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ABSTRACT 

Geothermal energy has a crucial role to assist the transition towards sustainable energy sources. To ensure its efficient and safe use, it is 

mandatory to have a thorough understanding of the subsurface and relevant pyhsico-chemical processes, along with the capabilities of 

addressing and quantifying related uncertainties of the material properties. However, to carry out such an assessment is comp utationally 

challenging because of the need to resolve models with higher resolutions in space and time and the desire to consider nonlinear processes 
described by coupled partial differential equations. Machine learning methods have gained popularity for the construction of surrogate 

models, which facilitate to address these computational challenges. Nevertheless, machine learning also encounters major challenges in 

producing explainable and rigorous models as required in the field of geosciences, especially in areas where we need to provide 

predictions. In this work we present how the non-intrusive reduced basis method can effectively address the aforementioned challenges  

when applied to complex coupled nonlinear multi-physics applications. In a nutshell, the non-intrusive reduced basis method is a hybrid 
approach that combines elements of physics-based and data-driven methods, thereby mitigating the limitations of each individual 

approach. Throughout the paper, we rely on a designated geothermal case study in Northeast Germany and compare our approach against 

more classical data-based approaches.  We further discuss how the obtained surrogate model can be used for intensive parameter 

investigations in the form of global sensitivity analyses and uncertainty quantification. 

1. INTRODUCTION  

Reliable estimates of the subsurface state (e.g., temperature and pressure distributions in space and time) are essential for an efficient and 

sustainable usage of the earth’s resources. To evaluate, for instance, the variability of the economic output of a geothermal installation, it 

is desirable to not only have an estimate of the temperature distribution but also of its potential ranges. However, to obtain such estimates 

with quantified uncertainties poses many challenges (Degen et  al., 2023; van Zelst et al., 2022). The subsurface is a highly heterogeneous  
porous medium and the associated physical processes are described mathematically in terms of nonlinear and tight coupled PDEs. 

Additionally, any reservoir analysis requires the scientist to consider extensive spatial and temporal domains boosting the dimensionality 

of the forward problems (Cacace and Jacquey, 2017; Kohl et al., 1995; O'Sullivan et al., 2001; Steefel et al. 2015; Turcotte and Schubert,  

2002, van Zelst et al., 2022). This entails that, in order to carry out reliable predictions, forward simulations need to be evaluated many 

times within a computationally very demanding analysis. 

Typical (geothermal) reservoir simulations require hours of computing time even if upfronted against state-of-art high-performance 

computing (HPC) infrastructures. This makes extensive and probabilistic analysis prohibitive (Degen et al., 2022; Degen et al., 2023; van 

Zelst et al., 2022). An alternative is to rely on surrogate models. A surrogate model is a low-dimensional representation of the originally  

high-dimensional problem, which enables to keep the general characteristics of the latter model (Degen et al., 2023; Hesthaven et al.,  

2016; Hesthaven and Ubbiali, 2018, Swischuk et al., 2019). Dimensionality reduction translates into lower computational costs, allowing, 
in turn, extensive probabilistic analysis. The caveat here is that surrogate models also come with their own challenges. One of such 

challenges, being the subject of our contribution, is to preserve the physical characteristics while performing the lower dimensional 

approximation to the original problem (Degen et al., 2023). 

In this paper, we discuss benefits and limitations of different surrogate modeling techniques. Of particular interest is the difference between 

purely data-driven and physics-based machine learning methods. In doing so we compare the results from classical neural network 
methods (NN) for the data-driven side against the non-intrusive reduced basis (RB) for the physics-based side, for which we also discuss 

how it differs from other popular methods such as Physics-Informed Neural Networks (Raissi et al., 2019). The main focus is to investigate 

both the capabilities of the surrogate models to preserve the physical relationship and to (re)produce explainable models.  

As a note of caution, the comparison is performed having large-scale geothermal simulations as preferential target. These applications are 

characterized by a good understanding of the fundamental driving physics and rely on sparse data sets. We therefore apply our methods 

to a real-case study for which we use the geothermal site of Groß Schönebeck located in the North-East of Germany close to Berlin. 

2. MATERIALS AND METHODS 

In the following, we briefly present the case study of this paper including the relevant governing physical equations. In a second step, we 

discuss the employed methodologies, i.e. the physics-based machine learning approach and global sensitivity analyses. 
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Our choice to target the Groß Schönebeck reservoir (Cacace et al., 2021; Jacquey et al., 2018) stems from the fact that it exhibits all 
aforementioned challenges of geothermal simulations, being i) high dimensionality from a heterogeneous material distribution, and ii) 

nonlinear coupled multiphysics process (Degen et al., 2022a). Specifically, we focus on a particular application, that is to match via the 

models the far-field pressure response observed in a monitoring well (E GrSk 3_90 denoted in blue in Figure 1a) during the stimulation 

of the companion well (E GrSk 4_05 denoted in red in Figure 1a) which are set approximately 500 m apart (Zimmermann et al., 2010). 

The two wells are drilled inside the main reservoir layers consisting of siliciclastic sandstones (Elbe base sandstone I) for E GrSk 3_90 
and volcanics for E GrSk 4_05 (Jacquey et al., 2018; Zimmermann et al., 2010). Therefore, to construct the surrogate models we allow 

for a variation in the permeabilities and porosities of those two geological units. Furthermore, we also consider variations in the thermal 

expansion coefficient α and solid bulk modulus κ to investigate the potential impact of the coupled thermal and mechanical components 

on the pressure response. The investigated parameter ranges are listed in Figure 1b. 

The numerical problem we face is a classical thermo-hydro-mechanical (THM) application. Simulations are performed relying on the 

software GOLEM (Cacace and Jacquey, 2017). GOLEM is an open-source, high-performance finite element solver built on the MOOSE 
Framework (Lindsay et al., 2022). For the fluid pressure pf the mass and momentum balance are considered. Therefore, the final equation 

describing the pressure evolution reads as (Cacace and Jaquey, 2017): 

1

𝑀𝑏

𝜕𝑝𝑓

𝜕𝑡
+ 𝛻 ∙ 𝑞𝐷 = 0, 𝑤𝑖𝑡ℎ 𝑞𝐷 =  −

𝑘

𝜇𝑓
 (𝛻𝑝𝑓 − 𝜌𝑓𝑔).          (1) 

In equation 1, the Biot modulus is indicated by Mb, the time by t, the permeability by k, the fluid dynamic viscosity by μ, the density by 

ρ, and the gravitational acceleration by g. The subscript f denotes the fluid component.   

The temperature is computed by solving an equation derived from the conservation of energy as (Cacace and Jaquey, 2017): 

(𝜌𝑐)𝑏
𝜕𝑇

𝜕𝑡
+ 𝛻 ∙ ((𝜌𝑐)𝑓 𝑞𝐷 𝑇 −  𝜆𝑏𝛻𝑇) = 0.          (2) 

Here, c denotes the specific heat capacity, T the temperature, λ the thermal conductivity, and the subscript b the bulk component.  

Solid deformation is computed relying on an effective stress σ’ formulation under a static momentum balance approximation (Cacace 

and Jaquey, 2017):  

 

𝛻 ∙ (𝜎 ′ −  𝛽𝑝𝑓𝛪) + 𝜌𝑏𝑔 = 0,            (3) 

where, β is the Biot coefficient, and I the rank-tow identity matrix. 

2.1. Physics-Based Machine Learning 

The goal of our study is to compare data-driven and physics-based machine learning methods in their ability to construct reliable surrogate 

models for nonlinear coupled geothermal applications. For the data-driven method, we rely on NNs. Given that a NN is a well-known and 
established methodology, we do not further introduce the basics here. Readers seeking details regarding neural networks are referred to 

Abidoun et al. (2018) and Gupta (2013). 

As the physics-based machine learning method, we employ the non-intrusive reduced basis (NI-RB) method, which combines physics-

based modeling concepts and machine learning techniques (Degen et al., 2023; Hesthaven and Ubbiali, 2018; Swischuk et al., 2019). The 

NI-RB method is a modification of a rigorous proven physics-based modeling approach, namely the reduced basis (RB) method (Benner 

Figure 1: a) Geological model for the case study of Groß Schönebeck including the response well 3_90 (denoted i n blue). b) 

Parameter ranges for the material properties of the numerical model (modified after Degen et al., 2022a). 
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et al., 2015; Hesthaven et al., 2016; Hesthaven and Ubbiali, 2018) which relaxes some limitations of the RB method to efficiently construct 
surrogate models for nonlinear and potentially hyperbolic partial differential equations (Degen et al., 2023; Hesthaven and Ubbiali, 2018). 

Therefore, the NI-RB method shares the same basic concept as its intrusive counterpart but relies on machine learning techniques to assist 

the final projection instead of the Galerkin method. The construction of surrogate models through the NI-RB method is a two-step 

procedure (Degen et al., 2023; Hesthaven and Ubbiali, 2018). 

First, a proper orthogonal decomposition (POD), solving an eigenvector problem, is performed on a precomputed data set containing in 
our case 150 simulations of the pressure response in the monitoring well, which are denoted as snapshots. The POD aims to cap ture the 

dominant physical behavior in the form of basis functions. The dimensionality reduction is achieved, by performing a truncation, where 

only the basis functions corresponding to the largest eigenvalues are considered. The approximation error that is acceptable for a given 

application varies on a case base and can be defined via a tolerance (ε) through (Degen et al., 2022a; Degen et al., 2023; Hesthaven and 

Ubbiali, 2018; Swischuk et al., 2019): 

∑ 𝜎𝑖
2𝑟

𝑖=1

∑ 𝜎𝑖
2𝑁

𝑖=1

≤ 𝜀,             (4) 

where σ denotes the eigenvalue, r the reduced dimension, and N the total number of training samples. 

Afterwards, a neural network (or other machine learning method) is used to calculate the corresponding weight of each of the basis 

functions. Hence, the reduced solution urb can be expressed as (Degen et al., 2022a; Degen et al., 2023; Hesthaven and Ubbiali, 2018; 

Swischuk et al., 2019):  

𝑢𝑟𝑏(𝜇) = ∑ 𝜃𝑟𝑏
(𝑖)(𝜇)𝜓𝑖 .𝑟

𝑖=1            (5) 

Here, urb is the reduced solution, θrb the reduced coefficients (also referred to as weights), and ψ the basis functions. The machine learning 

method constructs a mapping from the input parameters, being a material property, to the reduced coefficients, which are obtained through 

the matrix product of the basis functions and the training snapshots. Consequently, the surrogate model is a linear combination of basis 

functions and their associated weights as illustrated in Figure 2. 

2.2. Global Sensitivity Analysis 

In this paper, we use a variance-based Sobol sensitivity analysis (Sobol, 2001; Saltelli,2002; Saltelli et al., 2010) performed with the 

Python library SALib (Herman and Usher, 2017) to investigate the sensitivity of the pressure response in the monitoring well to variations 
in the targeted material properties. Since we consider a nonlinear application, we perform a global sensitivity analysis (SA) given that 

local sensitivity analyses hold only for linear problems (Degen et al., 2022a; Saltelli et al., 2019; Wrainwright  et al., 2014). The challenge 

here is the computational cost. Global SAs often require 100,000’s of forward evaluations (Degen et al., 2021; Degen et al., 2022a). For 

a Sobol sensitivity analysis, we obtain first-order and higher-order sensitivity indices. In the case of higher-order indices, we evaluate the 

total-order index. The first-order index describes the influence of the parameter itself and is expressed as the ratio of the variance of the 
parameter to the total variance. In contrast, the total-order sensitivity indices describe the influence of the parameters themselves plus any 

correlation between them (Degen et al., 2021; Sobol, 2001; Wrainwright et al., 2014). 

3. RESULTS 

To evaluate the potential of the NI-RB method versus data-driven NN approaches, we first investigate the behavior of both techniques 

concerning the construction of the surrogate models, and, afterwards, in terms of their predictability and their capabilities  of preserving 
the governing physical equations. Finally, we demonstrate the benefits of the surrogate model in cases of, for instance, global sensitivity 

analyses and uncertainty quantification.  

3.1. Construction and Cost of the Surrogate Models 

For the case study of Groß Schönebeck, we use 150 simulations THM simulations to obtain the corresponding pressure response in the 

monitoring well to use as the training data. These 150 simulations all have a different combination of model parameters within the ranges  
defined in Figure 1b. To obtain these 150 sets of input parameters, we use a Latin Hypercube sampling (LHS) method. The validation 

POD

Projection

Input Hidden Layers Output

e.g., (Deep) Neural Network

Reduced 
Order Model

POD modes for the temperature:

… …
Full Order 

Model

Diffusive Term
(“low frequency 

information”)

Advective Terms
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information”)

Figure 2: Schematic Representation of the non-intrusive reduced basis method (modified after Degen et al., 2023) 
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data set consists of 50 simulations, for which we use a random sampling strategy to better determine potential biases in the training through 
the validation data set. We use the pressure difference (overpressure) instead of the absolute pressure values, meaning that we first subtract 

the initial pressure state from all responses. Both the training and validation data set have been derived in a previous study (Degen et al.,  

2022a,b).  

In order to obtain optimized network architectures for both surrogate model techniques, we use a Bayesian optimization method with 

hyperbands (Falkner et al., 2018). The hyperparameters are listed in Table 1., We observe relatively comparable architectures , with a 
slightly deeper network infrastructure for the NI-RB than for the NN method. However, these differences are likely random since a large 

amount of possible combinations of hyperparameters exist and only parts of these combinations can be tested. 

Table 1: List of the hyperparameters for the both surrogate model methods 

Hyperparameter NN Surrogate Model NI-RB Surrogate Model 

Number of hidden layers 4 5 

Number of neurons per hidden layer 9 (hl1), 48 (hl2), 46 (hl3), 44 (hl4) 22 (hl1), 48 (hl2), 7 (hl3), 33 (hl4), 19 (hl5) 

Number of epochs 48,689 42,315 

Learning rate 7.630・10-3 6.801・10-4 

Batch Size 87 97 

Loss function Sigmoid Sigmoid 

Optimizer Adam Adam 

 

Comparing next the root mean squared errors for both approaches, we again obtain very similar values. The surrogate model resulting 

from the NI-RB method has a slightly lower error for the training data with 8.59・10-8 MPa2 compared to the 1.10・10-7 MPa2 of the NN 

method. However, the error of the validation data is slightly higher with 2.61・10-5 MPa2 instead of 2.65・10-5 MPa2.  

First differences become apparent when comparing the computational costs, Table 2. The construction time of the surrogate model is 

about 32 % more costly for the NN than for the NI-RB method. This difference stems from the different dimensionality of the training 

data required by the two approaches. Only using the neural network results in a dimension of 71 x 150, where 71 corresponds t o the 

number of time steps and 150 to the number of realizations. For the NI-RB method, the dimension lowers to 5 x 150, with 5 being the 

number of basis functions. Note that if we investigate not only the temporal changes within a monitoring well but the temporal changes  
in the entirety of the model, we would consider the number of nodes in a model instead of the number of time steps. The number of nodes 

is potentially much higher than the number of timesteps yielding even higher time differences between the NI-RB and the NN method as 

shown in Degen et al. (2023) and Santoso et al. (2022). 

Table 2: Computational Cost of both surrogate models 

 Construction Cost (Offline Cost) 

[s] 

Model Loading [ms] Prediction Cost (Online Cost) 

[ms] 

NN Surrogate Model 195  330 2 

NI-RB Surrogate Model 148 370 2 

3.2. Predictability of the Surrogate Models 

Global error measures, as the root mean square error, return one error value for the entire solution over all realizations in the training and 

validation data set, respectively. This makes it difficult to evaluate whether certain parts of the response are better evaluated than others, 

which downgrades the prediction quality. To compare how both techniques perform in terms of their predictability and the preservation 

of the characteristic physical behavior, we look at the responses of four randomly chosen realizations from the validation data set (Fig. 3). 
In Figure 3a we observe that both the NN surrogate model (solid colored curves) and the NI-RB surrogate model (dashed colored curves) 

predicts relatively well the full finite element solutions (dotted colored curves). Differences between the surrogates and the full-order 

models are smaller than those between the full-order model and the observation data (solid black curves). Based on these first results, one 

could conclude that both surrogate model techniques perform equally well for the case study at hand. By a closer inspection of the predicted 

pressure response, we notice some major differences. To highlight and explain these differences, we display the pressure resp onses for 

different material properties individually in Fig. 3b-d.  
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In these figures, four distinct areas are marked (i to iv). Inspecting area i, common to all realizations, we can make the following 
observations. We observe a first stage of negligible pressure response for the finite element simulation, which is matched by the NI-RB 

surrogate model but not by the NN surrogate model that instead predicts a sudden pressure increase followed by a pressure decrease to 

zero magnitude. Right after the phase of a constant pressure response, we notice a piecewise linear increase in the pressure. Again, this is 

well captured by the NI-RB surrogate model. Although the NN surrogate model is able to predict pressure values that are close to the full-

order response values, it also showcases systematic differences. The NN surrogate model cannot reproduce the smooth solution that is 

characteristic of the response in this phase of the simulation. Instead, we obtain a rather “oscillating” pressure behavior. 

Similar observations can be made for area ii. This area spans between approximately 0.5 and 1.2 days and is characterized by a subtly and 

mostly linearly decreasing pressure response. As before, the NI-RB surrogate model is able to match both magnitudes and characteristic 

shape of the pressure response. The predictions by the NN surrogate model exhibit again an oscillating behavior, which is esp ecially 

pronounced in Figure 3c. 

Area iii spans a time interval between 2.1 and 2.8 days, an interval where we observe the largest variations in the pressure response 

(induced by changes in the material properties). For this area, we again observe a similar behavior of the NN surrogate model 

approximation as in areas i and ii. Furthermore, the NN surrogate has also larger problems fitting the pressure values than t he NI-RB 

surrogate model, as seen in Figures 3b and 3c. 

Lastly, we briefly discuss the findings for area iv, which occurs for the realization shown in Fig. 3c. For this specific realization the NN-

surrogate model is not able to match the pressure response, two observed pressure peaks. Worth noticing is that this mismatch is observed 

in several other realizations (not shown here). At the same time, the NI-RB model cannot match the exact magnitude of the peak for all 

realizations of the validation data set. In general, we observe that the NI-RB model underestimates the pressure magnitudes at the peak 

Observation data
FE simulation

NN simulation
NI-RB simulation

a) b)

i) ii)

iii)

FE simulation
NN simulation

NI-RB simulation

c)

i) ii)

iii)

iv)FE simulation
NN simulation

NI-RB simulation

FE simulation
NN simulation

NI-RB simulation

d)

i) ii)

iii)

Figure 3: a) Comparison of the NN surrogate model, the NI-RB, surrogate model, and the FE-simulation. Shown are four 

randomly chosen realizations of the validation data set indicated by the colored lines. The observational data is plotted as 

a solid black line. Close up comparison of both surrogate models and the full -order model for the b) fifth, c) seventeenth, 

and d) twenty-fourth realization of the validation data set. 
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response, whereas the NN surrogate model overestimates them. It is important to note that the difference of the NN surrogate model with 

respect to the full-order model is more pronounced than the differences between the NI-RB surrogate and the full solution. 

3.3. Parameter Estimation 

 As discussed in the Introduction the need for surrogate models arises because we typically need to solve the governing equations not only 

once but numerous times in order to investigate which material properties have the highest impact on the model response and/or to quantify 

model uncertainties. In a previous study for Groß Schönebeck (Degen et al., 2022a), this was achieved by performing a global sensitivity 
analysis and an uncertainty quantification by performing a Markov chain Monte Carlo analysis. In this paper, we instead focus on the 

suitability of different surrogate model techniques. In the previous section, we have discussed how the NI-RB method is better suited for 

the construction of surrogate models than their data-driven counterparts.  

 

Here, we want to briefly present the benefits of this methodology for further analyses (Fig, 4) both in terms of computational gains and 

knowledge increase. 

The computational cost associated with the NI-RB model solutions is in the milliseconds range, whereas the finite element simulation 

requires 1.5 h on an HPC infrastructure, this yields a speed-up of six orders of magnitude for a single forward evaluation. For the global 

sensitivity analysis (Fig. 4a), we require 1.4 million forward evaluations, which would equal to about 70 min to obtain all results. To 

perform the entire global SA we only require 11 s. This is because we rely on the back projection from the reduced to the full space. The 

solution of the full space is obtained by multiplying the basis functions with their corresponding weights. This can be formulated as a 
matrix, which enables us to perform the multiplication for all realizations at once. This additional computational gain however depends  

� kES� φES φVRkVR

� = 5・10-2

Observation data

Reference

Posterior mean 
95 % Quantile

a)

b)

Figure 4: a) Global Sensitivity Analysis, b) Uncertainty Quantification for the case study 

of Groß Schönebeck (modfied after Degen et al., 2023) 
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on the type of analysis. Global SAs are fully parallelizable in contrast to the employed uncertainty quantification (Fig. 4b). Since the 
Markov chain Monte Carlo analysis is dependent on the previous result, we can take only advantage of the speed-up of the individual 

forward evaluations, meaning that we require 20 min for 300,000 evaluations. This is still orders of magnitude faster than using the finite 

element model, which would require about 50 computing-years for the same analysis. 

So, both analyses would not be feasible without the use of a surrogate model. However, the gain is not only in the computational speed-

up, as showcased in Fig. 4b. The green curve, i.e. the reference solution, has been obtained in a previous study based on a “trial-and-error” 
model calibration (Jacquey et al., 2018), representing our best estimate of the subsurface pressure response prior to the uncertainty 

quantification (UQ). Through performing the UQ, we not only obtain a better estimate (solid orange curve in Fig 4b) but in addition can 

determine the probability of this estimate (dashed orange curves in Fig. 4b). 

4. DISCUSSION 

The results show that it is possible to obtain physically meaningful surrogate models for geothermal applications to enable multi-query 
investigations, such as global sensitivity analysis and probabilistic inversions. In the previous section, we compared the surrogate models  

obtained by both a data-driven and a physics-based machine learning approach. Although both result in comparable global errors, we 

notice major differences in their ability to predict the physical behavior of the system. The data-driven surrogate model is not able to 

capture the smooth behavior of the physics and exhibits deviations oscillating around the full-order solution, which does not derive from 

the governing equations. The NI-RB method on the other hand is able to capture the entire characteristic of the simulations. 

This difference in the pressure predictions is essential for applications where guarantees on the accuracy of the model are needed to be 

addressed as, for instance, safety concerns. This is particularly important for applications such as geothermal energy utilization and 

predictability of potential induced seismicity, but also other application fields such as nuclear waste disposal and natural hazards. 

Furthermore, for these applications, it is crucial to have explainable models to understand the underlying processes and evaluated 

consequences also for scenarios that might “live” outside the training data sets (extrapolation). Explainable models will not be retrievable 
by using only a neural network. However, the non-intrusive reduced basis method produces explainable models. The model consists of 

basis functions and corresponding weights. The basis functions capture the characteristic physical behavior and the weights determine 

which of these characteristic physical responses dominate the overall state distribution. To give an example, if we apply the method to a 

convective heat transfer simulation, the first basis function typically corresponds to the diffusive/ conductive part of the solution, whereas 

the higher-order basis functions characterize the advective component (Fig. 2). 

For applications exhibiting higher variations in the state responses because of the material properties, we furthermore obtain the advantage 

that physics-based machine learning methods can predict the solution with smaller data sets than data-driven methodologies (Degen et al., 

2023; Raissi et al., 2019; Santoso et al., 2022). This is especially important considering the high computational cost involved in solving a 

complex coupled partial differential equation (PDE). 

In this contribution, we presented the non-intrusive reduced basis method as our physics-based machine learning method. Many other 
physics-based machine learning methods exist, as for instance Physics-Informed Neural Networks (PINNs). PINNs share with the NI-RB 

method the advantage that they require less data to predict the solutions (Raissi et al., 2019). In the case of PINNs, this is due to relying 

on the PDE as a constraint in the loss function, which yields a faster convergence since the amount of admissible solutions is also reduced 

(Raissi et al., 2019). However, as been demonstrated in previous studies (Santoso et al., 2022), PINNs still require a higher amount of 

data than the NI-RB method and they phase some challenges in predicting the solutions for transient nonlinear processes (Chuang and 
Barba, 2022). Independent of these points, PINNs also share some limitations as classical neural networks, when it comes to producing 

explainable and physically consistent models since the PDE is only one of possibly many constraints in the loss function (Degen et al.,  

2023). 

5. CONCLUSION 

To conclude, in contrast to data-driven machine learning methods the non-intrusive reduced basis method is able to reconstruct the 
response up to the desired accuracy and is additionally able to preserve the characteristic of the physical equations. Furthermore, we obtain 

explainable surrogate models. Both the aspect of the preservation and the explainability of the surrogates are crucial in app lications where 

we mainly rely on the understanding of the physical processes and the need to perform predictions. 

Independent of the question of the reliability of the different surrogate models, we demonstrate that the physics -based machine learning 

model is computationally cheaper to construct than its data-driven counterpart. This is further enhanced by the general trend of data-driven 

methods requiring more data than hybrid approaches, so combinations of physics-based and data-driven methodologies. 

Finally, we illustrate the benefits of surrogate models for extensive probabilistic parameter estimation studies, which would be otherwise 

extremely computationally demanding. These analyses yield significant improvements in our model and system understanding, allowing 

us to improve the predictions of, for instance, the potential of geothermal installations. 
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