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ABSTRACT  

The Sibayak Geothermal field is a volcanic geothermal system with the presence of manifestations, located in North Sumatera, Indonesia 
and is within the Singkut Caldera. Sibayak field is classified into a hot, liquid-dominated geothermal system with temperatures ranging 

from 240ºC to 300ºC and an average pressure of 100 barg. The previous numerical model created was in 2001 with data of all 10 wells. 

However, well data used in this model were solely based on drilling data as field has not been produced. Hence, a newly updated numerical 

model was made based on the most recent conceptual model as well as reservoir data after the field has started producing in 2008. The 

natural state of the model was validated by updating well data, whilst calibration of the natural state between simulated and observed data 

were done by using the most recently obtained pressure-temperature data. 

1. INTRODUCTION 

The Sibayak Geothermal field is located in Berastagi, Karo Regency, North Sumatera, Indonesia. It is situated in the relatively young 

Sibayak Mountain, within the Singkut Caldera and has an average elevation of 1400 masl (Figure 1). Preliminary studies were first carried 

out in 1989 until 1991, which resulted in Mt. Sibayak being a potential field to develop. Three exploratory wells were then drilled in 1991 
and were proceeded by drilling 7 development wells by 1997. Partial to total loss circulations were experienced in all of the wells within 

the field as all wells were successfully drilled through pre-tertiary sedimentary rocks. 

Sibayak Geothermal Field started operating in 2008 with a production of 10 MW. The previous numerical model was made in 2001 based 

on limited drilling and exploration data. More recent geological field surveys as well as magnetotelluric and gravity surveys have been 

carried out to support the updating of the conceptual model. This updated conceptual model along with a more refined natural state model 
is thus able to give a more accurate and comprehensive understanding of the reservoir’s current condition to further be able to predict the 

potential reservoir deliverability. 

 

Figure 1: Location of the S ibayak Field.  

2. CONCEPTUAL MODEL UPDATE 

The geothermal system developed within the Sibayak Geothermal Field is a volcanic-hosted system on the Sibayak Mountain (Figure 2). 
It involves a high-standing, convective, and high temperature reservoir beneath the summit region of a volcano, in which the geothermal 

reservoir occurs near the conduit(s) of two small strato-volcanoes in a partly infilled, small caldera (Hochstein et al., 2015). 
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Figure 2: A volcanic-hosted system model (Hochstein et al., 2015). 

The presence of various, complex manifestations within the Singkut Caldera and the intensive, altered zone restricted to Mount Sibayak 

indicate the upflow zone being within and directly under the mountain (Figure 3). This is also supported by recent geochemical analysis 

of several manifestation samples in which fluid from these manifestations indicate a dominance in volatile magmatic contributions in 

contrast to meteoric fluids. 

 

 

Figure 3: Conceptual model of S ibayak geothermal system (PGE, 2022). 

Magnetotelluric (MT) studies have also indicate low resistivities of altered hydrothermal clay cap of 700-1000 m thick indicating the 
presence of a heat source updoming beneath Mount Sibayak. Based on the magnetotelluric data, the outflow of the hydrothermal system 

stretches about 3 km E-SE (Figure 4).   

 

Figure 4: Magnetotelluric (MT) model of S ibayak (modified from Daud, 2001). 
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Local structures within Sibayak Geothermal Field have an orientation of NW-SE and NE-SW. Apart from extensive fractures, three main 

faults play a major role as a conduit for hydrothermal activity as well as secondary permeability, namely the Tengkorak Fault, Semangat  

Gunung Fault, and the Pariban Fault. A ring fault is also present within the Singkut Caldera, hence also contributing to secondary 

permeability and the flow of hydrothermal activity. The ring fault also acts as the main recharge zone for the geothermal system (Figure 
5).  Contrary to the isotherms determined in the previous conceptual model, the isotherms of the updated model has considered the 

recharge flow into the reservoir as well as the length of the outflow zone. Hence, the newly updated conceptual model is able to describe 
the behavior and characteristics of the reservoir more accurately. 

 

 

Figure 5: Geological map and stratigraphy of S ibayak (PGE, 2022). 

Lithology found within the Sibayak Geothermal Field are pyroxene andesite, dacite, diorite, pyroclastic breccia, volcaniclastic tuff-lapilli 

as well as Tertiary to Pre-Tertiary metasediments in the form of fine-grained sandstone and silt (Figure 6). As a geothermal system 

developing within the caldera, volcanic activity  within this area plays a major role in the primary permeability resulting in lateral 

permeability controlled by the volcaniclastic lithology. Main reservoir is within the metasedimentary sandstone, signified by  epidotes 
found as well as total loss to partial loss during the drilling of wells. The presence of faults and fractures within the field also contribute 

in enhancing the secondary permeability within the field. 

 

 

Figure 6: A geologic cross section of S ibayak (PGE, 2016). 

3. WELL DATA 

Ten wells were drilled from 1992 until 1997 in Sibayak Geothermal Field. SBY-01, SBY-02, and SBY-03 are exploration wells targeting 

deep, high temperatures and pressures. Epidotes were only identified in two wells, SBY-01 and SBY-03, below the depth of 1156 and 

1260 masl, respectively.   

Based on the gradual increase of temperature seen in the static temperature and pressure profile indicates a conductive heat transfer process 
due to low to very low permeability in the formation and existence of the cap rock (Figure 7). This is confirmed with altered andesite 

cuttings with low permeability retrieved from this depth. 
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Figure 7: Pressure-temperature profiles of each well in S ibayak Field. 

High, consistent temperatures with a relatively convective pattern indicating the presence of the reservoir were found in wells SBY-03, 

SBY-04, SBY-05, SBY-06, SBY-07 and SBY-08 with maximum temperatures of these wells ranging from 265oC to 302.6oC. These 

consistent high temperatures most likely reflect the upflow of the system located beneath the Singkut Caldera. High temperatures ranging 

up to 156oC - 225.5oC were also encountered in wells SBY-01, SBY-02, and SBY-09 but quickly deflected with depth, indicating wells 

being located on the periphery of the upflow zone and just at edge of the reservoir. The inverse temperatures within these wells also 
indicate cooler waters flowing in, thus showing the recharge area for the system. SBY-10 had the lowest temperature out of all the wells 

with a maximum temperature of 124oC and encountered some issues during drilling. Due to the location and elevation of SBY-01, SBY-

02, SBY-09 and SBY-10 within the geothermal system, these wells are most suitable to be used as injection wells.  

Pressures are relatively high in each of the wells, with maximum pressures found in wells SBY-07 at 125.97 bara. Hydrostatic pressure 

from ground to total depth of well is clearly visible in the pressure analysis, confirming the reservoir being a hot liquid dominated reservoir.  
SBY-2 & SBY-10 have a different hydrostatic gradient compared to the other wells, thus confirming the pressure of wells are influenced 

by well temperatures. 

The depth of feedzones were supported by the presence of partial and total loss circulations experienced during the drilling of wells. 

Feedzones were mostly at depth of -74 masl to -280 masl in a majority of the wells, although feedzones in SBY-5 were found starting 

from a depth of -405 masl to -425 masl. Feedzones are thought to be controlled by main local fractures and faults in the field, as well as 
primary permeability control of the metasediments (Figure 8). Injectivity index was highest in SBY-5 at 18.6 kg/s.bar as well as in SBY-

6 at 15.4 kg/s.bar. Consequently, the highest mass flow productions were found in well SBY-5 with a contribution of 173 tph of brine and 

35 tph of steam. 
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Figure 8: Distribution of feedzones in the wells of S ibayak basedon the water loss tests as well as injectivity rates . 

4. NUMERICAL MODEL 

The Sibayak model was generated using a TOUGH-2 based software by using the first Equation of State module (EOS1). EOS1 assumes 

the fluids contained within the system is pure water. The model has a dimension of 7.5 km x 8 km with a total area of 60 km2 and has an 

orientation of NW-SE, rotated 34o clockwise (Figure 9).  

 

Figure 9: Dimension and orientation of the S ibayak model . 

The x-axis was divided into 35 cells, whereas the y -axis was into 38 (Figure 10). Topography of the Sibayak field was considered whilst 

generating the model with a maximum elevation of +2100 masl and a dep th of -2000 masl. The model has 20 layers which are then divided 

into 5 different properties for the atmosphere, groundwater, caprock, reservoir, and basement. The dimension and size of each cell within 

the grid varies from 100 – 800 m, depending on the area of interest as well as data availability. Total cells within the model totals up to 
26,600 cells with additional extra cells at the base of the model. This new model is thus more detailed and refined compared to the previous 

model (Atmojo et al., 2001), which was divided into 165 cells laterally and 7 layers totaling up to 1155 cells. 
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Figure 10: Grid framework of the S ibayak model. 

The topmost boundary of the model is an atmospheric layer with a pressure of 1 bara and a temperature of 25oC in a fixed state condition. 

The side boundaries were assumed to be closed by inputting low permeability values (Figure 11). Extra cells with a constant p ressure of 

215 bara and a temperature of 318oC were added to the bottom of the model acting as a heat source connected to the bottom layers of the 

model.  

 

 

Figure 11: Three boundary shapes: the top boundary with atmospeheric condition (a); the side boundary with no-flow condition 

(b); and the bottom boundary with natural deep upflow conditions at the heat source (c). 

More rock properties such as fault, base, heat, caldera, and direction of flow were added to the previous model, in which several properties 

such as permeability had to be changed by a trial-and-error approach until a steady-state condition with stable pressures and temperatures 

was obtained. The final rock properties for the model can be seen in Table 1.  
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Table 1: Final rock properties used in model to obtain a well -matched natural, steady state model. 

 

The caprock material is indicated by the brown color, while the main reservoir materials are depicted in blue (RES1), purple (RES2), 

green (UPFLW) in the vertical cross-section shown in Figure 12: 

 

Figure 12: Vertical cross-sections of the material distributions and configuration of the cap rock, reservoir and heat source 

(a,b,c,d,e). 
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The visualization of rock types in a horizontal cross-section is shown in Figure 13, with the Injectivity  Index (II) from each well converted 
into Productivity Index (PI). Subsequently from these values, the transmissivity (kh) is calculated to obtain a permeability value within 

the range of 2-60 mD. 

 

 

Figure 13: Horizontal slices of materials distribution for each layer. 

5. RESULT AND DISCUSSION 

In the previous model, only SBY-1, SBY-2 and SBY-6 were used in PT matchings. However in this newly update model, all wells are 

used for pressure-temperature matchings. The natural state was then run for 3.16×1012 s. In Figure 14, pressure-temperature profiles 

simulated from the model and actual measured data for each well are presented. The simulated profiles generally exhibit a reasonably 

good match towards the actual data, although some wells show a less significant alignment. Wells that have achieved a satisfactory match 
include SBY-3, SBY-4, SBY-6, SBY-7, SBY-8, and SBY-9. Despite a few mismatches in a few wells, these wells still demonstrate a 

consistent temperature trend especially within the reservoir zone. Furthermore, temperatures that deviate from the model are mostly found 

in the cap rock and above. This is not a significant concern as the creation of the natural state focus more on the reservoir zone. 
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Figure 14: S imulated pressure-temperature profiles matched with field-measured pressure-temperature profiles. 

 
From the natural state model, the temperature distribution in the Sibayak field forms a tongue-shaped pattern pointing southeast, indicating 

that this area represents an outflow zone. Meanwhile, in the upflow region, heat flows vertically upward from a heat source located beneath 

Mount Sibayak. This outcome is clearly evident in the vertical cross-section shown in Figure 15. The natural state model thus has 

represented the updated conceptual model. 

 

 

Figure 15: Vertical cross-sections of the temperature distributions. 

It can also be seen that hotter temperatures in the Mount Sibayak area are also illustrated in the horizontal cross -section shown in Figure 

16. This model indicates that the hottest temperature is observed in the well SBY-5 which is closest to and has a wellpath heading towards 

Mount Sibayak. 
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Figure 16: Horizontal cross-sections of the temperature distribution. 

The distribution of both upflow and outflow heat as well as the presence of fluid recharge are depicted in Figure 17. In SBY 2, it is 

apparent that there is an influence of the entry of cold water from the surface towards the lower part of the reservoir, consequently cooling 

the temperature of SBY-2 and is representative to the isotherms of the new conceptual model. This fluid recharge enters from the surface 

into the reservoir through the Singkut caldera. 

 

Figure 17: Distribution of heat flow from the heat source (a) temperature; (b) pressure . 

6. CONCLUSION 

The model generated has represented the reservoir behavior and the geothermal system of the field, in where upflow of Sibayak is located 

beneath the Mount Sibayak and the outflow flowing to southeast. High temperature profiles are seen to taper out and deflect inwards in 

deeper depths as the flow goes further out to the southeast, showing recharge areas through caldera fault s. Several wells, such as SBY-2, 

show cooler temperature indicating location of well not located in the main reservoir. Furthermore, this well is likely to be affected by 
cold water flowing from the surface which then enters through the Singkut caldera. Simulated pressure temperature profiles are well 

matched with measured pressure temperatures in all of the wells in the field, hence indicating the generated model being a good 

representative of how the reservoir behaves. The simulated model has also confirmed the updated conceptual model. This model can thus 

be further used in forecasting the field performance, manage reservoir and reinjection in sustaining the field, as well as plans for future 

field development. 
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