoir temperatures as a means for determining resource capacity. Depending on the global subset of fields considered, geothermal
researchers have described increasing linear, power law, and exponential trends, often fit against a few tens of observations or less due to
the difficulty in cataloging field power output and developed resource area (Bertani, 2005; Grant, 2000; Wilmarth et al., 2021). Wilmarth
and Stimac (2014) detailed a methodology for consistently calculating field area using just production well paths and a 500 m radius
outline buffer, and their follow-on reports include a growing curated data set (Wilmarth et al., 2021; Wilmarth & Stimac, 2015). These
data are described to follow two separate trends: a “main sequence” that exhibits roughly exponential growth in power density with
reservoir temperature, and a constant power trend centered just under 10 MW/km? (Figure 1). The constant trend correlates most with
“hot arc” fields, i.e., areas marked by high-temperature, compressive tectonic regimes where volcanism occurs in arcs above a subducting
plate. Other tectonic regimes are believed to cluster along different sections of the main sequence curve, leading past authors to suggest a
predictive relationship connecting tectonic setting and reservoir temperature to power density.

Without visual guides like color-filled polygons or curves projected on theplot in Figure 1, two characteristics of the data stand out. First,
the spread in the power density values increases with reservoir temperature, broadening by a factor of 2 for fields with an average reservoir
temperature >250°C compared to lower-temperature geothermal assets. Secondly, the overlap in tectonic setting markers suggests clusters
based on tectonic classification are not cleanly separable. Because the data set only includes =100 fields, data coverage is both sparse and
imbalanced across the temperature spectrum. These observations collectively underscore a degree of uncertainty that accompanies power
density-based resource estimation. In this study, the objective is to evaluate the impact of this uncertainty on the predictive ability of
power density curves, while also appraising the choice of a field-scale, 3-parameter representation of geothermal resources against
alternative methods. The results provide new insights into the efficacy of power density estimation methods for geothermal exploration
assessments and highlight the potential for future refinement with additional data engineering and analytics approaches.
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Figure 1: Power density of 102 geothermal fields plotted against reservoir temperature, adapted from Figure 1 in Wilmarth et al.
(2021). Colors and shapes depict tectonic setting classifications. The data showan apparent increase in power density with
greater reservoir temperatures, paired with increasing variance.

2. METHODOLOGY

2.1 Data Collection

The initial data collection consisted of digitizing 102 identifiable points from the power density figure included in the GeoRePORT
Protocol for the Resource Size Assessment Tool (Rubin et al., 2022). This report accompanied the release of the RSAT tool, which directly
implements a power density resource estimator based on the two-curve fit of the data. Additionally, both the field name and tectonic
setting for the points were manually transcribed from the same GeoRePORT plot. Figure 1 depicts this base data set, which includes 99
labeled geothermal fields and 3 unknown fields that were unlabeled in the source figure.

2.2 Data Expansion

The base field data set was expanded by merging it with several ancillary geothermal power plant databases. The first is a power plant
location file uploaded to the Geothermal Data Repository (https://gdr.openei.org) with the Cascades/Aleutian Play Fairway Analysis data
submission (Shevenell, 2015). This file contains geocoordinates marking individual power plant facilities around the globe, verified by
visual inspection in Google Earth. The Global Power Plant Database (GPPDB) provides greater facility -level detail, including location
country, commission year, and namep late capacity (Byers et al., 2018). Estimates of net power production appear in the GPPDB as well,
although these contain a mixture of official reports, modeled approximations, and null values and consequently were dropped from
consideration in this study. The last dataset incorporated into the analysis comes from Rystad Energy ’s GeothermalCube (Rystad Energy,
2023). GeothermalCube uniquely provides a total well count, the number of active production wells, and the average drilling depth by
power plant location. Rystad captures information on historical geothermal fields, plants under construction, and future development plans
spanning hydrothermal, enhanced (EGS), and advanced closed loop (AGS) geothermal systems. However, because EGS and AGS system
entries primarily consist of past and future pilot data, only hydrothermal geothermal systems were included in this study. The data was
also filtered toonly include power plants with commission dates no later than 2022.

All three supplementary data sets contain entries at the power plant level of detail. To merge them with the base data set, power plants
were assigned to a designated field and then aggregated up to the field scale. This meant taking the mean for numerical variables like
latitude, longitude, and reservoir temperature, using the first value for labeled data like country name, and applyingthe mode on ordinal
data like drilling length group which was already binned in ranges of 500 m. The unknown geothermal fields were dropped from the base
data set. Some geothermal fields include power plants of different power system configurations. Because the power systemtype is tracked
as a variable in the expanded data, the final field-scale data set consisted of 125 entries.

2.3 Data Engineering

Both the original power density plot and the Rystad data set include estimates of the reservoir temperature for each geothermal field. A
one-to-one scatter plot of the two variables showed that these reported values varied, sometimes by several tens of degrees. The reservoir
temperatures of 16 entries that had values with a difference of 50°C or more were replaced with the most recent numbers from studies on
those fields based on a search of the literature.

The existing columns in the data set — also known as “features” — were then augmented to provide a richer set of inputs for advanced data
analysis. To start with, continuous variables, including reservoir temperature, location (latitude, longitude), and commission year, were
binned intoranges to increase the instance count across representative values for each variable. Rather than presuppose effective binning
schemes, the Jenks method was applied to determine the natural breaks for each feature based on aspecified number of bins (Jenks, 1967).
Using a range of bin counts, optimal values for each variable were selected based on the minimum imbalance ratio, i.e., the ratio of the
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sample size for the largest majority class to that of the smallest minority class. Next, all binned features were encoded as ordinal variables,
preserving the order of value options while replacing values with integer representations. Lastly, new features related to surface conditions
were incorporated into the data set. Topography was sampled from the ETOPOL1 1 arc-minute resolution model based on the latitude and
longitudes for each field (Amante & Eakins, 2009). Climate 30-year normals for annual average temperature, minimum temperature,
maximum temperature, and annual precipitation were likewise captured using the WorldClim version 2.1 30-sec resolution gridded models
(Fick & Hijmans, 2017). WorldClim features provided as monthly normals were first combined into an annual grid before sampling at
field locations, using the mean function for average values, min for minima, and max for maxima. Additionally, the difference between
the minimum and maximum temperature values was calculated to define an ambient temperaturerange feature.

2.4 Exploratory Data Analysis

The original field-scale data set was first examined with the power density curves for the main sequence and hot arc fields illustrated in
Wilmarth et al. (2021). The use of statistics on the residuals helped to highlight outlier areas that could be considered anomalies to the
overall trend. Additionally, the root mean squared error (RM SE) and coefficient of determination (R?) were calculated for evaluation and
direct comparison of the data fit and predictive ability between the curve-based model and other models.

With the expanded field-scale dataset, addressing the question of which features provide the most value began with determining the level
of feature independence. If two features vary in a colinear fashion, removing one from the data set can reduce data dimensionality, often
with little loss in the predictive ability of the remaining features. Here, the decision to eliminate certain features was based on pairwise
feature correlations and the evaluation of mutual information in relation to the predicted variable, power density. The aim was to focus
the data set down to the key data features that could improve an explorer’s ability to evaluate geothermal prospect potential.

2.5 Modeling

Given that exploration often depends on rapid, reproducible, and justifiable assessment methods in scenarios with sparse data, this study
primarily focused on low-complexity modeling algorithms. The first followed past efforts to evaluate power density trends using the
algebraic best-fit lines with an assumed character, i.e., exponential for the main sequence and constant value for the hot arc fields. Three
machine learning techniques — linear regression, lasso (least absolute shrinkage and selection operator) regression, and decision tree
regression — were then applied to the augmented field-scale data set. Alternative models were developed using power plant-scale data to
examine the effects of data loss due to the aggregation of the original data to the field scale. Next, arandom forest model was implemented
to demonstrate how more complex machine learning techniques, such as ensemble models, can enhance predictive capabilities. Lastly,
the dependent variable in these predictive models, power density, was reassessed within the framework of suitable exploration metrics,
and new models were constructed to predict an alternate metric that combines power with the cumulative drill length.

3. RESULTS
3.1 Analysis of the Original Power Density Model
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Figure 2: A. Power density plot with the Wilmarth etal. (2021) exponential curve fit as a dashed line. Field locations are colored
by the normalized standard error to illustrate the presence of just 2 fields as outliers by the 3-6 rule. B. Residual plot
illustrating the increasing deviation of field data from the exponential curve with reservoir temperature. The hot arc
constant power line suggested in Wilmarth et al. (2021) is plotted as a bold purple dashed line. The hot arc-designated
fields (filled markers) were defined for the plot using a cutoff of 0.5 standard deviations of the residuals from the
exponential curve, and their mean value (7.6) is shown in lighter purple dash to demonstrate how the choice of hot arc

cutoff can impact the best-fit constant power line.

Figure 2A visualizes the entire set of 102 geothermal fields from the original field-scale data set. The marker shapes match the tectonic
classification from Figure 1, color-coded by the normalized standard error derived from fitting the data solely with the main sequence
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exponential curve (y = 0.4084 e"0.0144x, Wilmarth etal., 2021). Applyinga 3-c heuristic for outlier identification, only the two fields
highlighted in yellow meet the criteria of anomalous power density with temperature. Both are classified as Arc tectonic regimes and
demonstrate an estimated power density of under 10 MW/km?. The large spread of the data about the exponential curve is reflected in the
RM SE of 12.2 MW/km?. In addition, the negative R? statistic, which is defined by subtracting from 1 the ratio of model residual sum of
squares to the sum of squares about the mean, suggests the curve is a weaker predictor for power density compared to simply using the
mean of the data (see Table 1).

Figure 2B illustrates the residuals for each field when the secondary hot arc line is included in the model (y = 9.7 MW/km?, Wilmarth
et al., 2021). Measuring the goodness of fit for this two-curve model requires a judgment on which Arc-labeled fields should be tied to
the main sequence line. Table 1 describes the impact of applying different cut-off values to separate the main sequence and hot arc
associations for fields assigned to the Arc tectonic setting, each threshold based on the normalized standard error from the single-curve
(exponential-only) model. RM SE ranges from 10.6 MW/km? at a 3-c threshold to 7.2 MW/km? for a 0.5-c threshold. Similarly, R?values
progressively improve to 0.31, indicating some predictive ability for the dual-line model. However, further adjustments offer little model
improvement; when all Arc fields beneath the exponential curve are assigned to the hot arc designation, and the constant power line is
shifted to match the mean of the hot arc subset (9.0 MW/km?), the RM SE and R? slightly degrade to 7.3 MW/km? and 0.29, respectively.

Table 1: Comparison of different power density curve models using root mean squared error (RMSE) and the coefficient of
determination (R?). Negative R? indicates the model performs worse than simply using the mean of the data as a predictor.

M odel RMSE (MW/km?) R? (unitless)
Exponential curve only 12.2 -1.00
Exponential curve + Hot Arc curve 10.6 0.52

(“hot arcs” identified from 3-c cutoff) ' '
Exponential curve + Hot Arc curve 74 0.26

(“hot arcs” identified from 1-oc cutoff) ' '
Exponential curve + Hot Arc curve 79 031

(“hot arcs” identified from 0.5-c cutoff) ' '
Exponential curve + shifted Hot Arc curve 73 029

(“hot arcs” identified from 0-c cutoff) ' '

3.2 Dimensionality Reduction of the Expanded Field-Scale Data Set

Thematrix in Figure 3 shows pairwise correlation values for the continuous and encoded variables in the expanded dataset. PDTemp and
PDPowerDensity refer to the original reservoir temperature and power density data pairs displayed in Figure 1. Data features that were
engineered into binned values predictably show significant correlation with their continuous counterparts (e.g., LatitudeDegree and
LatitudeBinned, StartYear and StartYearBinned). NameplateCapacity, ProdWellCount (production wells), and TotWellCount (all wells)
exhibit perfect collinearity (+1.0), which follows the logic that the number of wells drilled in a field is intrinsically associated with the
capacity of existing power facilities. In addition, surface climate characteristics and spatial location parameters such as Country, Latitude,
and Longitude give riseto strongpairwise correlations (>0.5). This means that a selected subset could effectively represent the information
gain obtained by using all related features. Based on these observations, and with the goal of simplifying the data set to its lowest-
dimensional form, the following features were selected for removal: Country, LatitudeDegree, LongitudeDegree, NameplateCapacity,
TotWellCount, StartYear, MinAmbientTemp, MaxAmbientTemp, and AmbientTempRange.

Mutual information (M 1) measures the association between two variables, such that fully independent variables will have an M1 of zero
and stronger variable associations lead to higher M1 values (Cover, 1999). To evaluate feature importances, M| analysis pairs each data
feature with the variable being predicted. Here, a small M1 value implies a feature offers lower predictive value to the power density
prediction. The type of power systeminstalled at a power plant (PlantType), the number of production wells (Prod WellCount), and year
of commission (StartYearBinned) all exhibit the smallest M | scores (Figure 4). The features with the greatest predictive potential based
on M1 are geospatial features (e.g., LatitudeBinned, Region), topography (Elevation), reservoir temperature (PDTemp), and tectonic
classification (TectonicRegime). This analysis could inform further reductions of the expanded data set, however several of the approaches
discussed in Section 3.3 naturally reduce the feature set during model-building. For this reason, the M1 results were considered a
benchmark for later analysis and the twelve features shown in Figure 4 were kept for machine learning.

3.3 Machine Learning Applied to Fieldand Plant-Scale Data

Using known algebraic structures like constant and exponential curves as the foundational relationship between two-dimensional data
(i.e., y = f(x)) is an intuitive choice of techniques. In the context of higher-dimensional data like the expanded dataset under consideration
here, machine learning methodologies are proficient in fitting a diverse range of models, and the choice of method may depend on the
preferred degree of model complexity. Two contrasting examples can be considered: linear regression, which yields a simple weighted
sum of features, and deep neural networks, which establish an intricate network of interconnections often characterized as black box in
nature.
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Figure 3: Pearson correlation matrix illustrating pairwise relationships between different features in the expandedfield-scale
data set. Correlation values of £1.0 indicate two features are colinear, i.e., theyvary linearly with full dependence.
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Figure 4: Mutual information values for each listed feature versus power density from the field-scale expanded data set. The
smaller the value, the less predictive the feature is for determining power density.

The results shown in Table 2 capture outcomes of applying linear, lasso, and decision tree regression models on the data. Unlike other
machine learning approaches, the predictions from these methods are transparent, traceable, and arguably of appropriate complexity for
early opportunity screening exercises. Results with the “Field” label were derived using the ficld-scale expanded data set described in
Section 2.2. The second set of results, noted by the label “Plant,” were calculated using data from the same fields disaggregated at the
power plant scale, totaling 382 unique entries. All models are trained to predict power density, although the Plant models rely ona pseudo-
power density value calculated from the namep late capacity scaled by the sum of 500 m-radius circular areas positioned at each production
well. This differs from the power density at the field scale, which Wilmarth et al. estimated using net power production values and a map -
based area determined by tracing a 500 m-radius buffer along actual production well paths (2021). Implicit in this substitution are two
necessary assumptions: i) the nameplate capacity and net power production values differ in a predictable way, and ii) the additional area
introduced by deviated well paths is compensated for by the overlapping area around closely spaced production wells that gets multiply
counted. All machine learning cases are trained on 80% of the input dataand checked against a separate randomly sampled 20% to allow
for out-of-samp e testing of model performance. A lightly tuned random forest regression model was also trained on the plant-scale data
to demonstrate the improvement in predictive ability achievable using a more complex ensemble model formulation (Table 2).
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Table 2: Fit and performance comparison of different power density machine learning models based on root mean squared error
(RMSE, in MW/km?) and the coefficient of determination (R?, unitless).

PowerDensity model RM SE (train) RM SE (test) R? (train) R? (test)
Linear Regression (Field) 1.6 34 0.42 0.01
Lasso Regression (Field) 1.7 34 0.38 0.00
Decision Tree (Field) 1.2 2.9 0.65 0.26
Linear Regression (Plant) 31 35 0.25 0.24
Lasso Regression (Plant) 3.1 35 0.24 0.24
Decision Tree (Plant) 1.2 2.4 0.88 0.64
Random Forest (Plant) 14 2.0 0.84 0.76

Field-scale models show improved data fit but poorer predictive performance than the two-curve model described in Table 1. All three
field machine learning models have an RM SEs: of roughly 4 MW/km? better than the best case (0.5-c cutoff) two-curve model, but only
the decision tree model R?es comes close to the R? of the same two-curve case (0.26 vs. 0.31). However, when power plant-scale data are
used to train the models, both performance metrics show significant improvement. Linear and lasso regression models achieve an R? =~
0.25, while the decision tree algorithm demonstrates an out-of-sample R%est > 0.6. Hyperparameter tuningfor the decision tree used grid-
search optimization with 5-fold cross-validation, but over-fitting might be a concern based on the differences in performance metrics
between thetest and training data (Table 2). A similar tuning methodology was applied to the random forest model, and while the test vs.
train results still suggest some overfitting, the test set metrics improve even more; the RSM Exest drops to 2.0 MW/km? and R reaches
0.76, which is superior to the RM SE of 7.2 MW/km? and R? of 0.31 for the best 2-curve model in Table 1.

3.3 Feature Importances from Machine Learning Models

Feature importance analysis using trained machine learning models can highlight which data features consistently contribute the most to
a prediction. For this study, SHAP analysis (SHapley Additive exPlanations) was preferred for deriving feature importances (Figure 5).
This method reveals feature contributions to local point predictions, and the average absolute SHAP magnitude across all points
approximates the general significance of the features globally (Lundberg & Lee, 2017). For the plant-scale models, features associated
with geography and climate show greater importance than reservoir temperature or tectonic setting, which runs counter to the original
choice of variables for the power density method (Figure 5D-G).

3.4 Accounting for Economics in Power Prediction

Well count and average drilling depth strongly influence the overall economics of geothermal projects. In fact, drilling costs can account
for 50% or more of a geothermal project budget (Robins et al., 2022). Exploration portfolio managers will naturally focus both on the
power potential and economics of heat capture in opportunity prioritization decisions, which suggests metrics tuned to both would be
helpful for early screening decisions as well. Rather than simply considering power per developed resource area for analog fields, exp lorers
might instead consider power perdrill length. Such a metric could be normalized by the number of wells, making it a useful proxy for a
power to cost ratio applicable to new field prediction. Power per Drill Length (PDL) is defined by:

P
Wo.d, €Y)

PDL =

where P is the power production, W is the well count, and dw is the drill depth for well w. Explorers considering a new geothermal
opportunity can start with the estimated reservoir depth and multiply that by a PDL to determine the power potential for a well. Unlike
power density, this metric inherently accounts for the subsurface dimension and the related cost component for a project. Variants of the
metric might consider measured depth rather than total vertical depth —an important distinction as geothermal drilling moves more toward
highly-deviated or horizontal well designs. For the purposes of this study, the hydrothermal-focused historical field data is assumed to
largely comprise vertical or near-vertical wells. Furthermore, PDL is approximated using the namep late capacity for power, the production
well count for W, and theaverage drill length for du.

Results shown in Table 3 reflect the outcome of applyingthe same machine learning algorithms to predict PDL from the plant-level data
set. DrillLengthBinned and ProdWellCount were removed from the training data since they already contribute directly to calculating the
dependent variable (PDL). The predictive performance of the linear models remains low, but both the decision tree and random forest
achieve an R%est> 0.4. In both cases, R2%es differs from R%q.in by = 0.3, suggesting the models are overfitting the training data and could
benefit from additional hyperparameter tuningand regularization. Reservoir temperature dominates the other features based on the SHAP
analysis in Figure 5H-1. Both the decision tree and random forest models weigh the importance of TectonicRegime over Region or
Latitude, counter to the trend observed in the previous models. Revisiting the interplay between these variables would be useful future
work to clearly determine feature dependencies and differentiate which should be included in future modeling efforts.
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Figure 5: Feature importances by model based on average SHAP magnitude. Features are sorted in descending order such that
those contributing the most to model prediction appear near the top of each plot. Large-font annotations indicate the
variable being predicted, the machine learning algorithm applied, the dataset utilized, and the out-of-sample R? outcome.
Model hyperparameters tunedusinga grid search optimization routine are notedin finer font on each plot as well. A.-C.
models trained on the field-scale data set to predict power density. D.-G. models trained on the plant-level data set to
predict pseudo-power density. H.-I. models trained on the plant-level data set to predict power per drill length, also shown
with green bars to highlightthe difference in dependentvariable. Models trained on the plant-level data tend to be more
performant. Decision trees and random forest models achieve better results than linear andlasso regressors.

Table 3: Performance metrics measured for different machine learning models trainedto predict Power per Drill Length (PDL).

PowerPerDrillLength model RM SE (train) RM SE (test) RZ (train) RZ (test)
Linear Regression (Plant) 2.4 2.3 0.16 0.13
Lasso Regression (Plant) 2.4 2.3 0.16 0.13
Decision Tree (Plant) 14 18 0.73 0.45
Random Forest (Plant) 1.2 18 0.79 0.42

4. DISCUSSION

Implications for Geothermal Resource Estimation

One of the fundamental drivers for the geothermal exploration community to use resource estimation methods is to capture a reasonable
assessment of different prospects, specifically for the purpose of understandingwhich opportunities should be actioned further. The upside
potential matters because it helps highlight the hopeful best-case scenarios, but low sides determine the viability of a geothermal program,
and potentially an exploration business for cost-constrained firms. The residuals observed in Figure 2B tell an important story. Using
average reservoir temperature and an interpreted tectonic setting with the 2-curve power density model could result in not insignificant
mischaracterizations of resource size. RM SE varies from 7.2-12.2 MW/km? depending on the subset of Arc-assigned fields treated as “hot
arcs” (Table 1), which equates to a standard error of ~ 55-95 MW if production area is assumed to match the mean area in the base data
set (7.9 km?, Wilmarth et al., 2021). And because the production area follows a lognormal distribution, some of the fields in the base data
are significantly larger thanthe mean, with an equivalently outsized error in power estimates. Some recent power density plots illustrating
the 2-curve model are paradoxically annotated withan R? value > 0.70 (see Rubin et al., 2022; Wilmarth et al., 2021), but the findings in
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Table 1 indicate this must be incorrect. Alone, the exponential curve achieves no better than a negative R?, and the two-curve solution
does not seem to exceed an R? of = 0.3.

Results obtained after apply ing different machine learning approaches to the data support usingadecision tree as a performant alternative.
Decision trees also meet the low-complexity objective; they reduce resource estimation to a series of simple binary classification criteria.
The true or false boolean decision outcome at each tree node directs the traversal of the tree until a leaf node with a power density
prediction has been reached. Decision trees could be implemented using code, nesting if statements in an Excel workbook, or even
calculated by hand. Random forest results show promise as well, but the mass ensemble of decision trees within a random forest renders
the final model less explainable and traceable to users and decision makers than a single decision tree. Paramount to unlocking the
predictive potential of these tree-based models was replacing the field summary data with individual power plant information. In fact, the
decision tree trained on field data demonstrated an R?es similar to the two-curve model, but shifting to the plant-scale data resulted in an
altogether different model with 2.5x better R%es results. Figure 6 depicts the structure of the final decision tree for plant-scale data. The
shortest traversal requires two decisions before reaching a power density estimate, while the deepest traversal involves seven decisions.

Elevation <= -36

ProdWellCount <= 2.5 LatitudeBinned <= 5.5
LongitudeBinned ProdWellCount

<=55 <=15

127 225

PlantType DrillLengthBinned AvgAmbientTemp StartYearBinned
<=25 <=4.0 <=6.5 <=0.5
AvgPrecipitation PDTemp,”  AvgAmbientTemp PDTemp Elevation ProdWellCount ProdWellCount
<=23% <= 2075 <= 142 <= 2475 <= 1426 <=335 <=45

28.0

16
5.3 5.413.6 85 0.7 25 0.1 17.2 1.4 10.2
3.8 6.8 3.0 6.4 14.012.77.79.3 3.6 8.0 7.06.3 1.215 3.239 4304 59 1.9 5.0 3.2 93 6.0 2.9 3.719.010.59.35.1 6.2 4.6

Figure 6: Final decision tree structure after training on the data consisting of individual power plant entries. Leaf nodes are
labeled with the associated pseudo-power density prediction in MW/kmZ. The boolean decision rules are only annotated
for the uppermost layers to reduce visual clutterin the graphic.

SHAP value analysis indicates a strongly dominant influence of latitude and production well count in the plant-scale decision tree and
random forest models for pseudo-power density (Figure 5F-G). Interestingly, tectonic setting consistently ranks among the least important
two features for all power plant models (Figure 5D-G). One possible explanation for this disconnect with the original power density
temperature-tectonic framework might be that tectonic setting is an interpreted feature, derived using observed spatial patterns and a p late
tectonic reference framework. Machine learning models trained on location-based features like latitude, longitude, and region can
conceivably reconstruct the same patterns without the need of a tectonic label. Commission (start) year also tracks low in the importance
ranking, which builds some confidence in using a combination of recent and decades-old power plant information when training models
to predict outcomes for new plant locations. Overall, the features that matter most relate to geography and climate conditions, followed
by subsurface characteristics like drilling depth and reservoir temperature. This matches trends seen in the M | values in Figure 4, although
reservoir temperature and drilling length dominate both the power plant systemand the production well count by M|, counter to SHAP
importances. Improvements to the decision tree model could be the focus of future work, including additional tuning of the decision tree
parameters, further creative data engineering efforts, and expanding the data set further with features not yet captured. Revisiting the
feature importances after that work will help validate these trends, which in turn can inform which data explorers should focus on gathering
to improve their early screening power assessments.

One barrier to constructing any power density model is the ready availability of net power production values for individual power plants
or their associated fields, not to mention well path information needed to calculate aproduction area. The pseudo-power density calculation
used in this study was sufficient to develop proof-of-concept machine learning models, but working with simpler metrics that can be
calculated with consistency using easily accessible data would be preferred. Additionally, power density as a metric cannot account for
the variances in power plant productivity and economics linked to target reservoir depth. Using PDL partly addresses these issues by
removing the need to calculate production area while also accounting for the cumulative borehole lengths drilled for existing fields. This
doesn’t negate the need or desire for a reliable and complete compendium of net power output for existing power plants. Without this
important data, the namep late capacity can stand in but will mask variances related to oversized facilities, which in turn can skew the
models constructed to estimate power production for new areas. Nevertheless, this study helps illustrate the possibility of incorporating
well count and drilling lengths into the predicted variable as an evolution of existing power density methodologies. Of course, introducing
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this metric effectively removes two contributing features to predicting power density — production well count and average drill length —
from the feature set, and the resulting models demonstrate some reduction in data fit and predictive capabilities compared to the plant-
scale models for pseudo-power density (Table 2 vs. Table 3). With more power plant data, and potentially additional features not
considered here, PDL model improvement seems likely. Plus, the benefits of having a power prediction that links to the drilling
requirements of an opportunity naturally allows for prospect ranking and portfolio management practices that geothermal businesses will
need to stay competitive.

5. CONCLUSIONS

The power density method that relies on a two-curve fit to a global collection of geothermal fields falls short of demonstrating strong
predictive performance based on statistical measures, including root mean squared error (RMSE) and the coefficient of determination
(R?). Lower-complexity machine learning models like linear, lasso, and decision tree regression also struggle with predicting power
density, even after including additional information on geothermal field design or its local geography and climate. Expanding the data to
separately track individual power plants within the same fields greatly improves machine learning results. The decision tree model
performs particularly well, and its transparency and exp lainability as a predictive model make it a preferred alternative to the two-curve
power density representations in published literature. Nevertheless, power density alone may not be sufficient for screening exploration
opportunities because it cannot account for variations in the depth domain, which ties to drilling costs and overall geothermal project
economics. Instead, the Power per Drill Length (PDL) metric described in this study combines the power output of a geothermal plant
with the borehole lengths of its wells. M odels built to predict this metric could be used to derive a value that, when combined with a target
reservoir depth, describes the power potential for a new opportunity. Furthermore, PDL offers a value over cost proxy, making it an
interesting candidate metric for prospect ranking when managing a portfolio of geothermal opportunities to execute. Future work will
focus on adding more features to the data set, improving the machine learning models, and using probabilistic methods to provide
confidence intervals to better reflect the uncertainty related to each prediction.
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