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ABSTRACT  

Estimating geothermal heat flow (GHF) is critical for understanding Earth's thermal regime and facilitating geothermal exploration. 

Machine learning techniques offer a promising approach for deriving GHF estimates based on various geological and geophysical 

features. While various studies have employed different data preprocessing methods for global GHF datasets, the influence of these 
methods on GHF predictions has not been thoroughly investigated. In this study, we assess the impact of four distinct preprocessing 

techniques applied to GHF datasets on GHF prediction accuracy within China using the Gradient Boosted Regression Trees (GBRT) 

algorithm. The results showed that more features are needed for the model performance to converge after the dataset is proces sed on 

average. Moreover, averaging GHF data considerably influences the model's assessment of feature importance, resulting in lower GHF 

estimations and a reduced prediction range. We also find that the prediction accuracy of GBRT models on the test set can be 
substantially improved by applying a low-pass filter to the GHF data. Upon further comparison, the model derived from the low-pass 

filtered dataset exhibits the highest predictive capability for GHF in China. Lastly, we present eight new GHF maps for China, which 

consistently indicate high GHF values in Tibet and eastern China, and low GHF values in northwest China. Our models also identify 

several unobserved high-heat regions, potentially offering valuable insights for geothermal exploration. 

1. INTRODUCTION  

Geothermal heat flow (GHF) serves as a surface manifestation of the thermal state of the Earth's interior and plays a crucial role in 

geothermal exploration (Chandrasekharam et al.,  2022; He et al.,  2022; Jiang et al., 2019; Lucazeau, 2019). GHF measurements are 

typically calculated by multiplying the rock thermal conductivity by the temperature gradient. Nevertheless, acquiring temperature 

gradient measurements is both practically costly and time-consuming, and the measurements can be influenced by surface perturbations 
such as water circulation, erosion, and climatic changes  (Lucazeau, 2019). Consequently, GHF measurements exhibit a sparse 

distribution across many parts of the world, such as South America and Africa (Rezvanbehbahani et al., 2017). In China, despite recent 

increases in GHF measurements, an uneven distribution persists (Fig. 1), with the majority of data points situated in the North China 

Craton (NCC) and Wuyi-Yunkai Orogen (WYO). In unmeasured regions, GHF is primarily extrapolated via interpolation (Jiang et al., 

2019). 

GHF is related to geological and geophysical parameters (Bodri & Bodri, 1985; Li et al.,  2013; Wang & Li, 2018), making it possible to 

estimate heat flow in areas without measurement. For instance, using the seismic wave velocity model to estimate GHF in Antarctica 

(Shapiro & Ritzwoller, 2004) or using thermotectonic age and geological characteristics to extrapolate GHF (Davies & Davies, 2010). 

However, these methods predominantly rely on a single parameter, capturing only a fraction of the processes impacting GHF. To better 
characterize the variety of geodynamic environments, an integrated dataset including multiple parameters was built and used t o predict 

GHF based on empirical approaches of GHF extrapolation (Goutorbe et al., 2011). However, empirical methods may not offer optimal 

predictions and might not necessarily constitute the most suitable choice. 

In recent years, machine learning has emerged as a promising alternative for GHF prediction (Rezvanbehbahani et al., 2017). And this 

method has been applied to estimate GHF in Greenland, Antarctica (Lösing & Ebbing, 2021), and Bohai Bay Basin (He et al., 2022). 
Different datasets were used in these studies to build the models. The study by Rezvanbehbahani et al.  (2017) used a processed dataset 

in which GHF data were averaged on a 1 × 1 degree grid that reduced the number of data points from 35000 to more than 4000, and 

these averages were low-pass filtered. Losing & Ebbing (2021) only reduced the resolution of GHF to 0.5 degrees without low-pass 

filtering and left more data points, about 10000. Different data processing methods will inevitably lead to differences in GHF prediction. 

However, few studies have examined the uncertainty caused by different datasets on the model. Additionally, which data proces sing 

method can provide more accurate predictions is also worth studying. 

In this paper, we utilize the GBRT algorithm to generate GHF models for China based on 16 geological and geophysical features . Four 

datasets processed in different ways are used to construct GBRT models, and the differences between the prediction results of the four 

models are discussed. Furthermore, the effect of the number of features on model performance is also investigated. Finally, w e present 

several new heat flow maps for China. 
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Figure 1: Distribution of GHF measurements in and around China. The relative size of data points corresponds to the 

magnitude of GHF. WCAO: Western Central Asian Orogen, TC: Tarim Craton, CCO: Central China Orogen, TSO: 

Tibet-Sanjiang Orogen, YC: Yangtze Craton, WYO: Wuyi-Yunkai Orogen, NCC: North China Craton, ECAO: Eastern 

Central Asian Orogen.  

 

2. DATA 

2.1 Geothermal Heat Flow  

Global GHF measurements on the continents are extracted from the International Heat Flow Commission, and measurements lower than 

20 mW/m2 or higher than 200 mW/m2 are excluded as they may be influenced by local surface processes (Goutorbe et al., 2011). There 

were 36325 data remaining after the above screening, and four datasets were constructed using these data (Fig. 2). The first dataset 

comprises the unprocessed original data. The second dataset features the original data subjected to low-pass filtering, mitigating short-

scale spatial variability while maintaining the quantity of data points, resulting in a more constrained GHF distribution (Fig. 2). The 
third dataset is derived from spatially averaging the original data using a 0.5° × 0.5° grid (similar to Lösing & Ebbing, 2021), 

consequently reducing the data volume from 36325 to 7740. Lastly, the fourth dataset involves spatial averaging of the original data on 

a 1° × 1° grid, which reduces the data count from 36,325 to 3,939, followed by low-pass filtering (similar to Rezvanbehbahani et al.,  

2017). 
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Figure 2: Histogram of GHF of the four datasets. 

 

2.2 Geological and Geophysical Features  

Sixteen geological and geophysical features related to GHF were included in our study (Table 1). Next, we outline these features and 

their sources. We extracted Moho depth data from the crustal model built by Szwillus et al. (2019) using active seismic data from the 

USGS GSC database. It has a typical difference of 3 km on the continent compared to CRUST 1.0 but a smoother transition. The 

sedimentary thickness affects GHF through the radiogenic heat component in the sediments (Goutorbe et al., 2011) and the 
redistribution of GHF caused by the thermal conductivity difference between the sedimentary caprock and the bedrock (He et al., 2022). 

We choose the sedimentary thickness from CRUST 1.0 model. Magnetic signals from the crust are affected by the subsurface 

temperature, which makes it an important feature correlated with GHF. The temperature at the Curie depth demagnetizes the 

ferromagnetic minerals in the crust. We used the EMAG2 magnetic anomaly model with a 2-arc-minute resolution compiled from 

satellite, ship, and airborne magnetic measurements (Maus et al., 2009). Gravity anomalies can indicate geological structural features 
that may influence the distribution of GHF. We used the WGM2012 gravity anomalies model that is derived from EGM2008 and 

DTU10 global gravity models (Balmino et al., 2012). It has a one-arc-minute resolution and considers the contribution of most surface 

masses. Lithosphere-asthenosphere boundary (LAB) depth data was extracted from the LITHO1.0 model that was generated by 

examination and discussion of the model concerning crucial lithospheric parameters, such as average crustal velocity, crustal thickness, 

upper mantle velocity, and lithospheric thickness (Pasyanos et al., 2014). Radioactive heat production is thought to contribute about half 
of global GHF (Mareschal et al., 2017). We choose an approximate heat production model established by Goutorbe et al. (2011) that can 

capture the large-scale trends of surface heat production. Plate boundaries and volcanic fields are where geothermal activity is most 

intense and affect the surrounding GHF distribution. We introduce the distance parameters to plate boundaries (ridge, trench,  and 

transform) and volcanoes into the study to consider their effects on heat flow. We used distance measures to plate boundaries from the 
compilation of plate boundaries provided by the University of Texas Institute for Geophysics (Coffin et al., 1997). Unlike ot her studies 

(Goutorbe et al., 2011; Lösing & Ebbing, 2021; Rezvanbehbahani et al., 2017), we also included active fault density data into the data 

set (Table 1). High fault density may indicate abnormal crustal thermal conditions. We infer the global fault density distribution based 

on the GEM Global Active Faults Database, which contains 13500 faults (Styron & Pagani, 2020). 

Table 1: Data Sets Included in the Feature Vector for Predicting GHF. 

Number Features Reference 

1 Moho depth  (Szwillus et al., 2019)  

2 Crustal thickness (Laske et al., 2013) 

3 Sedimentary thickness (Laske et al., 2013) 

4 Magnetic anomaly (Maus et al., 2009) 

5 Topography (Amante & Eakins, 2009) 

6 Bouguer gravity anomaly (Balmino et al., 2012) 

7 Isostatic gravity anomaly (Balmino et al., 2012) 
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8 LAB depth (Pasyanos et al., 2014) 

9 Heat production province (Goutorbe et al., 2011) 

10 Distance to ridge (Coffin et al., 1997) 

11 Distance to trench (Coffin et al., 1997) 

12 Distance to transform (Coffin et al., 1997) 

13 Distance to young rift (Goutorbe et al., 2011) 

14 Distance to volcanoes (Goutorbe et al., 2011) 

15 Upper mantle density anomaly  (Goutorbe et al., 2011) 

16 Density of active faults Inferred from (Styron & Pagani, 2020) 

 

3. METHODOLOGY 

3.1 Gradient Boosted Regression Tree  

In this paper, we choose Gradient Boosted Regression Tree (GBRT) algorithm to estimate GHF using the above 16 geological and 

geophysical features. The GBRT algorithm is a kind of forward-learning ensemble method that obtains predictive results through 
gradually improved estimations. It combines weaker learners (decision trees) into a single strong learner through iteration (Fig. 3). And 

each new tree model is built to reduce the residuals of the previous models towards the gradient direction (Fig. 3), which is quite 

different from the traditional Boost that weights the samples. As a result, GBRT models can reduce bias and outperform other tree-based 

algorithms in terms of overfitting and computational costs (Fan et al., 2018). In addition, the algorithm does not need to scale the data to 

perform well. The approximation function for the GBRT can be expressed as 
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where x represents the input variables and an denotes the classifier of each decision tree. Each tree can be defined as h(x;an), and βm  

denotes the weight of each tree. 

During the modeling process, 80% of the data were classified as the training set to find the optimal model, and the remaining 20% was  

used as the test set to evaluate the optimal model. A 4-fold cross-validation was used in the training process. The optimal model was  

obtained by adjusting the combination of regression tree number, depth, and learning rate. 

 

Figure 3: Diagram of GBRT algorithm (He et al., 2022). 

 

3.2 Evaluation Methods  

In this paper, three general statistical indicators are used to evaluate the accuracy of the established model, including coefficient of 

determination (R2), mean absolute error (MAE), and root mean square error (RMSE). 

(1). Coefficient of Determination (R2): the linear correlation between the measured GHF and predicted GHF in the test set, which can be 

expressed as 

                                                                          

2
2 1

2
1

( )
1

( )

n
i ii

n
ii

X Y
R

X X






 






                                     (2) 



He et al. 

 5 

 

                                                                        

where Xi is the actual GHF, Yi is the predicted GHF, and n is the number of outputs, X ̅ is the average of Xi. 

(2). Root Mean Square Error (RMSE): the deviation between measured GHF and predicted GHF, which can be expressed as  

                                                                      2
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1
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n
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(3). Mean Absolute Error (MAE): the absolute measure of error between measured GHF and predicted GHF in the test set, which can be 

expressed as 

                                                                           
1

1 n
i iiMAE X Y
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4. RESULTS  

4.1 Testing Individual Features  

The features used in the model will significantly affect the GHF predictions. Therefore, it is necessary to understand the importance of 

individual features for predicting GHF. Here, we tested the impact of each feature on the predicted performance under different datasets 

by using individual features to predict GHF. A discernible t rend emerges wherein elevated R2 values are typically accompanied by 

reduced MAE and RMSE (Fig. 4).  

Notably, the relative importance rankings of features for the first and second datasets exhibit remarkable similarities, yet they contrast 

sharply with those for the third and fourth datasets. This is probably due to the fact that the average operation greatly changes the 

quantity of data and the intervals of GHF values in the third and fourth datasets. Despite these differences, certain features, such as  
LAB, heat production province, distance to young rifts, and distance to volcanoes, consistently demonstrate substantial importance 

across all four datasets. These features yield higher R2 scores and lower MAE and RMSE values. 

 

Figure 4: Scores of individual features on R2, RMSE, and MAE. (a)~(d) correspond to the first to the fourth dataset. 
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In addition, we investigated the impact of the number and combinations of features on the performance of models under different 

datasets by gradually increasing features (Fig. 5). Five modes were employed in increasing features. Mode 1 progressively increases the 

features according to their scores (Fig. 4) from highest to lowest. Specifically, for the first dataset, we start with the LA B, add the 

density of active faults subsequently, then the heat production province, and so on. Instead, Mode 2 adds features in order of feature 

score from lowest to highest, starting with the magnetic anomaly, adding the isostatic gravity anomaly subsequently, then topography, 

and so on. Modes 3 to 5 add features randomly. 

The results reveal convergent behavior in both R2 scores and RMSE across the five modes, which is more pronounced in the first and 

second datasets (Fig. 5). Initially, R2 scores increase and RMSE values decrease substantially with the addition of features. However, as  

more features are incorporated, these evaluation metrics plateau, and the subsequent inclusion of features exhibits minimal impact. The 

convergence threshold for the first and second datasets ranges between 5 and 8 features, whereas for the third and fourth datasets, which 
were subjected to averaging, the threshold is 9 or higher (Fig. 5 and Fig. 6). Furthermore, Mode 2 requires more features to converge 

than other modes, primarily due to unsatisfactory individual scores for the initial few features incorporated in this mode. However, for a 

more consistent comparison, we still employed all the features in predicting GHF in China in the subsequent study. 

The impact of feature combinations on models derived from the third and fourth datasets is markedly more significant than their impact 
on models generated from the first and second datasets. When the number of features included in models for the first and second 

datasets is greater than eight, the R2 score and RMSE are relatively comparable across all feature combinations (Fig. 5 and Fig. 6). 

However, for the third and fourth datasets, the difference in model performance under different feature combinations is still quite 

noticeable even when the number of features is relatively large.  

Additionally, it can be seen that models based on different datasets have different R2 scores and RMSE on their respective test sets (Fig. 
5 and Fig. 6). Typically, datasets that have undergone low-pass filtering have greater R2 and lower RMSE values, such as the second 

and the fourth dataset (Fig. 5b and Fig. 6b). Conversely, the averaged dataset has a lower R2 score and RMSE, as exemplified by the 

third dataset (Fig. 5c and Fig. 6c). However, we cannot perform cross-model comparisons based on these findings since their test sets 

are inconsistent. Therefore, in the subsequent investigation, we will utilize the same test set to compare the accuracy of several GHF 

prediction models in China. 

 

Figure 5: Effect of the number and combination of features on R2 score of models. (a)~(d) correspond to the first to the fourth 

dataset. 
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Figure 6: Effect of the number and combination of features on RMSE of models. (a)~(d) correspond to the first to the fourth 

dataset. 

 

4.2 Predicting GHF for China using data from outside China  

In this section, we first examine the GBRT model's ability to predict China's heat flow in the absence of Chinese heat flow data. We 

exclude Chinese data from the aforementioned four datasets and employ the residual data to construct models. Figure 7 depicts the 

performance of GBRT models derived from different datasets on the test set. The model based on the second dataset exhibits the most 

optimal performance on the test set, followed by the model derived from the fourth dataset (Fig 7). This outcome is likely attributable to 
the low-pass filtering operation applied to both datasets. However, this does not necessarily imply that models based on the second 

dataset possess superior predictive capabilities compared to the others, as their test sets are inconsistent. Consequently, in the 

subsequent study, we will utilize the original Chinese GHF data as the test set to facilitate a more consistent comparison among models. 

The GHF predictions of GBRT models based on different datasets are shown in Figure 8. The dots in Figure 8 represent the meas ured 
GHF. Overall, the GHF predictions of the model based on the third and fourth data sets are lower than that of models  based on the first 

and second data sets. This is mainly because the average operation reduces the data with high GHF values in the third and fourth data 

sets (Fig. 2).  

It is visible that Yangtze Craton and Tarim Craton are less uncertain than other regions. All the models predict the two tectonic units as 

relatively cold regions. In contrast, Tibet-Sanjiang Orogen is considerably more uncertain than in other areas. The prediction of hot and 
cold regions by various models is quite different for Tibet-Sanjiang Orogen (Fig. 8). However, the predicted GHF values of the model 

based on the first dataset are much closer to the measured values.  

Based on the first and second data sets, models predict a banded zone with high GHF in the middle of the North China Craton that goes  

from southwest to northeast (Fig. 8a and 8b). This is supported by the GHF measurements. However, models based on the third and 

fourth data sets did not identify this trend (Fig. 8c and 8d). In the eastern part of the Eastern Central Asian Orogen, models based on the 
first and second datasets predict a broader region with relatively high GHF than other models, which is more consistent with the GHF 

measurements. For Central China Orogen, models based on the first and second data sets predict a cold region in its western part and a 

hot region in its eastern part (Fig. 8a and 8b). However, models based on the third and fourth data sets predict a wider cold region (Fig. 

8c and 8d). By comparing with the GHF measurements, we believe that the prediction of the model based on the first and second data 

sets is more in line with the reality. 

 Furthermore, we counted the performance of GBRT models based on different datasets in predicting the raw GHF measurements in 

China (Fig. 9). It is evident that GBRT models are able to identify the relative magnitude of GHF between different regions (Fig. 8), but 

their prediction accuracy for specific GHF values is poor (Fig. 9). In addition, the MAE and RMSE scores of the different models do not 

differ much, but the R2 score of the model based on the first dataset is significantly higher. 
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Figure 7: Performance of models based on different data sets on their respective test sets. (a)~(d) corresponds to the first to the 

fourth dataset. 
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Figure 8: GHF predictions for China by using data from outside China. (a)~(d) corresponds to the predicted GHF of the models 

built using the first to the fourth dataset.  

 

 

Figure 9: Performance of GBRT models based on different datasets in predicting GHF measurements in China (None of the 

datasets contain data from China).  

 

4.3 Predicting GHF for China using the complete dataset  

In this part, we constructed GBRT models utilizing the entire dataset incorporating China data. Four GBRT models, Model A, Model B, 

Model C, and Model D, were developed based on the first through fourth data sets. Figure 10 illustrates the GHF predictions of several 
models. They exhibit comparable GHF distribution characteristics to those predicted using data from outside China (Fig. 8 and Fig. 10). 

They all predicted relatively high GHF for the eastern boundary of mainland China, Tibet -Sanjiang Orogen, and eastern Central China 

Orogen and relatively low GHF for Tarim Craton and Yangtze Craton. Nevertheless, many differences exist between them. Tibet -
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Sanjiang Orogen has the largest GHF prediction discrepancy, where the GHF values predicted using the entire data set are subs tantially 
greater. Similarly, the GHF predictions by models A~D are also higher than those by using data from outside China in many areas of 

eastern China. On the contrary, the GHF predictions of model A~D are lower in the West Central Asia Orogen and along the boundary 

of Tarim Craton and Central China Orogen. 

Differences could also be seen across Models A, B, C, and D with regard to their predicted GHF. Model C predicts a larger area of high 

GHF in the Tibet-Sanjiang Orogen compared to the other models. Unfortunately, there aren't enough local observations to back up this 
prediction. Local GHF measurements and Models A, B, and C suggest a banded high GHF zone extending NE in the western East 

Central Asia Orogen. However, Model D misses this pattern. Model A predicts a high GHF zone at the boundary between the Tarim 

Craton and the Central China Orogen and the boundary between the Tarim Craton and the Western Central Asia Orogen, where there 

are no GHF observations (Fig. 10a). These high GHF regions gradually disappear with the deepening of data set process ing. And Model 

D does not identify these regions (Fig. 10d). 

In order to better compare the influence of different data sets on heat flow prediction, the performance of different models in predicting 

the raw GHF data, the mean GHF values in each 0.5°×0.5° cell, and the mean GHF values in each 1°×1° cell were calculated (Fig. 11). 

It shows that Model B has the best predictive performance in all three cases, with the highest R2 score and the lowest RMSE and MAE, 

followed by Model A. And Model D performed the worst. Furthermore, the predictive performance of all models improved as the heat 
flow resolution decreased. And all models have the best performance in predicting the mean GHF values in 1°×1°cells (Fig. 11) . This 

indicates that current models are effective in identifying large-scale GHF changes but limited in identifying small-scale GHF changes. 

 

Figure 10: Predicted heat flow for China by using the complete dataset. (a)~(d) corresponds to the predicted GHF by Model 

A~D.  

 



He et al. 

 11 

 

Figure 11: Performance of different models in prediction GHF of China.  

 

4.4 Uncertainties caused by the feature selections  

The performance of the model exhibits convergence behavior as the number of features increases, leading to models based on different 

numbers and combinations of features having similar R2 scores and RMSE (see section 4.1). However, with the current data, we cannot 

determine the optimal number and combination of features. Thus, this section briefly discusses the uncertainty they bring to the 

prediction of GHF in China. We explore this uncertainty using the second dataset, which mainly takes into account that Model B 
performed best in the previous section. Four different feature sets were constructed, comprising nine, twelve, thirteen, and fourteen 

features, respectively. 

Figure 12 shows the GHF prediction for different feature selections. Overall, they show similar distribution trends as the GH F 

predictions of Model B. Meanwhile, models based on various feature selections perform similarly in estimating the existing measured 
GHF in China (Fig. 13). Nevertheless, substantial discrepancies are still observed in heat flow predictions in many localized areas. At 

the boundary between the Tarim Craton and the Western Central Asian Orogen, the predicted GHF using nine and thirteen features (Fig. 

12a and Fig. 12c) was significantly lower than that of Model B. In the northwest of the Tibet - Sanjiang Orogen, the model based on 12 

features predicts a more extensive area with low GHF (Fig. 12b). In Central China Orogen, the model with 14 features predicts more 

regions with relatively high GHF (Fig. 12d). There are many local differences beyond those mentioned above. However, due to t he lack 
of sufficient measured data, we are still unable to determine which feature selection could provide a more reasonable heat flow 

prediction. And that is also beyond the scope of the current study and may be the focus of future work. 
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Figure 12: Predicted heat flow models for different feature selections. (a) Only nine features (distance to ridge, distance to 
transform, distance to volcanoes, distance to young rift, bouguer gravity anomaly, crustal thickness, distance to trench, 

sedimentary thickness, and upper mantle density anomaly), (b) Twelve features (distance to young rift, density of active 

faults, heat production province, and LAB are not included), (c) Thirteen features (topography, isostatic gravity 

anomaly, and magnetic anomaly are not included), (d) Fourteen features (heat production province, and LAB are not 

included). 

 

 

Figure 13: Comparison of the performance of different feature selection models in predicting heat flow in China.  

 

4.5 Interpretation  

The correlation between heat flow and different geological and geophysical features is the basis of predicting heat flow using the GBRT 

algorithm. We calculated the relative importance of the individual features on different models to interpret the GBRT predict ions (Fig. 

14). It is visible that the ranking of feature importance for the final GHF prediction (Fig. 14) is not consistent with the ranking of 
individual scores (Fig. 4). This indicates that the GBRT models establish a complex nonlinear relationship among the features  rather 

than a simple linear regression. Model A and Model B predicted similar relative importance of features, and the same is true between 

Model C and Model D, which means that the averaging of heat flow will affect the judgment of the model on the importance of features. 
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Figure 14: Relative importance of the individual features (the sum of the relative importance is 1). 

 

Nonetheless, almost all of the models predict the distance to volcanoes and upper mantle density anomaly as the top two important 

features (Fig. 14). Figs. 15a and 15b show the variation characteristics of these two features in China. Most Eastern Central Asian 

Orogen regions show negative upper mantle density anomalies and small distances to volcanoes, indicating a high thermal state at depth 
in these areas. Meanwhile, seismic evidence also suggests the presence of mantle plumes, rifting and magmatic underplating (He et al.,  

2014), which may have contributed to the relatively high GHF in the area. However, the distribut ion characteristics of the high GHF 

area are inconsistent with those of the above two features, which may result from the combined effect of other features. 

The Tarim Craton and the Western Central Asia Orogen have high positive upper mantle density anomalies (Fig. 15a), indicating a cold 
mantle thermal state. The Early Permian basalt eruption at about 277 Ma is the most recent major tectonic-thermal event in the Tarim 

craton (Yang et al., 2007). Moreover, it has been maintained in a stable tectonic setting since the Mesozoic (Liu et al., 2015), resulting 

in a relatively cold lithosphere. Furthermore, the relatively large Moho depth (Fig. 15c) and low elevation (Fig. 15d) of these two 

tectonic units also indicate a cold lithosphere, according to thermal isostasy (Hasterok & Chapman, 2007; Hyndman & Lewis, 1999). 

Combining these factors, our models predict low GHF for these areas, which is consistent with the measurements. In addition, our 
model predicts relatively high GHF regions at the boundary between the Tarim Craton and the Western Central Asian Orogen, which 

may result from the model considering higher elevations in these regions (Fig. 15d). 

The Wuyi-Yunkai Orogen has a negative upper mantle density anomaly, a small distance to the volcano, a shallow Moho depth, and a 

relatively large elevation, all of which indicate a high deep thermal state in this area. And our models predict a high GHF region 

spreading northeast which is consistent with measured heat flow. In addition, it can be found that the GHF decreases in the NW 

direction, which is consistent with the upper mantle density anomaly, the distance to the volcano, and the Moho depth. 

The Tibet-Sanjiang Orogen and the Central China Orogen are characterized by a thick crust and high elevation (Fig 15c and 15d). The 

large amount of radioactive heat generated by the extremely thick crust directly enhances the crustal heat flow in these areas (Jiang et 

al., 2019). It is visible that the predicted GHF in the Central China Orogen has a similar distribution trend to the Moho depth and 
elevation, and the high GHF corresponds to the thick crust. In addition, our model predicts a region with relatively high GHF  at the 

junction of the Tarim Craton and the Central China Orogen, where no GHF measurements exist (Fig 10 a~c). This prediction may be due 

to the model's consideration of higher negative upper mantle density anomalies in the region (Fig 15a). However, for most areas, the 

GHF does not show a clear correspondence with the upper mantle density anomaly and the distance to the volcanoes, which may be the 

result of the model's comprehensive analysis of various features. 

The Yangtze craton has an Archean-Proterozoic crystalline basement (Guo et al., 2014) and can be divided into three parts from west to 

east, including the upper Yangtze, middle Yangtze, and lower Yangtze (Lu et al., 2013). The upper mantle density anomaly is small in 

most of the Yangtze Craton. The Moho depth and the distances to volcanoes of the Yangtze Craton tend to decrease from the upp er to 

the lower Yangtze, which leads to a higher GHF estimation for the lower Yangtze (Fig. 10). Meanwhile, it corresponds to the significant 

deformations in lower Yangtze (Lu et al., 2014), implying that these areas are no longer stable blocks(Li et al., 2015). 
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Figure 15: Maps of (a) upper mantle density anomaly (UMDA), (b) distance to volcanoes (DV), (c) Moho depth (MD), and (d) 

elevation. 

 

5. DISCUSSION  

In this study, we primarily investigated the influence of four distinct data preprocessing techniques on the prediction accuracy of GHF 

in China. Utilizing the GBRT algorithm, we found that the low-pass filtered dataset exhibited the highest predictive performance, while 

the dataset subjected to spatial averaging exhibited the poorest performance. In this section, we will discuss these results in greater 

detail, analyze the limitations of the study, and suggest directions for future research. 

We observed an advantage in utilizing the dataset processed with a low-pass filter for predicting GHF in China. This may be attributed 

to the capacity of low-pass filters to accentuate low-frequency information within the data while mitigating the impact of high-

frequency information. Low-frequency information likely reflects large-scale characteristics of geological and geophysical processes, 

whereas high-frequency information may represent localized variations. In estimating GHF, low-frequency information has a more 

significant influence on prediction outcomes, while high-frequency information is relatively less crucial. By emphasizing low-frequency 
information, the model can more readily identify and learn the primary features closely associated with GHF, thereby enhancin g 

prediction accuracy. 

Moreover, we observed that employing a dataset subjected merely to spatial averaging results in subpar performance in predicting GHF 

in China. This may be due to the considerable reduction in data volume caused by the spatial averaging operation, leading to the loss of 

important local information closely related to GHF. As this local information is vital for accurately estimating GHF, the model may 
struggle to fully capture these key details when handling the averaged dataset, resulting in diminished performance. Additionally, the 

averaged data may obscure some variations present in actual observations. This may render it challenging for the model to discern 

which features are genuinely useful during prediction, consequently affecting the model's performance. As the spatial averaging 

operation renders the relationships between features in the dataset more ambiguous, the model may struggle to accurately assess the 
importance of each feature for GHF prediction. This may cause the model to assign unduly low weights to certain crucial features, 

ultimately reducing prediction accuracy. 

Although we explored four preprocessing techniques, it remains possible that other methods better suited to the objectives of this study 

exist. For instance, band-pass filtering, principal component analysis, and empirical mode decomposition may all yield varying degrees  

of improvement for GHF data. Future research could attempt to apply these techniques to GHF prediction, further enhancing prediction 

accuracy. 

In conclusion, our study demonstrates the superiority of low-pass filtering in predicting GHF in China. Despite certain limitations, this 

method provides valuable insights for geothermal resource exploration and assessment. By further optimizing preprocessing met hods, 

refining prediction models, and adequately considerin g a range of influential factors, future research may achieve more accurate and 

reliable results in the realm of GHF prediction. 
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6. CONCLUSIONS   

In this study, we explore the impact of various data preprocessing techniques on the prediction of heat flow in China using GBRT 

models. Four distinct datasets, each derived from a different preprocessing method, were created: (i) unprocessed raw data, (ii) low-pass 

filtered data, (iii) spatially averaged data with a 0.5° × 0.5° grid resolution, and (iv) a combination of 1° × 1° grid averaging and low-

pass filtering. Employing these datasets, we developed four GBRT models and generated eight new heat flow maps, comparing and  

analyzing the discrepancies in predictions. The main conclusions are summarized as follows:  

(1) The GBRT model utilizing low-pass filtered data proves to be the most effective among the four models in estimating heat flow in 

China. 

(2) Spatial averaging of datasets alters the assessment of feature relative importance in GBRT models, which may be attributable to the 

changes in data quantity induced by the averaging operation.  

(3) The models constructed using spatially averaged datasets necessitate a greater number of features to achieve performance 
convergence. Furthermore, the impact of feature combinations on the performance of these models is more pronounced, suggesting that 

models established with smaller data quantities are more susceptible to the effects of feature combinations. 

(4) All four GBRT models are more effective in predicting large-scale heat flow variations (0.5° × 0.5°) than in estimating short -

distance heat flow variations. 

(5) The heat flow maps predicted using the GBRT model with low-pass filtered data show that the overall heat flow values of Tarim 

Craton and Western Central Asian Orogen are the lowest, followed by the Yangtze Craton. The heat flow maps predict a large region 

with abnormally high heat flow over southwestern Tibet-Sangjing Orogen. Further, the maps show that the heat flow is high in the 

southwest of the Wuyi-Yunkai Orogen. Finally, the models predict several banded regions with relatively high heat flow in North China 

Craton and Western Central Asian Orogen. All of these predictions are consistent with the actual observations in China. 
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