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ABSTRACT 

The power density method simplifies geothermal resource assessments to just reservoir temperature, resource area, and tectonic 

environment, using trends observed in a collection of global analog fields to predict power potential in undeveloped areas. For geothermal 
explorers, the procedural simplicity of power density over other resource estimation methods holds great attraction. However, the degree 

of variability in the field data used to define power density relationships suggests a non-trivial level of uncertainty in predictions made 

using traditional power density curves or related resource calculators. Power density also lacks a clear linkage to factors like drilling costs 

that greatly influence geothermal project economics. This study revisits the power density method by first evaluating its predictive 

performance in its three-variable form and then expanding the field data using multiple global databases. Representative values for 
subsurface characteristics like reservoir temperature and target depth are combined with features describing the surface plant design and 

climate conditions to paint a more complete picture of each field location. The data are analyzed to reveal the most important features for 

predicting power production in aggregate by field and on an individual power plant basis. New models created from these features maintain 

a low level of complexity appropriate for exploration. Furthermore, they are easily tuned to predict novel power metrics like power per 

drill length that incorporate project economic drivers to aid in geothermal strategy and portfolio-building efforts. 

1. INTRODUCTION 

Geothermal exploration activities serve to reduce the uncertainty in subsurface thermal potential available for direct use or power 

production. Still, preliminary estimates of the accessible heat-in-place are critical to justifying any budget spent on these activities, 

particularly investments in costly drilling operations. Explorers must often rely on simplified geothermal resource models to screen 

opportunities and prioritize which prospects to evaluate further. Of the most common resource estimation methods, the USGS volumetric 
heat-in-place calculation offers a well-documented and consistent process for determining thermal and electric power potential (Muffler, 

1979). The USGS procedure considers the subsurface reservoir as a homogeneous heat store, and calculations combine earth properties 

and correction factors, each described either deterministically or with a representative value distribution. Depending on the derivation, the 

list of input variables may include reservoir temperature, reservoir areal extent and thickness, porosity, dual-phase fluid fraction, density 
and specific heat capacity  of reservoir and fluids, recovery factor, heat-to-power conversion efficiency, plant capacity factor, and life of 

field (Ciriaco et al., 2020; Muffler, 1979; Sanyal & Sarmiento, 2005). However, defining appropriate values for each of these variables  

can be challenging in the data-limited context of early exploration work. This diminishes the applied value of well-parameterized 

estimators like the USGS method over lower-complexity measures tied to global analog data. 

One example analog-driven alternative is the power density method, which uses power potential per unit area across a range of geothermal 
reservoir temperatures as a means for determining resource capacity . Depending on the global subset of fields considered, geothermal 

researchers have described increasing linear, power law, and exponential trends, often fit against a few tens of observations or less due to 

the difficulty in cataloging field power output and developed resource area (Bertani, 2005; Grant, 2000; Wilmarth et al., 2021). Wilmarth 

and Stimac (2014) detailed a methodology for consistently calculating field area using just production well paths and a 500 m radius 

outline buffer, and their follow-on reports include a growing curated data set (Wilmarth et al., 2021; Wilmarth & Stimac, 2015). These 
data are described to follow two separate trends: a “main sequence” that exhibits roughly exponential growth in power density with 

reservoir temperature, and a constant power trend centered just under 10 MW/km2 (Figure 1). The constant trend correlates most with 

“hot arc” fields, i.e., areas marked by high-temperature, compressive tectonic regimes where volcanism occurs in arcs above a subducting 

plate. Other tectonic regimes are believed to cluster along different sections of the main sequence curve, leading past authors to suggest a 

predictive relationship connecting tectonic setting and reservoir temperature to power density. 

Without visual guides like color-filled polygons or curves projected on the plot in Figure 1, two characteristics of the data stand out. First, 

the spread in the power density values increases with reservoir temperature, broadening by a factor of 2 for fields with an average reservoir 

temperature >250℃ compared to lower-temperature geothermal assets. Secondly, the overlap in tectonic setting markers suggests clusters 

based on tectonic classification are not cleanly separable. Because the data set only includes ≈100 fields, data coverage is both sparse and 

imbalanced across the temperature spectrum. These observations collectively underscore a degree of uncertainty that accompanies power 
density-based resource estimation. In this study, the objective is to evaluate the impact of this uncertainty on the predictive ability of 

power density curves, while also appraising the choice of a field-scale, 3-parameter representation of geothermal resources against  

alternative methods. The results provide new insights into the efficacy of power density estimation methods for geothermal exploration 

assessments and highlight the potential for future refinement with additional data engineering and analytics approaches. 
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Figure 1: Power density of 102 geothermal fields plotted against reservoir temperature, adapted from Figure 1 in Wilmarth et al.   
(2021). Colors and shapes depict tectonic setting classifications. The data show an apparent increase in power density with 

greater reservoir temperatures, paired with increasing variance. 

2. METHODOLOGY  

2.1 Data Collection 

The initial data collection consisted of digitizing 102 identifiable points from the power density figure included in the GeoRePORT 
Protocol for the Resource Size Assessment Tool (Rubin et al., 2022). This report accompanied the release of the RSAT tool, which directly 

implements a power density resource estimator based on the two-curve fit of the data. Additionally, both the field name and tectonic 

setting for the points were manually transcribed from the same GeoRePORT plot. Figure 1 depicts this base data set, which includes 99 

labeled geothermal fields and 3 unknown fields that were unlabeled in the source figure. 

2.2 Data Expansion 

The base field data set was expanded by merging it with several ancillary geothermal power plant databases. The first is a power plant 

location file uploaded to the Geothermal Data Repository (https://gdr.openei.org) with the Cascades/Aleutian Play Fairway Analysis data 

submission (Shevenell, 2015). This file contains geocoordinates marking individual power plant facilities around the globe, verified by 

visual inspection in Google Earth. The Global Power Plant Database (GPPDB) provides greater facility-level detail, including location 

country, commission year, and nameplate capacity (Byers et al., 2018). Estimates of net power production appear in the GPPDB as well, 
although these contain a mixture of official reports, modeled approximations, and null values and consequently were dropped from 

consideration in this study. The last data set incorporated into the analysis comes from Rystad Energy’s GeothermalCube (Rystad Energy, 

2023). GeothermalCube uniquely provides a total well count, the number of active production wells, and the average drilling depth by 

power plant location. Rystad captures information on historical geothermal fields, plants under construction, and future development plans 

spanning hydrothermal, enhanced (EGS), and advanced closed loop (AGS) geothermal systems. However, because EGS and AGS system 
entries primarily consist of past and future pilot data, only hydrothermal geothermal systems were included in this study. The data was 

also filtered to only include power plants with commission dates no later than 2022. 

All three supplementary data sets contain entries at the power plant level of detail. To merge them with the base data set, power plants 

were assigned to a designated field and then aggregated up to the field scale. This meant taking the mean for numerical variables like 

latitude, longitude, and reservoir temperature, using the first value for labeled data like country name, and applying the mode on ordinal 
data like drilling length group which was already binned in ranges of 500 m. The unknown geothermal fields were dropped from the base 

data set. Some geothermal fields include power plants of different power system configurations. Because the power system type is tracked 

as a variable in the expanded data, the final field-scale data set consisted of 125 entries. 

2.3 Data Engineering 

Both the original power density plot and the Rystad data set include estimates of the reservoir temperature for each geothermal field. A 
one-to-one scatter plot of the two variables showed that these reported values varied, sometimes by several tens of degrees. The reservoir 

temperatures of 16 entries that had values with a difference of 50℃ or more were replaced with the most recent numbers from studies on 

those fields based on a search of the literature. 

The existing columns in the data set – also known as “features” – were then augmented to provide a richer set of inputs for advanced data 

analysis. To start with, continuous variables, including reservoir temperature, location (latitude, longitude), and commission year, were 
binned into ranges to increase the instance count across representative values for each variable. Rather than presuppose effective binning 

schemes, the Jenks method was applied to determine the natural breaks for each feature based on a specified number of bins (Jenks, 1967). 

Using a range of bin counts, optimal values for each variable were selected based on the minimum imbalance ratio, i.e., the ratio of the 
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sample size for the largest majority class to that of the smallest minority class. Next, all binned features were encoded as ordinal variables, 
preserving the order of value options while replacing values with integer representations. Lastly, new features related to surface conditions 

were incorporated into the data set. Topography was sampled from the ETOPO1 1 arc-minute resolution model based on the latitude and 

longitudes for each field (Amante & Eakins, 2009). Climate 30-year normals for annual average temperature, minimum temperature, 

maximum temperature, and annual precipitation were likewise captured using the WorldClim version 2.1 30-sec resolution gridded models  

(Fick & Hijmans, 2017). WorldClim features provided as monthly normals were first combined into an annual grid before sampling at 
field locations, using the mean function for average values, min for minima, and max for maxima. Additionally, the difference between 

the minimum and maximum temperature values was calculated to define an ambient temperature range feature. 

2.4 Exploratory Data Analysis 

The original field-scale data set was first examined with the power density curves for the main sequence and hot arc fields illustrated in 

Wilmarth et al. (2021). The use of statistics on the residuals helped to highlight outlier areas that could be considered anomalies to the 
overall trend. Additionally, the root mean squared error (RMSE) and coefficient of determination (R2) were calculated for evaluation and 

direct comparison of the data fit and predictive ability between the curve-based model and other models. 

With the expanded field-scale data set, addressing the question of which features provide the most value began with determining the level 

of feature independence. If two features vary in a colinear fashion, removing one from the data set can reduce data dimensionality, often 

with little loss in the predictive ability of the remaining features. Here, the decision to eliminate certain features was based on pairwise 
feature correlations and the evaluation of mutual information in relation to the predicted variable, power density. The aim was to focus 

the data set down to the key data features that could improve an explorer’s ability to evaluate geothermal prospect potential.  

2.5 Modeling 

Given that exploration often depends on rapid, reproducible, and justifiable assessment methods in scenarios with sparse data, this study 

primarily focused on low-complexity modeling algorithms. The first followed past efforts to evaluate power density trends using the 
algebraic best-fit lines with an assumed character, i.e., exponential for the main sequence and constant value for the hot arc fields. Three 

machine learning techniques – linear regression, lasso (least absolute shrinkage and selection operator) regression, and decision tree 

regression – were then applied to the augmented field-scale data set. Alternative models were developed using power plant-scale data to 

examine the effects of data loss due to the aggregation of the original data to the field scale. Next, a random forest model was implemented 

to demonstrate how more complex machine learning techniques, such as ensemble models, can enhance predictive capabilities. Lastly, 
the dependent variable in these predictive models, power density, was reassessed within the framework of suitable exploration metrics, 

and new models were constructed to predict an alternate metric that combines power with the cumulative drill length. 

3. RESULTS 

3.1 Analysis of the Original Power Density Model  

 

Figure 2: A. Power density plot with the Wilmarth et al. (2021) exponential curve fit as a dashed line. Field locations are colored 
by the normalized standard error to illustrate the presence of just 2 fields as outliers by the 3-σ rule. B. Residual plot 

illustrating the increasing deviation of field data from the exponential curve with reservoir temperature. The hot arc 

constant power line suggested in Wilmarth et al. (2021) is plotted as a bold purple dashed line. The hot arc-designated 

fields (filled markers) were defined for the plot using a cutoff of 0.5 standard deviations of the residuals from the 

exponential curve, and their mean value (7.6) is shown in lighter purple dash to demonstrate how the choice of hot arc 

cutoff can impact the best-fit constant power line. 

Figure 2A visualizes the entire set of 102 geothermal fields from the original field-scale data set. The marker shapes match the tectonic 

classification from Figure 1, color-coded by the normalized standard error derived from fitting the data solely with the main sequence 
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exponential curve (y = 0.4084 e^0.0144x, Wilmarth et al., 2021). Applying a 3-σ heuristic for outlier identification, only the two fields  

highlighted in yellow meet the criteria of anomalous power density with temperature. Both are classified as Arc tectonic regimes and 

demonstrate an estimated power density of under 10 MW/km2. The large spread of the data about the exponential curve is reflected in the 
RMSE of 12.2 MW/km2. In addition, the negative R2 statistic, which is defined by subtracting from 1 the ratio of model residual sum of 

squares to the sum of squares about the mean, suggests the curve is a weaker predictor for power density compared to simply using the 

mean of the data (see Table 1).  

Figure 2B illustrates the residuals for each field when the secondary hot arc line is included in the model (y = 9.7 MW/km2, Wilmarth 

et al., 2021). Measuring the goodness of fit for this two-curve model requires a judgment on which Arc-labeled fields should be tied to 

the main sequence line. Table 1 describes the impact of applying different cut-off values to separate the main sequence and hot arc 

associations for fields assigned to the Arc tectonic setting, each threshold based on the normalized standard error from the single-curve 
(exponential-only) model. RMSE ranges from 10.6 MW/km2 at a 3-σ threshold to 7.2 MW/km2 for a 0.5-σ threshold. Similarly, R2 values  

progressively improve to 0.31, indicating some predictive ability for the dual-line model. However, further adjustments offer little model 

improvement; when all Arc fields beneath the exponential curve are assigned to the hot arc designation, and the constant power line is 

shifted to match the mean of the hot arc subset (9.0 MW/km2), the RMSE and R2 slightly degrade to 7.3 MW/km2 and 0.29, respectively. 

Table 1: Comparison of different power density curve models using root mean squared error (RMSE) and the coefficient of 

determination (R2). Negative R2 indicates the model performs worse than simply using the mean of the data as a predictor. 

Model RMSE (MW/km2) R2 (unitless) 

Exponential curve only 12.2 -1.00 

Exponential curve + Hot Arc curve  

(“hot arcs” identified from 3-σ cutoff) 
10.6 -0.52 

Exponential curve + Hot Arc curve  

(“hot arcs” identified from 1-σ cutoff) 
7.4 0.26 

Exponential curve + Hot Arc curve  

(“hot arcs” identified from 0.5-σ cutoff) 
7.2 0.31 

Exponential curve + shifted Hot Arc curve  

(“hot arcs” identified from 0-σ cutoff) 
7.3 0.29 

3.2 Dimensionality Reduction of the Expanded Field-Scale Data Set 

The matrix in Figure 3 shows pairwise correlation values for the continuous and encoded variables in the expanded data set. PDTemp and 
PDPowerDensity refer to the original reservoir temperature and power density  data pairs displayed in Figure 1. Data features that were 

engineered into binned values predictably show significant correlation with their continuous counterparts (e.g., LatitudeDegree and 

LatitudeBinned, StartYear and StartYearBinned). NameplateCapacity, ProdWellCount (production wells), and TotWellCount (all wells) 

exhibit perfect collinearity (+1.0), which follows the logic that the number of wells drilled in a field is intrinsically associated with the 

capacity of existing power facilities. In addition, surface climate characteristics and spatial location parameters such as Country, Latitude, 
and Longitude give rise to strong pairwise correlations (>0.5). This means that a selected subset could effectively represent the information 

gain obtained by using all related features. Based on these observations, and with the goal of simplifying the data set to its lowest -

dimensional form, the following features were selected for removal: Country, LatitudeDegree, LongitudeDegree, NameplateCapacity, 

TotWellCount, StartYear, MinAmbientTemp, MaxAmbientTemp, and AmbientTempRange. 

Mutual information (MI) measures the association between two variables, such that fully independent variables will have an MI of zero 
and stronger variable associations lead to higher MI values (Cover, 1999). To evaluate feature importances, MI analysis pairs each data 

feature with the variable being predicted. Here, a small MI value implies a feature offers lower predictive value to the power density 

prediction. The type of power system installed at a power plant (PlantType), the number of production wells (ProdWellCount), and year 

of commission (StartYearBinned) all exhibit the smallest MI scores (Figure 4). The features with the greatest predictive potential based 

on MI are geospatial features (e.g., LatitudeBinned, Region), topography (Elevation), reservoir temperature (PDTemp), and tectonic 
classification (TectonicRegime). This analysis could inform further reductions of the expanded data set, however several of t he approaches 

discussed in Section 3.3 naturally reduce the feature set during model-building. For this reason, the MI results were considered a 

benchmark for later analysis and the twelve features shown in Figure 4 were kept for machine learning. 

3.3 Machine Learning Applied to Field and Plant-Scale Data 

Using known algebraic structures like constant and exponential curves as the foundational relationship between two-dimensional data 
(i.e., y = f(x)) is an intuitive choice of techniques. In the context of higher-dimensional data like the expanded data set under consideration 

here, machine learning methodologies are proficient in fitting a diverse range of models, and the choice of method may depend on the 

preferred degree of model complexity. Two contrasting examples can be considered: linear regression, which yields a simple weighted 

sum of features, and deep neural networks, which establish an intricate network of interconnections often characterized as black box in 

nature.  
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Figure 3: Pearson correlation matrix illustrating pairwise relationships between different features in the expanded field-scale 

data set. Correlation values of ±1.0 indicate two features are colinear, i.e., they vary linearly with full dependence.  

 

 

Figure 4: Mutual information values for each listed feature versus power density from the field-scale expanded data set. The 

smaller the value, the less predictive the feature is for determining power density. 

The results shown in Table 2 capture outcomes of applying linear, lasso, and decision tree regression models on the data. Unlike other 

machine learning approaches, the predictions from these methods are transparent, traceable, and arguably of appropriate complexity for 
early opportunity screening exercises. Results with the “Field” label were derived using the field-scale expanded data set described in 

Section 2.2. The second set of results, noted by the label “Plant,” were calculated using data from the same fields disaggregated at the 

power plant scale, totaling 382 unique entries. All models are trained to predict power density, although the Plant models rely on a pseudo-

power density value calculated from the nameplate capacity scaled by the sum of 500 m-radius circular areas positioned at each production 

well. This differs from the power density at the field scale, which Wilmarth et al. estimated using net power production values and a map -
based area determined by tracing a 500 m-radius buffer along actual production well paths (2021). Implicit in this substitution are two 

necessary assumptions: i) the nameplate capacity and net power production values differ in a predictable way, and ii) the additional area 

introduced by deviated well paths is compensated for by the overlapping area around closely spaced production wells that gets multiply 

counted. All machine learning cases are trained on 80% of the input data and checked against a separate randomly sampled 20% to allow 

for out-of-sample testing of model performance. A lightly tuned random forest regression model was also trained on the plant-scale data 

to demonstrate the improvement in predictive ability achievable using a more complex ensemble model formulation (Table 2).  
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Table 2: Fit and performance comparison of different power density machine learning models based on root mean squared error 

(RMSE, in MW/km2) and the coefficient of determination (R2, unitless).  

PowerDensity model RMSE (train) RMSE (test) R2 (train) R2 (test) 

Linear Regression (Field) 1.6 3.4 0.42 0.01 

Lasso Regression (Field) 1.7 3.4 0.38 0.00 

Decision Tree (Field) 1.2 2.9 0.65 0.26 

Linear Regression (Plant) 3.1 3.5 0.25 0.24 

Lasso Regression (Plant) 3.1 3.5 0.24 0.24 

Decision Tree (Plant) 1.2 2.4 0.88 0.64 

Random Forest (Plant) 1.4 2.0 0.84 0.76 

Field-scale models show improved data fit but poorer predictive performance than the two-curve model described in Table 1. All three 
field machine learning models have an RMSEtest of roughly 4 MW/km2 better than the best case (0.5-σ cutoff) two-curve model, but only 

the decision tree model R2
test comes close to the R2 of the same two-curve case (0.26 vs. 0.31). However, when power plant-scale data are 

used to train the models, both performance metrics show significant improvement. Linear and lasso regression models achieve an R2 ≈ 

0.25, while the decision tree algorithm demonstrates an out-of-sample R2
test > 0.6. Hyperparameter tuning for the decision tree used grid-

search optimization with 5-fold cross-validation, but over-fitting might be a concern based on the differences in performance metrics 
between the test and training data (Table 2). A similar tuning methodology was applied to the random forest  model, and while the test vs. 

train results still suggest some overfitting, the test set metrics improve even more; the RSMEtest drops to 2.0 MW/km2 and R2
test reaches  

0.76, which is superior to the RMSE of 7.2 MW/km2 and R2 of 0.31 for the best 2-curve model in Table 1. 

3.3 Feature Importances from Machine Learning Models 

Feature importance analysis using trained machine learning models can highlight which data features consistently contribute the most to 
a prediction. For this study, SHAP analysis (SHapley Additive exPlanations) was preferred for deriving feature importances (Figure 5). 

This method reveals feature contributions to local point predictions, and the average absolute SHAP magnitude across all points 

approximates the general significance of the features globally  (Lundberg & Lee, 2017). For the plant-scale models, features associated 

with geography and climate show greater importance than reservoir temperature or tectonic setting, which runs counter to the original 

choice of variables for the power density method (Figure 5D-G). 

3.4 Accounting for Economics in Power Prediction 

Well count and average drilling depth strongly influence the overall economics of geothermal projects. In fact, drilling cost s can account 

for 50% or more of a geothermal project budget (Robins et al., 2022). Exploration portfolio managers will naturally focus both on the 

power potential and economics of heat capture in opportunity prioritization decisions, which suggests metrics tuned to both w ould be 

helpful for early screening decisions as well. Rather than simply considering power per developed resource area for analog fields, explorers  
might instead consider power per drill length. Such a metric could be normalized by the number of wells, making it a useful proxy for a 

power to cost ratio applicable to new field prediction. Power per Drill Length (PDL) is defined by:  

𝑃𝐷𝐿 = 
𝑃

∑ 𝑑𝑤
𝑊
𝑤=1

,          (1) 

where P is the power production, W is the well count, and dw is the drill depth for well w. Explorers considering a new geothermal 
opportunity can start with the estimated reservoir depth and multiply that by a PDL to determine the power potential for a well. Unlike 

power density, this metric inherently accounts for the subsurface dimension and the related cost component for a project. Variants of the 

metric might consider measured depth rather than total vertical depth – an important distinction as geothermal drilling moves more toward 

highly-deviated or horizontal well designs. For the purposes of this study, the hydrothermal-focused historical field data is assumed to 

largely comprise vertical or near-vertical wells. Furthermore, PDL is approximated using the nameplate capacity for power, the production 

well count for W, and the average drill length for dw.  

Results shown in Table 3 reflect the outcome of applying the same machine learning algorithms to predict PDL from the plant -level data 

set. DrillLengthBinned and ProdWellCount were removed from the training data since they already contribute directly to calculating the 

dependent variable (PDL). The predictive performance of the linear models remains low, but both the decision tree and random forest 

achieve an R2
test > 0.4. In both cases, R2

test differs from R2
train by ≈ 0.3, suggesting the models are overfitting the training data and could 

benefit from additional hyperparameter tuning and regularization. Reservoir temperature dominates the other features based on the SHAP 

analysis in Figure 5H-I. Both the decision tree and random forest models weigh the importance of TectonicRegime over Region or 

Latitude, counter to the trend observed in the previous models. Revisiting the interplay between these variables would be useful future 

work to clearly determine feature dependencies and differentiate which should be included in future modeling efforts. 
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Figure 5: Feature importances by model based on average S HAP magnitude. Features are sorted in descending order such that 

those contributing the most to model prediction appear near the top of each plot. Large -font annotations indicate the 

variable being predicted, the machine learning algorithm applied, the data se t utilized, and the out-of-sample R2 outcome. 

Model hyperparameters tuned using a grid search optimization routine are noted in finer font on each plot as well. A.-C. 
models trained on the field-scale data set to predict power density. D.-G. models trained on the plant-level data set to 

predict pseudo-power density. H.-I. models trained on the plant-level data set to predict power per drill length, also shown 

with green bars to highlight the difference in dependent variable. Models trained on the plant-level data tend to be more 

performant. Decision trees and random forest models achieve better results than linear and lasso regressors. 

Table 3: Performance metrics measured for different machine learning models trained to predict Power per Drill Length (PDL). 

PowerPerDrillLength model RMSE (train) RMSE (test) R2 (train) R2 (test) 

Linear Regression (Plant) 2.4 2.3 0.16 0.13 

Lasso Regression (Plant) 2.4 2.3 0.16 0.13 

Decision Tree (Plant) 1.4 1.8 0.73 0.45 

Random Forest (Plant) 1.2 1.8 0.79 0.42 

4. DISCUSSION 

Implications for Geothermal Resource Estimation 

One of the fundamental drivers for the geothermal exploration community to use resource estimation methods is to capture a reasonable 

assessment of different prospects, specifically for the purpose of understanding which opportunities should be actioned further. The upside 

potential matters because it helps highlight the hopeful best-case scenarios, but low sides determine the viability of a geothermal program, 
and potentially an exploration business for cost-constrained firms. The residuals observed in Figure 2B tell an important story. Using 

average reservoir temperature and an interpreted tectonic setting with the 2-curve power density model could result in not insignificant 

mischaracterizations of resource size. RMSE varies from 7.2-12.2 MW/km2 depending on the subset of Arc-assigned fields treated as “hot 

arcs” (Table 1), which equates to a standard error of ≈ 55-95 MW if production area is assumed to match the mean area in the base data 

set (7.9 km2, Wilmarth et al., 2021). And because the production area follows a lognormal distribution, some of the fields in the base data 
are significantly larger than the mean, with an equivalently outsized error in power estimates. Some recent power density plots illustrating 

the 2-curve model are paradoxically annotated with an R2 value > 0.70 (see Rubin et al., 2022; Wilmarth et al., 2021), but the findings in 
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Table 1 indicate this must be incorrect. Alone, the exponential curve achieves no better than a negative R2, and the two-curve solution 

does not seem to exceed an R2 of ≈ 0.3.  

Results obtained after applying different machine learning approaches to the data support using a decision tree as a performant alternative. 

Decision trees also meet the low-complexity objective; they reduce resource estimation to a series of simple binary classification criteria.  

The true or false boolean decision outcome at each tree node directs the traversal of the tree until a leaf node with a power density 

prediction has been reached. Decision trees could be implemented using code, nesting if statements in an Excel workbook, or even 
calculated by hand. Random forest results show promise as well, but the mass ensemble of decision trees within a random forest  renders 

the final model less explainable and traceable to users and decision makers than a single decision tree. Paramount to unlocking the 

predictive potential of these tree-based models was replacing the field summary data with individual power plant information. In fact, the 

decision tree trained on field data demonstrated an R2
test similar to the two-curve model, but shifting to the plant-scale data resulted in an 

altogether different model with 2.5× better R2
test results. Figure 6 depicts the structure of the final decision tree for plant-scale data. The 

shortest traversal requires two decisions before reaching a power density estimate, while the deepest traversal involves seven decisions. 

 

Figure 6: Final decision tree structure after training on the data consisting of individual power plant entries. Leaf nodes are 

labeled with the associated pseudo-power density prediction in MW/km2. The boolean decision rules are only annotated 

for the uppermost layers to reduce visual clutter in the graphic. 

SHAP value analysis indicates a strongly dominant influence of latitude and production well count in the plant-scale decision tree and 
random forest models for pseudo-power density (Figure 5F-G). Interestingly, tectonic setting consistently ranks among the least important 

two features for all power plant models (Figure 5D-G). One possible explanation for this disconnect with the original power density 

temperature-tectonic framework might be that tectonic setting is an interpreted feature, derived using observed spatial patterns and a plate 

tectonic reference framework. Machine learning models trained on location-based features like latitude, longitude, and region can 

conceivably reconstruct the same patterns without the need of a tectonic label. Commission (start) year also tracks low in the importance 
ranking, which builds some confidence in using a combination of recent and decades-old power plant information when training models  

to predict outcomes for new plant locations. Overall, the features that matter most relate to geography and climate conditions, followed 

by subsurface characteristics like drilling depth and reservoir temperature. This matches trends seen in the MI values in Figure 4, although 

reservoir temperature and drilling length dominate both the power plant system and the production well count by MI, counter to SHAP 

importances. Improvements to the decision tree model could be the focus of future work, including additional tuning of the decision tree 
parameters, further creative data engineering efforts, and expanding the data set further with features not yet captured. Revisiting the 

feature importances after that work will help validate these trends, which in turn can inform which data explorers should focus on gathering 

to improve their early screening power assessments.  

One barrier to constructing any power density model is the ready availability of net power production values for individual power plants 

or their associated fields, not to mention well path information needed to calculate a production area. The pseudo-power density calculation 
used in this study was sufficient to develop proof-of-concept machine learning models, but working with simpler metrics that can be 

calculated with consistency using easily accessible data would be preferred. Additionally, power density as a metric cannot account for 

the variances in power plant productivity and economics linked to target reservoir depth. Using PDL partly addresses these issues by 

removing the need to calculate production area while also accounting for the cumulative borehole lengths drilled for existing fields. This 

doesn’t negate the need or desire for a reliable and complete compendium of net power output for existing power plants. Without this 
important data, the nameplate capacity can stand in but will mask variances related to oversized facilities, which in turn can skew the 

models constructed to estimate power production for new areas. Nevertheless, this study helps illustrate the possibility of incorporating 

well count and drilling lengths into the predicted variable as an evolution of existing power density methodologies. Of course, introducing 
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this metric effectively removes two contributing features to predicting power density – production well count and average drill length – 
from the feature set, and the resulting models demonstrate some reduction in data fit and predictive capabilities compared to the plant-

scale models for pseudo-power density (Table 2 vs. Table 3). With more power plant data, and potentially additional features not 

considered here, PDL model improvement seems likely . Plus, the benefits of having a power prediction that links to the drilling 

requirements of an opportunity naturally allows for prospect ranking and portfolio management practices that geothermal businesses will 

need to stay competitive. 

5. CONCLUSIONS  

The power density method that relies on a two-curve fit to a global collection of geothermal fields falls short of demonstrating strong 

predictive performance based on statistical measures, including root mean squared error (RMSE) and the coefficient of determination  

(R2). Lower-complexity machine learning models like linear, lasso, and decision tree regression also struggle with predicting power 

density, even after including additional information on geothermal field design or its local geography and climate. Expanding the data to 
separately track individual power plants within the same fields greatly improves machine learning results. The decision tree model 

performs particularly well, and its transparency and explainability as a predictive model make it a preferred alternative to the two-curve 

power density representations in published literature. Nevertheless, power density alone may not be sufficient for screening exploration 

opportunities because it cannot account for variations in the depth domain, which ties to drilling costs and overall geothermal project 

economics. Instead, the Power per Drill Length (PDL) metric described in this study combines the power output of a geothermal plant 
with the borehole lengths of its wells. Models built to predict this metric could be used to derive a value that, when combined with a target 

reservoir depth, describes the power potential for a new opportunity. Furthermore, PDL offers a value over cost proxy, making it an 

interesting candidate metric for prospect ranking when managing a portfolio of geothermal opportunities to execute. Future work will 

focus on adding more features to the data set, improving the machine learning models, and using probabilistic methods to provide 

confidence intervals to better reflect the uncertainty related to each prediction. 
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