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ABSTRACT

The WHOLESCALE acronym stands for Water & Hole Observations Leverage Effective Stress Calculations and Lessen Expenses. The
goal of the WHOLESCALE project is to simulate the spatial distribution and temporal evolution of stress in the geothermal systemat San
Emidio in Nevada, United States. To reach this goal, the WHOLESCALE team is developing a fully coupled, thermo-hydro-mechanical
(“T-H-M”) numerical model to describe geodetic observations during the shutdowns using the open-source GEOS code developed at
Lawrence Livermore National Laboratory (Settgast et al., 2018). In refining the models, we consider two different time scales. In this
paper, we focus on long time scales of the order of years. In a companion paper (Luo et al., 2024), we consider short time scales on the
order of minutes to days.

To calibrate the model, we consider two types of geodetic data: GPS (Global Positioning System) and InSAR (Interferometric Synthetic
Aperture Radar). The GPS dataset consists of daily time series of displacement in three dimensions. These have been estimated from data
collected from two continuously operating stations, SEM S and SEMN, installed on monuments attached to idle wellheads within the
geothermal field at San Emidio as well as from a third GPS station, named GARL, located outside the geothermal area in the mountain
range to the northeast of the power plant.

The shape of the modeled displacement field agrees approximately with that observed by InNSAR near the producing wells at the center of
the geothermal field. The modeled rate of vertical displacement, however, agrees with that estimated from GPS and InSAR data only to
within a factor of four.
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INTRODUCTION

The San Emidio geothermal area is located ~100 km north of Reno, Nevada in the northwestern Basin and Range province, as described
previously (Matlick, 1995; Rhodes et al., 2010; Warren, 2010; Eneva et al., 2011; Moeck, 2011; Rhodes, 2011; Rhodes et al., 2011;
Faulds, 2014; UNR, 2014; Teplow and Warren, 2015; Pulliam et al., 2019; Reinisch et al., 2019; Warren et al., 2019; Feigl et al., 2020;
Folsom et al., 2020; Folsomet al., 2021; Feigl et al., 2022; Guo et al., 2022; Jahnke, 2022; Jahnke et al., 2022; Akerley et al., 2023; Jahnke
et al., 2023; Sone et al., 2023).

The San Emidio geothermal system occupies a right step in a North-striking, West-dipping, normal fault zone. Minor dilation and high
fault density within theright step likely produce the permeability necessary for deep fluid circulation (e.g., Eneva et al., 2011). Power was
first produced in 1987 with a 3.6-M W binary plant, and average production increased to 9 MW (net) following commissioning of a new
power plant in 2012. Production has ranged from less than 190 L/s to more than 280 L/s at temperatures of 140—148°C. Drilling, geological,
geophysical, and geochemical data sets collected since the 1970s help constrain controls on the geothermal resource and the structural
setting. The data sets include historic drilling records, magnetotelluric resistivity, seismic reflection imaging, passive seismic emission
tomography (PSET), microseismicity analysis, and gravimetric surveys. Figure 1 shows a conceptual model in vertical cross section.

Our WHOLESCALE team includes researchers at two universities and two national laboratories working in a public-private partnership
with Ormat Technologies Inc. The goal of the WHOLESCALE project is to simulate the spatial distribution and temporal evolution of
stress ina geothermal system. To reach this goal, the WHOLESCALE team is developing a methodology to incorporate and interpret data
into a multi-physics model that couples thermal, hydrological, and mechanical (T-H-M ) processes over spatial scales ranging from ~100 m
to~5 km and temporal scales ranging from ~1 days to ~10 years.

Accordingly, the WHOLESCALE team is analyzing multiple types of observational data at San Emidio, measuring material properties of
San Emidio rock samples in our laboratory and performing simulations with a multiphysics T-H-M modeling code named GEOS that has
been developed at Lawrence Livermore National Laboratory. In this paper, we focus on simulating deformation of the land surface over
time scales spanning years. The goal is to simulate the deformation field measured by the Global Positioning System (GPS) and
Interferometric Synthetic Aperture Radar (InSAR).
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DATA

Geodesy

Geodesy measures deformation of the ground surface. Two continuously operating GPS stations, SEM S and SEM N, have been installed
on monuments attached to idle wellheads within the geothermal field at San Emidio. GPS station SEM S was installed on the head of idle
Well 17-21 at the southern edge of the geothermal field in January 2021 and then removed in April 2022. GPS station SEM N was installed
on the head ofiidle Well 65C-16 near the power plant locate at center of the geothermal field in January 2021. A third GPS station, named
GARL, is located outside the geothermal area in the mountain range to the northeast of the power plant to provide a stable reference point.
We analyze the GPS data to calculate daily measurements of (relative) position coordinates in three dimensions that can be modeled as
time series of displacement (Blewitt et al., 2018; Kreemer et al., 2020).

Interferometric Synthetic Aperture Radar (InSAR) data also measures ground deformation. The data set includes InSAR data collected
by several satellite missions. The ERS-1/2 missions operated by the European Space Agency acquired image data covering San Emidio
over two distinct time intervals 1992 to 2001 and 2003 to 2010, respectively (Eneva et al., 2011). These authors found relative rates of
line-of-sight (LOS) displacement of the order of 5 mm/year at locations near the power plant at San Emidio. Assuming that the motion is
purely vertically downward (subsidence) and dividing by the cosine of the incidence angle (~23°), we infer that the rate of vertical
displacement is approximately 5.4 mm/year with respect to a location outside the geothermal field. By modeling the same two data sets,
Reinisch et al. (2019) conclude that the rate of deformation was constant between 1992 and 2010.

A second InSAR data set consists of radar images acquired monthly beginning in 2019 by the TerraSAR-X (Pitz and Miller, 2010)and
TanDEM-X (Krieger et al., 2007)satellite missions operated by the German Space Agency (DLR). To analyze these data, we have
developed a high-throughput workflow using HT-Condor (Reinisch, 2018b; Reinisch, 2018a)to apply the GM T-SAR processingsoftware
(Sandwell et al., 2011; Sandwell et al., 2016).

We are also analyzing InSAR data from the SENTINEL-1 satellite mission (Salvi et al., 2012)operated by the European Space Agency
(ESA). These data sets cover the site from late 2014 through the present. For the data acquired by the SENTINEL missions, we use the
geocoded interferograms (standard InSAR displacement — GUNW — products) calculated by the Advanced Rapid Imaging and Analysis
(ARIA) project (Bekaert et al., 2019).

To analyze the interferometric pairs as time series of displacement, we use the Miami INsar Time-series software in PYthon (M intPy)
workflow (Yunjun et al., 2019). Figure 2, Figure 3, and Figure 4 show maps ofthe vertical displacement estimated from InSAR for three
data sets acquired by the Sentinel-1 mission at different dates between 2016 and 2023. Each of the three data sets shows relative subsidence
(blue colors) faster than 3 mm/year in absolute value in three areas:

Area A: Near the center of the geothermal field near GPS station SEMN (mapped as a yellow square), the deformation field shows a
3-km-by-2-km lobe of subsidence witha maximum rate of downward vertical displacement of ~5 mm/year in absolute value.

Area B: In the northwest corner of the map, deformation field shows a circular area approximately 1 km in radius where the maximum
rate of downward vertical displacement is ~10 mm/year in absolute value. This feature is located within a kilometer of a circular “pivot
sprinkler” irrigation system. We interpret the deformation as subsidence resulting from pumping groundwater from a shallow aquifer.
Area B is not covered by the GEOS modeling.

Area C: Over the dry lake bed (“playa”) to the west of GPS station SEM N, we see a lobe of subsidence centered at (X,Y) = (7, 16) [km].
Here, the displacement rate is significantly different from zero with 99% confidence only in Figure 2 and Figure 3.

Before attemptingto simulate these observations quantitatively, we consider four possible interpretations.

In the first interpretation, the subsiding “bowls” observed near the irrigation system (Area A) and geothermal wells (Area B) are related
to pumping fluids into or out of the wells. To explain the observed subsidence in Area B over an area roughly ~2 km in diameter, however,
would require a “sink” that shrinks in volume at a depth of the order of a kilometer. Whether the volumetric contraction is due to the
hydro-mechanical (H-M) processes or thermo-mechanical (T-M) processes is a question that we begin to address using numerical
modeling below.

In the second interpretation, the signatures observed in the InNSAR data could be related to changes in soil moisture (e.g., Zanet al., 2015;
Ansari et al., 2017; Zhenget al., 2022). This effect could be pronounced on the dry lake bed (Area B) to the west of the geothermal field,
where rainfall is rare. Considering a time series of Sentinel-1 data acquired near Bristol Dry Lake in the Barstow-Bristol Trough region
of California, Zhenget al. (2022) write that “thebias time series of a pixel on the edge of the Bristol dry lake show clear correlation with
precipitation and 'may’ indicate the InNSAR phaseresponseto the drying process of soil after precipitation” (Zheng et al., 2022; emphasis
theirs). Changes in soil moisture could affect the InNSAR results near the agricultural fields around the circular irrigation system, as also
noted around irrigated agricultural fields in the Imperial Valley of California (Gabriel et al., 1989).

In the third interpretation, the signatures observed in the InSAR results could be artefacts related to the time series analysis. In some cases,
applying spatial averaging (so-called “multi-looking”) to Synthetic Aperture Radar (SAR) images may cause a systematic bias in
deformation modeling (e.g., Xu and Sandwell, 2020; Zheng et al., 2022).

In the fourth interpretation, the signatures observed in the InNSAR data could be related to atmospheric effects. Heterogeneities in the
atmosphere perturb the radar signals as they propagate along the “line of sight” between the sensor aboard the spacecraft in orbit to the
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ground and back again. As sketched by Massonnet and Feigl (1998) in their Figure 7, this effect produces a larger delay for a pixel located
at a low elevation than for a pixel located at a high elevation. This effect has several nicknames, including “inverted barometer”, “tropo-
topo”, and “height-correlation”. To mitigate the effect of such atmospheric perturbations, we consider several different approaches. The
first approach neglects atmospheric effects. In the second approach, we assume a horizontally stratified atmosphere, such that the delay
is proportional to the difference in topographic elevation between two pixels in distinct locations. The algorithm (Berrada Baby et al.,
1988) is implemented in MintPy with the “height correlation” key word. The third approach uses weather data assimilated into
meteorologic models from the European Centre for M edium-Range Weather Forecasts (ECWMF) to simulate the atmospheric delay. To

trace rays through the atmospheric models, we use the Python based Atmospheric Phase Screen — Py APS (Jolivet et al., 2015).

Which interpretationis correct? To address this question, we compare the InSAR results with time series of vector displacement at GPS
stations. To minimize the effects of different reference frames, we consider differential displacement of GPS stations SEM N with respect
to SEMS. To calculate the vertical component of displacement field from the InSAR results, we assume that the displacement is purely
vertical. In other words, we divide the line-of-sight (LOS) displacements (and their rates) by the cosine of the incidence angle.

Figure 5 shows the time series of relative vertical displacement estimated from InSAR data for a pixel located near GPS station SEMN
withrespect to a pixel located near GPS station SEM S for InSAR data acquired in Sentinel-1 Tracks 64 and 42, respectively.

The time series of vertical component of displacement estimated from GPS data at station SEM N with respect to SEMS is also shown
(identically) in each of these two panels. For the GPS data, we perform a weighted least-squares fit to estimate the rate of vertical
displacement. For the InSAR data, we estimate therate of vertical displacement using an unweighted least-squares fit as well as showing
the average velocity estimated using MintPy. In each case, the quoted uncertainty in rate represents a formal estimate of one standard
deviation scaled by the square root of the (weighted) mean squared error (WM SE). For Track 42, the rate of relative vertical displacement
estimated from the InNSAR data by MintPy is -7.5 + 0.2 mm/year (downward). This estimate differs by less than 1 mm/year from the rate
of -7.6 £ 0.4 mm/year estimated from the GPS data by aleast-squares fit. For Track 144, therate of relative vertical displacement estimated
from the InSAR data by MintPy is -3.5+ 0.1 mm/year (downward). This rate differs significantly from the rate estimated from the GPS
data.

The quoted standard errors are formal. The procedure used to estimate the rate of vertical displacement from the GPS data does not account
for temporal correlations between successive days of GPS measurements. Similarly, the procedure used to estimate the rate of vertical
displacement from the InSAR data does not account for the correlation between two interferometric pairs that share a common acquisition
date. These effects tend to increase the uncertainty of the estimated rates (e.g, Agram and Simons, 2015; Reinisch et al., 2016). The
displacement rate of SEM N with respect to SEM S is —7.0 + 2.3 mm/year estimated from the GPS data using the MIDAS robust trend
estimator (Blewitt et al., 2016). Consequently, we consider that a more realistic estimate of the standard error of the vertical displacement
rate is at least 2 mm/year.

We consider the InSAR results from Sentinel-1 Track 42 (Figure 2) to be the most reliable data set for interpretation because the rates of
vertical displacement estimated from GPS agree more closely with the InNSAR rates for Track 42 than for Track 64.

Which approach to mitigating atmospheric effects is most reliable? To address this question, we again compare therates estimated from
InSAR data to those estimated from GPS data. Figure 6 shows the comparison for each of the three approaches. The results using the
height-correlation approach (-7.2 = 0.2 mm/year, upper panel) insignificantly different from those estimated without accounting for
atmospheric effects (-7.5+ 0.2 mm/year, middle panel). The latter estimate differs by less than 0.1 mm/year from the rate
of -7.6 £0.4 mm/year estimated from the GPS data by a least-squares fit. In contrast, however, using the PyAPS approach with
meteorological data yields an estimated rate of 0.0 + 0.1 mm/year (lower panel). Consequently, we consider only the displacement rate
estimated without accounting for atmospheric effects in the subsequent interpretation.

T-H-M modeling

We are developing a fully coupled, thermo-hydro-mechanical (“T-H-M ”)numerical model using the open-source GEOS code developed
at Lawrence Livermore National Laboratory (e.g, Liu et al., 2018; Settgast et al., 2018). To constrain the modeling effort, the
WHOLESCALE team is analyzing multiple types of observational data at San Emidio. Our long-term T-H-M modeling uses the same set
of finite elements in the tessellated mesh of tetrahedral elements as described by Luo et al. (2024, this meeting). For the mechanical and
hydrologic aspects of the model, we use the same material properties, initial conditions, and boundary conditions as assumed for the short-
term H-M model (Luo et al., 2024). The modeled viscosity of water is assumed to be constant, i.e. it does not vary with temperature. For
the thermal aspects of the modeling, the material properties are listed in Table 1 and the boundary conditions are listed in Table 2. The
initial conditions are set to the “natural state” temperatures before production began shown as red contours in Figure 1 (Folsom et al.,
2022). The modeling results in terms of vertical displacement rate are shown in map view (Figure 7) and time series (Figure 8).
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DISCUSSION

Following the presentation of the geodetic measurements of deformation as observed by InSAR and GPS and the modeling results from
GEOS, we compare the latter to the former.

In Area C, on the playato the west of the production wells, the modeled deformation field (Figure 7) differs markedly from the deformation
field observed by InSAR (Figure 3). The observed deformation field shows a velocity gradient greater than 1 mm/year per kilometer
where the modeled displacement field is essentially uniformly less than 2 mm/year.

In Area A, near the production wells, the shape of the modeled subsidence “bow!” (Figure 7) roughly mimics that observed by InSAR in
Sentinel-1 Track 42 (Figure 3). The modeled rate of vertical displacement, however, is significantly higher than the observed rate. To
quantify this difference, we consider the (relative) vertical displacement of a point located in the center of the geothermal field (near GPS
station SEMN) with respect to a point located at the southern edge of the geothermal field (near GPS station SEM S). This rate is —
28.2 + 0.1 mm/year in the model (Figure 8). The InSAR estimate is —7.5 = 0.2 mm/year, as estimated from InSAR data acquired between
2016-01-07 and 2022-06-04 in Sentinel-1 Track 42 without accounting for atmospheric effects (yellow circles in upper panel of Figure
6). The InSAR estimate agrees well with the value of —7.6 + 0.4 mm/year estimated from the GPS data between January 2021 and April
2022 by a least-squares fit (red points with error bars Figure 6). A realistic estimate of the uncertainty on both geodetic rates is more
likely to be of the order of 2 mm/year.

CONCLUSIONS

The shape of the modeled displacement field agrees approximately with that observed by InSAR near the producing wells at the center of
the geothermal field. The modeled rate of vertical displacement, however, agrees with that estimated from GPS and InSAR data only to
within a factor of four. Further tuning of the model parameters, especially spatial permeability, will be required to match the geodetic
observations.
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Table 1. Material properties for each set of elements.
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# name fieldName component scale unit
initialTemperature temperature NA 0 K
thermal_expansion_QTA rock_thermalExpansionCoefficient NA 1.50E-05 1/K
thermal_expansion_QAS rock_thermalExpansionCoefficient NA 1.50E-05 1/K
thermal_expansion_TPTS rock_thermalExpansionCoefficient NA 3.50E-05 1/K
thermal_expansion_TPTSPRIME rock_thermalExpansionCoefficient NA 3.50E-05 1/K
thermal_expansion_TRJN rock_thermalExpansionCoefficient NA 3.50E-05 1/K
thermal_expansion_TS rock_thermalExpansionCoefficient NA 3.50E-05 1/K
thermal_conductivity_x_QTA thermalCond_effectiveConductivity 0 2.5 W/(m*K)
thermal_conductivity_y_QTA thermalCond_effectiveConductivity 1 2.5 W/(m*K)
thermal_conductivity_z_QTA thermalCond_effectiveConductivity 2 2.5 W/(m*K)
thermal_conductivity_x_QAS thermalCond_effectiveConductivity 0 2.5 W/(m*K)
thermal_conductivity_y_QAS thermalCond_effectiveConductivity 1 2.5 W/(m*K)
thermal_conductivity_z_QAS thermalCond_effectiveConductivity 2 2.5 W/(m*K)
thermal_conductivity_x_TPTS thermalCond_effectiveConductivity 0 3 W/(m*K)
thermal_conductivity_y TPTS thermalCond_effectiveConductivity 1 3 W/(m*K)
thermal_conductivity_z_TPTS thermalCond_effectiveConductivity 2 3 W/(m*K)
thermal_conductivity_x_TPTSPRIME thermalCond_effectiveConductivity 0 3 W/(m*K)
thermal_conductivity_y TPTSPRIME thermalCond_effectiveConductivity 1 3 W/(m*K)
thermal_conductivity_z_TPTSPRIME thermalCond_effectiveConductivity 2 3 W/(m*K)
thermal_conductivity_x_TRIN thermalCond_effectiveConductivity 0 3 W/(m*K)
thermal_conductivity_y_TRIN thermalCond_effectiveConductivity 1 3 W/(m*K)
thermal_conductivity_z_TRIN thermalCond_effectiveConductivity 2 3 W/(m*K)
thermal_conductivity_x_TS thermalCond_effectiveConductivity 0 3 W/(m*K)
thermal_conductivity_y_TS thermalCond_effectiveConductivity 1 3 W/(m*K)
thermal_conductivity z_TS thermalCond_effectiveConductivity 2 3 W/(m*K)
Table 2. Boundary conditions for H, T, and M.

# name fieldName component setNames scale units functionName
xconstraint totalDisplacement 0 Xneg;xpos;yneg;ypos 0 m NA

yconstraint totalDisplacement 1 Xneg;xpos;yneg;ypos 0 m NA

zconstraint totalDisplacement 2 zneg 0 m NA

edge_pressure hydrostatic yneg;ypos . . edge_pressure
edgeTemperature relative temperature yneg;ypos 0 degC NA

faultTemperature relative temperature fault_se_zneg 0 degC NA

well_42_21 temperature relative temperature well_42_21 -94.3 degC NA
well_43_21_temperature relative temperature well_43_21 -94.3 degC NA
well_53_21_temperature relative temperature well_53_21 -94.3 degC NA

well_25A_21 mass flux well_25A_21 987 kg/s well_25A_21
well_75B_16 mass flux well_75B_16 926 kg/s well_75B_16
well_76_16 mass flux well_76_16 931 kg/s well_76_16
well_42_21 mass flux well_42_21 -987 kg/s well_42_21
well_43_21 mass flux well_43_21 -987 kg/s well_43_21
well_53_21 mass flux well_53_21 -987 kg/s well_53_21
well_61_21 mass flux well_61_21 923 kg/s well_61_21



Feigl and WHOLESCALE Team

FIGURES
84-20
A B c
| 258-21 18A-21 SW
el il i OW-15 3521 17A-21
58-33 3 Phillips ST1 53-21
1500 OW-12 “acusine sedments &%ﬂf&'@;ﬁm Kosmos 1-9 SE-2 75-16| 75B-16 OWP 61-21 42-21 25A-21 18-21
! I e e - . 51-16 76-16 |ON-8 |sp-21|//43-21 |/25-21 17-21 | 78-20
— —
Bl B - e =
E and rhyolitic tuff , }— S !
5 500 —
g
= 0 0
0 ght step of Lake Range
-500
0 1000 2000 3000 4000 5000 6000 7000

Distance (m)

Figure 1: Vertical cross section of conceptual model of WHOLES CALE study area at San Emidio, showing geologic units (color),
wells (vertical line segments, black where cased, white where open, red where tapping feed zone), and contours of “native state”
temperature (red curves) (Folsom et al., 2020). The cross section follows the two black line segments shown in map view (lower
panel) with a bend at point B. Names of wells are indicated (highlighted in yellowif drilled since 2020).



Feigl and WHOLESCALE Team

abs(vert disp rate wrt GARL) > 3 sigma (min = -9.2 max = 2.0) [mm/year]
insar/ SANEM/ARIA/T42/MINTPY _pyaps velocity.hb

RN

Y [km]

—~

~

!
N

| | 1 1 | o | /\' 1 - J | N L
5 6 7 8 9 10 11 12 13
X [km]
abs(vert disp rate wrt GARL) > 3 sigma
0O GPSSEMN
@ GPSSEMS
XGPS GARL

Contour interval = 1 mm/year

10

-2

-8

-10

Figure 2. Map of the rate of vertical displacement estimated from InS AR data acquired between 2016 and 2022 by the S entinel-1
satellite mission in Track 42. The rate of vertical displacement has been estimated using MintPy, neglecting atmospheric effects.
The rates mapped in colors are referred to the median of the values for pixels locatednear GPS station GARL. Upward motion
(relative uplift) appears as reddish colors, downward motion (relative subsidence) appears as blueish colors. Note the different
color scales in each panel. Colors show only rates with an absolute value greater than 3 times their formal standard deviation.
Symbols show GPS stations SEMS (yellow square), SEMN (magenta circle), and GARL (green star). Contour interval is 1

mm/year. Coordinates are in km with respect to an origin at UTM (Easting, Northing) = (286.924, 4457.967) [km].
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Figure 3. Map of the rate of vertical displacement estimated from InS AR data acquired between 2016 and 2022 by the S entinel-1
satellite mission in Track 64. Plotting conventions as in previous figure.
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Figure 5. Time series of relative vertical displacement estimated from InS AR and GPS data for a pointlocated near GPS station
SEMN with respect to a point locatednear GPS station SEMS. The InS AR data were acquired by the Sentinel-1 satellite mission
in Track 42 (upper panel) and Track 64 (lower panel). In each panel, the yellow circles connected by black line segments
represented the displacement at the date of each InSAR acquisition. In each panel, the blue line best fit to the InSAR data
estimated using unweightedleast squares. The black line shows the rate of vertical displacement estimated from the InS AR data
by MintPy, neglecting atmospheric effects. The red points with 1-¢ error bars show the vertical component of displacement
measured from GPS data analyzed by the Nevada Geodetic Laboratory at the University of Nevada-Reno (Blewitt et al., 2018;
Kreemeretal., 2020). The magenta line shows the best fit to the GPS data estimated using weightedleastsquares. The GPS data
and estimates are identical in both panels. The Y-intercepts of the GPS and InS AR data sets are arbitrary.
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Figure 6. Time series of relative vertical displacement estimated from InS AR data acquired by the Sentinel-1 satellite mission in
track 64 (yellow circles connected by black line segments). The three panels show results estimated using three different
approaches for mitigating atmospheric effects: (upper panel) height-correlation; (middle panel) neglecting atmospheric effects,
and (lower panel) PyAPS with meteorologic data. In each panel, the blueline best fit to the InS AR data estimated using unweighted
leastsquares. The black line shows the rate of vertical displacement estimated from the InS AR data by MintPy. The red points
with 1-¢ error bars show the vertical component of displacement measured from GPS data analyzed by the Nevada Geodetic
Laboratory at the University of Nevada-Reno (Blewittet al.,2018; Kreemer et al., 2020). The magenta line shows the best fit to
the GPS data estimated using weightedleast squares. The GPS data and estimates are identical in both panels. The Y-intercepts
of the GPS and InS AR data sets are arbitrary.
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Figure 7. Map view of rate of vertical displacement as calculatedby a GEOS simulation of a T-H-M model startingin 2010. Red
and blue triangles indicate production and injection wells. Other symbols show GPS stations SEMS (yellow square), SEMN
(magenta circle), and GARL (gray asterisk).
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Figure 8. Time series of vertical displacement in millimeters of a point located near GPS station SEMN with respect to a point
located near GPS station SEMS as calculatedby a GEOS simulation of a T-H-M model.
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