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ABSTRACT 

Electromagnetic (EM) heating is a promising approach for the efficient storage of renewable energy derived from sources like photovoltaic 
solar and wind power within aquifers. In this study, we delve into the dynamics of how this captured energy elevates the temperature of a 
representative deep aquifer over a six-month period, as well as the extent to which this stored energy can be subsequently recovered during 

the following six months. 

Our approach involves injecting water into the aquifer at a constant flow rate while concurrently subjecting it to high-frequency 
electromagnetic microwaves generated at the water's natural resonance frequency of 2.45 GHz. To comprehensively describe this intricate 
interplay between reservoir flow and EM heating, we employ Darcy's and energy balance equations. Notably, the energy balance equation 

incorporates a source term to account for the propagation and absorption of EM waves, which are modeled independently using Maxwell's 
equations. For a more simplified model, we analytically solve these equations. 

The analytical estimates are rigorously benchmarked against numerical simulations, utilizing data from prior controlled laboratory 
experiments documented in the literature. Our results demonstrate the considerable efficacy of down-hole EM heating as an innovative 

method for storing renewable energies, offering a viable solution to mitigate the inherent intermittency associated with these sources. This 
research contributes to the evolving landscape of sustainable energy storage solutions. 

1. INTRODUCTION 

In the past decade, the significance of solar and wind energy has grown significantly due to societal pressure to reduce CO 2 emissions 

from natural hydrocarbon use. However, the intermittent nature of solar and wind energy poses a challenge, as their peak generation times 
do not align with the high energy consumption periods in buildings, especially during colder seasons Dorsey-Palmateer (2019). 

To address this issue, Aquifer Thermal Energy Storage (ATES) stores heated water in the subsurface, enhancing the efficiency of the 
terrestrial energy system Dickinson et al., (2009). ATES involves cyclic operations between summer and winter, extracting cold water in 

summer for cooling and reinjecting it in the aquifer, while in winter, the process is reversed for heating Sommer (2015). Hybrid energy 

systems, combining low enthalpy geothermal sources with wind or solar energy, have been explored for increased efficiency Kastner et 
al., (2017), Lau et al., (2019). However, there is a lack of data and models for high-depth applications. 

Recently, subsurface Electromagnetic (EM) heating was introduced as a novel approach for energy storage in deep aquifers Almeida et 

al., (2022)a, see Fig. 1. Unlike traditional methods, EM heating is less affected by reservoir heterogeneity, allowing uniform heat 
distribution Cerutti et al., (2013). Experiments have shown faster and more efficient heating than traditional methods, with reduced thermal 
losses Eskandari et al., (2015), Jha et al., (2011), Mukhametshina and Martynov (2013). However, the impact of EM propagation on 
energy storage efficiency and the role of various energy losses in the context of geothermal sources remain less understood. Previous 

studies on EM heating focused on polluted soil cleanup and enhanced oil recovery Bera and Babadagli, (2015), Chhetri and Islam (2008), 

Hasanvand and Golparvar (2014), Paz et al., (2017), Pizarro and Trevisan (1990), Sahni et al., (2000), Shafiai and Gohari (2020). The 
present paper aims to explore these aspects, considering deep reservoirs and the potential for increased renewable energy usage. 
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Figure 1: Schematic representation of Electromagnetic-assisted Water Flooding. 

The present paper focuses on developing the analytical solution for a simplified model describing high-temperature ATES. Analytical 

solutions are of scientific interest because they reveal, more generally than empirical numerical simulations, the relationships between 

system parameters and outcomes of interest, such as the thermal recovery efficiency Tang and Rijnaarts (2023). 

We organized the paper as follows. Section 2 provides the mathematical model. Section 3 presents an analytical solution to the simplifie d 
model. In Section 4, the numerical methods are formulated. Section 5 focuses on validating the presented approach with direct numerical 
simulations. Section 6 presents a study of the efficiency of the energy recovery for different values of thermal losses. Finally, Section 7 

gives some conclusions. 

2. MODEL 

In what follows, we introduce the mathematical model describing Electromagnetic-assisted Water Flooding (EMAWF), representing a 
two-dimensional extension of the model employed in Almeida et al., (2022)a, with EM energy absorption modeled through Maxwell's 

equations. 

2.1. Energy Balance Equation 

Following Almeida et al., (2022)a,b, Chen et al., (2006), Paz et al., (2017) we write the total energy balance equation as:  

 𝐶𝑡(𝑆𝑤)𝜕𝑡𝜃 + 𝐶𝑙(𝑆𝑤)𝐮 ⋅ ∇𝜃 = 𝐾𝑡(𝑆𝑤)Δ𝜃 + 𝐻𝑙(𝜃 − 𝜃0 ) + 𝑊, (1) 

where 𝑢 represents the Darcy velocity. The coefficients in (1) can be described as the total specific heat of the system (𝐶𝑡(𝑆𝑤)), the total 

specific heat of the fluids (𝐶𝑙(𝑆𝑤)), the total thermal conductivity of the system (𝐾𝑡(𝑆𝑤)), thermal losses coefficient 𝐻𝑙, and the total 

source of electromagnetic energy (𝑊). Following Almeida et al., (2022)a, these coefficients are given by:  

 𝐶𝑡(𝑆𝑤) = (𝜌𝑤 𝜙𝑆𝑤 + 𝜌𝑠 (1 − 𝜙)𝑐𝑠), (2) 

 𝐶𝑙(𝑆𝑤) = (𝜌𝑤 𝑐𝑤)𝑆𝑤, (3) 

 𝐾𝑡(𝑆𝑤) = 𝜙((𝐾𝑤)𝑆𝑤) + 𝐾𝑠 (1 − 𝜙)), (4) 

where 𝐾𝛽  is the thermal conductivity, 𝑐𝛽 is the specific heat, 𝜌𝛽  is the density, sub-index 𝛽 = 𝑤, 𝑠 refers to water, and solid phases. 

Following Paz et al., (2017), the coefficients above can be described as total specific heat of the system (𝐶𝑡(𝑆𝑤)), the total specific heat 
of the fluids (𝐶𝑙(𝑆𝑤)), the total thermal conductivity of the system (𝐾𝑡(𝑆𝑤)), and the total source of electromagnetic energy (𝑊). We 

consider these three coefficients constant as in Almeida et al., (2022)a. Table 1 presents these parameter values estimated for 𝑆𝑤 = 1. 

The EM energy absorption (volumetric heat dissipation) function is given by  

 𝑊 =
𝑃0

2𝜋ℎ
(

2𝛼

𝑟
+

1

𝑟2
) 𝑒−2𝛼(𝑟−𝑟𝑤) , (5) 

where 𝑃0 is the incidence power and 𝐴 = (2𝜋𝑟𝑤ℎ) is the cross-sectional area normal to the radial direction of a right circular cylinder, 
with 𝑟𝑤 the wellbore radius, ℎ is the thickness (radial) and 𝛼 is the attenuation factor (absorption coefficient). Its derivation is based on 
Maxwell's equations, encompassing Faraday's Law, Ampere's Law, Gauss's Laws, and uses the average Poynting vector; see Almeida et 

al., (2022)a, for details. 

To estimate the heat transfer rate 𝑞 [W] per unit of time within the material in the vertical direction we follow Eq. (1) combining it with 

Fourier's thermal conduction law, yielding:  

 𝑞 = 𝐾𝑡𝐴𝑑𝑧𝜃, (6) 
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where 𝐾𝑡  is the thermal conductivity [W/(m K)], and 𝐴 [m 2] is the area of the cross-section perpendicular to the flow's direction. By 
equating the total energy loss from (6) for a reservoir of dimensions 𝐿 × 𝐿 × ℎ (length, width, and height), using the linear thermal loss 

coefficient 𝐶𝑙, we obtain 𝐻𝑙 = 𝐾𝑡/ℎ2. 

Table 2: Physical parameters used in calculations, see Almeida et al., (2022)a, Paz et al., (2017), Sudiko (2014), Viswanath et al., 

(2007). 

  Sym   Physical quantity   Value   Unit (SI)  

 𝛼   water EM energy absorption   4.185e-01   [1/m]  

𝜀0   vacuum electric permittivity   8.854e-12   [F/m]  

𝜀   medium electric permittivity   81   [F/m]  

𝜃0    initial temperature   308.15   [K]  

𝑘𝑟𝑤
0    final point water relative permeability   0.25   [-]  

𝑘   permeability   500   [mD]  

𝜇0   vacuum magnetic permeability   4𝜋e-07   [H/m]  

𝜇𝑟   medium magnetic permeability   1   [H/m]  

𝜙   porosity   0.220   [-]  

𝜌𝑠    porous media density   2.650e03   [Kg/m 3]  

𝜌𝑤    water density   997   [Kg/m 3]  

𝜎   medium conductivity   0.02   [S/m]  

𝜔   angular frequency   2𝜋𝑓   [rad/s]  

𝑐𝑠   PM specific heat capacity   0.920e03   [J/Kg.K]  

𝑐𝑤   water specific heat capacity   4.2e03   [J/Kg.K]  

𝑓   frequency   2.45   [GHz]  

ℎ   reservoir thickness   1   [m]  

𝑟𝑤   wellbore radius   0.135   [m]  

𝐴   cross-sectional area of EM incidence   0.82   [m 2]  

𝐶𝑡   system specific heat   2.82   [MJ/m 3.K]  

𝐶𝑙   total fluid specific heat   4.19   [MJ/m 3.K]  

𝐾𝑡    total system thermal conduc.   1.92   [W/m.K]  

𝐿1,2   reservoir length and width   40   [m]  

𝐾𝑠   PM thermal conductivity   2.30   [W/m.K]  

𝐾𝑤   water thermal conductivity   0.58   [W/m.K]  

𝑃   power of the EM emitter   250   [kW]  

 

3. ANALYTICAL SOLUTIONS 

We now seek analytical solutions for the simplified version of the Energy Balance Equation (1). 

 

3.1. Dimensionless energy balance equation 

First we rewrite the energy balance equation (1) in the dimensionless form by substituting  

 𝑡̃ =
𝑡

𝑡∗
,    𝑥̃ =

𝑥

𝑥∗
,    𝑦̃ =

𝑦

𝑦∗
,    𝑇̃ =

𝜃−𝜃0

Δ𝜃∗
,    𝑡∗ =

𝜙𝐿

|𝑢|
,     (7) 
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 𝑥∗ = 𝐿1 ,    𝑦∗ = 𝐿2,    𝐿 = max{𝐿1, 𝐿2},    Δ𝜃 ∗ = 𝜃0 . (8) 

The resulting equation is:  

 𝜕𝑡𝑇 + ∇ ⋅ (𝑣𝑇) = 𝑏Δ𝑇 + 𝑐𝑇 + 𝑑𝑊, (9) 

where  

 𝑏 =
𝐾𝑡𝑜𝑡 𝜙

𝐶𝑡𝑜𝑡 𝐿|𝐮|
,    𝑐 =

𝐶𝑡𝑒𝑟𝜙𝐿

𝐶𝑡𝑜𝑡|𝐮|
,    𝑑 =

𝐾𝑒𝑚𝜙𝐿𝑆𝑤

𝐶𝑡𝑜𝑡 |𝐮|Δ𝜃∗
, (10) 

and  

 𝑣 = (𝑣1 , 𝑣2) = (
𝐶𝑙𝑖𝑞𝜙2 𝑢1

𝐶𝑡𝑜𝑡|𝐮|
,

𝐶𝑙𝑖𝑞𝜙2 𝑢2

𝐶𝑡𝑜𝑡|𝐮|
). (11) 

3.2. ENERGY BALANCE 

To explore the energy balance relation (9), we consider the initial data 𝑇(𝑥, 𝑦, 0) = 𝑇0 = 0 in the rectangular domain 0 ≤ 𝑥 ≤ ∞ and 

−∞ ≤ 𝑦 ≤ ∞. Applying the transformation Polyanin (2001) given by  

 𝑇(𝑥, 𝑦, 𝑡) = 𝑒(𝜓𝑡+𝛿1𝑥+𝛿2𝑦)𝑤(𝑥, 𝑦, 𝑡), (12) 

with 𝛿1 = 𝑣1 /2𝑏, 𝛿2 = 𝑣2/2𝑏, and 𝜓 = 𝑐 − 𝑣1
2/4𝑏 − 𝑣2

2/4𝑏, the system (9) is rewritten as  

 {

𝑤𝑡(𝑥, 𝑦, 𝑡) = 𝑏Δ𝑤(𝑥, 𝑦, 𝑡) + Φ(𝑥, 𝑦, 𝑡),
𝑤(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦),

𝑤(0, 𝑦, 𝑡) = 𝑔(𝑦, 𝑡),
 (13) 

where Φ(𝑡, 𝑥, 𝑦) = 𝑑𝑊𝑒−(𝜓𝑡+𝛿1𝑥+𝛿2𝑦) and 𝑓 = 𝑇0 𝑒−(𝛿1𝑥+𝛿2𝑦). 

We solve (13) using Duhamel's principle, which involves solving a simplified system of equations.    

 Case1:    {

𝑤𝑡(𝑥, 𝑦, 𝑡) = 𝑏Δ𝑤(𝑥, 𝑦, 𝑡) + Φ(𝑥, 𝑦, 𝑡),
𝑤(𝑥, 𝑦, 0) = 0,

𝑤(0,0, 𝑡) = 0.
 (14) 

 Case2:    {

𝑤𝑡(𝑥, 𝑦, 𝑡) = 𝑏Δ𝑤(𝑥, 𝑦, 𝑡),
𝑤(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦),

𝑤(0,0, 𝑡) = 0.
 (15) 

 Case3:    {

𝑤𝑡(𝑥, 𝑦, 𝑡) = 𝑏Δ𝑤(𝑥, 𝑦, 𝑡),
𝑤(𝑥, 𝑦, 0) = 0,

𝑤(0, 𝑦, 𝑡) = 𝑔(𝑦, 𝑡).
 (16) 

The Duhamel method involves the individual resolution of each system and subsequently combining their solutions to achieve the 
complete solution, Evans (2010). In this process, it is imperative to carefully select the initial and boundary conditions for each resulting 

system, playing a crucial role in the comprehensive definition of the problem at each stage. While solving each system, specific 
mathematical methods and suitable techniques are applied to address the unique characteristics of each isolated component. The 
subsequent step involves the integration of the solutions from individual systems, resulting in the complete solution of Eq. (13). This 

approach proves particularly effective when dealing with dynamic or evolving problems, enabling a more accessible analysis by breaking 

down the complexity into more manageable parts. Following this procedure, it follows that  

 

𝑤(𝑥, 𝑦, 𝑡) = ∫
∞

0 ∫
∞

−∞ 𝑓(𝜉, 𝜂)𝐺(𝑥, 𝑦, 𝜉, 𝜂, 𝑡) 𝑑𝜂 𝑑𝜉

+𝑏 ∫
𝑡

0 ∫
∞

−∞ 𝑔(𝜂, 𝜏) [
𝜕

𝜕𝜉
𝐺(𝑥, 𝑦, 𝜉, 𝜂, 𝑡 − 𝜏)]

𝜉=0
 𝑑𝜂 𝑑𝜏

+ ∫
𝑡

0 ∫
∞

0 ∫
∞

−∞ Φ(𝜉, 𝜂, 𝜏)𝐺(𝑥, 𝑦, 𝜉, 𝜂, 𝑡 − 𝜏) 𝑑𝜂 𝑑𝜉 𝑑𝜏.

 (17) 

Here Green's function associated with System (3.2) is given by:  

 
𝐺(𝑥, 𝑦, 𝜉, 𝜂, 𝑡) =

1

4𝜋𝑏𝑡
[exp (−

(𝑥−𝜉)2+(𝑦−𝜂)2

4𝑏𝑡
) − exp (−

(𝑥+𝜉)2+(𝑦−𝜂)2

4𝑏𝑡
)] .

 (18) 



Almeida, Zitha and Chapiro 

 5 

4. NUMERICAL SOLUTIONS 

To ensure the accuracy of the analytical estimates, we compare our results with their numerical counterpart. This comparison serves as a 

crucial step to ensure quality, ensuring that the theoretical foundations captured by analytical methods align harmoniously with the 

practical approximations derived from numerical techniques. 

We employ a numerical approach utilizing the Galerkin Least-Squares Finite Element Method (GLS-FEM) (see Hughes et al., (1989)) for 
solving Equations (1). The GLS-FEM combines the accuracy of the standard Galerkin method with the stability of the Least Squares 
method, demonstrating exceptional efficiency, especially in scenarios characterized by high convection and low diffusion, Lube and Weiss 

(1995). 

4.1. Galerkin Least-Squares Finite Element Method 

We consider the boundary value problem (9) with boundary conditions given by:  

 −𝐧 ⋅ ∇𝑇 = 𝑞(𝑇 − 𝑔𝐷) − 𝑔𝑁,    𝑇 ∈ 𝜕Ω, (19) 

where Ω is a closed domain with boundary 𝜕Ω, and the real numbers 𝑔𝐷, 𝑔𝑁, and 𝑞 determine the boundary conditions used: Robin, 

Dirichlet, or Neumann. In the case defined in (13), the corresponding values are 𝑔𝐷 = 0, 𝑔𝑁 = 0, and 𝑞 = 0. 

Following the GLS-FEM formulation, the discrete solution of Equation (9) is given by the linear combination of the test basis functions 

𝜑𝑖:  

 𝑇ℎ = 𝜉1 (𝑡)𝜑1(𝑥, 𝑦) + 𝜉2(𝑡)𝜑2(𝑥, 𝑦)+. . . +𝜉𝑙(𝑡)𝜑𝑙(𝑥, 𝑦), (20) 

where 𝑇ℎ  is a piecewise function in the Hilbert space 𝐻1, and 𝜉𝑖 = 𝜉𝑖(𝑡) must be determined for 𝑖 ∈ {1,2,3, . . . , 𝑙}. Considering the 

differential operator 𝐿 = 𝜕𝑡 + ∇ + Δ, the weak formulation for Eq. (9) is given by:  

 
〈𝐿𝑇ℎ , 𝜑𝑖 + 𝛿𝐿𝜑𝑖〉 = 〈𝑇ℎ + 𝑊, 𝜑𝑖 + 𝛿𝐿𝜑𝑖〉,

〈𝐿𝑇ℎ , 𝜑𝑖〉 + 𝛿〈𝐿𝑇ℎ , 𝐿𝜑𝑖〉 = 〈𝑇ℎ , 𝜑𝑖〉 + 〈𝑊, 𝜑𝑖〉 + 𝛿〈𝑇ℎ , 𝐿𝜑𝑖〉 + 𝛿〈𝑊, 𝐿𝜑𝑖〉,
 (21) 

where the parameter 𝛿 is taken to increase the method's accuracy and varies according to the coefficients of Equation (9). Details about 

the method and how to estimate 𝛿 can be found in Hughes et al., (1989). 

Finally, the ordinary differential equation is solved by using the implicit Euler method Strikwerda (1989). 

5. VALIDATION OF THE ANALYTICAL APPROACH 

We simulated the dimensionless Eq. (9) to validate the analytical estimates. As an illustration, we showcase a configuration with a 

horizontal well featuring one EM wave emitter; see Fig. 2. The EM emitter, located at position (−2,20), possesses a power of 𝑃 and is 
mathematically modeled by Eq. (5). The initial state of the reservoir is saturated with water at room temperature 𝜃0 , and the parameter 
values as detailed in Table 1. Temperature considerations involve implementing a Dirichlet boundary condition on the well bore perimeter 

(𝜃(0, 𝑦, 𝑡) = 𝜃0 ) and Neumann null boundary conditions elsewhere, following the approach outlined in Alomair et al., (2014).  

 

Figure  2: Schematic representation of the reservoir with two horizontal wells and one EM emitter used for estimate validation. 

   

The analytical solution, detailed in Subsection 3.2, is plotted in Fig. 3. On the other hand, the numerical solution employs the discrete 
formulation outlined in Subsection 4.1 and is shown in Fig. 4.  



Almeida, Zitha and Chapiro 

 6 

  

  

Figure 3: Analytical solution for temperature dis tribution 

along the reservoir after three months injection. 

      

  

Figure 4: Numerical solution for temperature distribution 

along the reservoir after three months injection. 

We refine the spatial mesh to assess the numerical implementation's convergence. Table 2 provides the distance between the numerical 

and analytical solutions using the standard 𝐿2 norm. The relative distance is calculated as (∥ 𝜃𝐴 − 𝜃𝑁 ∥)/∥ 𝜃𝐴 ∥× 100, where 𝜃𝑁 

represents the numerical solution, and 𝜃𝐴 corresponds to the analytical solution. Notably, reducing the diameter of the elements by half 
results in a fourfold increase in the total number of elements. The implemented algorithm exhibits quadratic behavior, aligning with the 

data presented in the table.   

Table  2: Numerical method's convergence showing different meshes and corresponding errors for temperature field.  

  Mesh   312   1248  

 Relative Error   12,8%   2.7% 

 

Examining analytical and numerical solutions for the temperature distribution along the reservoir after six months of injection has provided 

valuable insights into the convergence behavior of the numerical method across different mesh resolutions. Fig. 3 illustrates the analytical 
solution, while Fig. 4 showcases the numerical solution. Table 2 summarizes the results, indicating that for a mesh containing 312 triangles, 
the relative error concerning the analytical solution was 12.8%. Increasing the mesh complexity to 1248 triangles demonstrates a 
substantial improvement, with the relative error reduced to 2.7%. These findings underscore the sensitivity of the numerical solution to 

the mesh employed, showcasing the convergence of the method as the mesh is refined. The comparative plot between the analytical and 
numerical solutions represents the disparities and similarities between the results. 

 

6. RESULTS 

In this section, we discuss the process of storing and recovering energy generated by the electromagnetic emitter located within the aquifer. 
We consider three cases. In the first one, we do not consider thermal losses within the aquifer, thus setting the term 𝐻𝑙 = 0 in Eq. 1. For 

the second one, we provide a realistic estimate for the thermal loss coefficient 𝐻𝑙. Finally, we consider an overestimate for 𝐻𝑙 
corresponding to more significant thermal losses. 

We consider a cycle consisting of storage and energy recovery phases, each lasting 6 months. During the storage phase, water at ambient 
temperature (300 K) is continuously injected. A constant velocity field towards the water-injected well is assumed with horizontal well 

configuration; see Fig. 2. The energy recovery phase commences immediately after the storage period. In this phase, the injection flow is 
reversed; that is, the extraction well becomes the injector, and the previously used injector becomes the extractor. This premise is justified 
by observations in Figs. 5-10, where we can note that the heat profile near the injection well in phase 1 is higher. All the data used can be 
found in Table 1.  
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Figure 5: Analytical solution for temperature distribution 

along the reservoir after six months of energy storage 

disregarding thermal losses inside the reservoir. 

 

Figure 6: Analytical solution for temperature distribution 

along the reservoir after six months of energy recovery 

disregarding thermal losses inside the reservoir. 

 

       

  

Figure 7: Analytical solution for temperature distribution 

along the reservoir after six months of energy storage with 

estimated thermal losses inside the reservoir. 

  

Figure 8: Analytical solution for temperature distribution 

along the reservoir after six months of energy recovery with 

estimated thermal losses inside the reservoir. 

 

  

Figure 9: Analytical solution for temperature distribution 

along the reservoir after six months of energy storage with 

estimated thermal losses inside the reservoir five times 

greater. 

  

Figure 10: Analytical solution for temperature distribution 

along the reservoir after six months of energy recovery with 

estimated thermal losses inside the reservoir five times 

greater. 
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In Table 3, in Case 1, it was observed that by disregarding thermal losses (𝐻𝑙 = 0), the total amount of electromagnetic energy emitted 

and stored amounted to 134 GW. It is worth noting that, in this context, the aquifer fully absorbed all emitted electromagnetic energy 

during the storage phase, converting it into heat, as illustrated in Fig. 5. From this total, 100 GW could be recovered, justified by the fact 
that, at the end of the recovery phase, the aquifer retains a portion of the stored energy residually, as evidenced in Figure 6. The efficiency 

in this case is 74%. 

For Case 2, where the estimated thermal loss coefficient was 𝐻𝑙 = 0.02, there was a thermal loss in energy storage of 5 GW, as shown in 

Fig. 7. This loss, combined with residual loss, see Fig. 8, resulted in a lower recovery of the total stored energy (96 GW) and, consequently, 

an efficiency of only 68% in the cycle. 

For Case 3, an evaluation was conducted with an overestimating thermal losses, doubling the coefficient (𝐻𝑙 = 0.04). In this scenario, the 
energy stored in the reservoir decreased to 122 GW. Upon analyzing the temperature profile, Fig. 9, it was found that the energy recovered 

at the end of the cycle was 78 GW, resulting in an efficiency of 58% of the total emitted. This considers both thermal and residual losses 
in the reservoir, as illustrated in Fig. 10. 

Table  3: Efficiency in recovering the stored energy (injection per cycle ≈  𝟏𝟑𝟒  𝐆𝐖). 

  Thermal loss coeff.   Stored En.   Recovered En.   Efficiency 

 𝐻𝐿 = 0.00   134   100   74%  

𝐻𝐿 = 0.02   129   92   68%  

𝐻𝐿 = 0.04   122   78   58%  

 

7. CONCLUSIONS 

To further motivate the investigation of high-temperature energy storage (HT-ATES) in deep, high-temperature aquifers, we proposed 

simplifying the model presented in the literature, allowing an analytical solution taking into account the thermal losses. This solution is 
in agreement with numerical simulations. The following main conclusions can be drawn from this study:   

 The obtained analytical solution evidence a stable thermal front spreading the energy through the aquifer with temperatures 

below the boiling point.  

 The recovery efficiency, even with the overestimated heat losses, is up to 58% and agrees with the literature, see Almeida et 
al., (2022)a. The efficiency values are comparable with the low-temperature ATES, as reported in the literature.  
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