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ABSTRACT

Electromagnetic (EM) heating is a promising approach for the efficient storage of renewable energy derived from sources like photovoltaic
solar and wind power within aquifers. In this study, we delve into the dynamics of how this captured energy elevates the temperature of a
representative deep aquifer over a six-month period, aswell as the extent to which this stored energy can be subsequently recovered during
the following six months.

Our approach involves injecting water into the aquifer at a constant flow rate while concurrently subjecting it to high-frequency
electromagnetic microwaves generated at the water's natural resonance frequency of 2.45 GHz. To comprehensively describe this intricate
interplay between reservoir flow and EM heating, we employ Darcy's and energy balance equations. Notably, the energy balance equation
incorporates a source term to account for the propagation and absorption of EM waves, which are modeled independently using Maxwell's
equations. For a more simplified model, we analytically solve these equations.

The analytical estimates are rigorously benchmarked against numerical simulations, utilizing data from prior controlled laboratory
experiments documented in the literature. Our results demonstrate the considerable efficacy of down-hole EM heating as an innovative
method for storing renewable energies, offering a viable solution to mitigate the inherent intermittency associated with these sources. This
research contributes to the evolving landscape of sustainable energy storage solutions.

1. INTRODUCTION

In the past decade, the significance of solar and wind energy has grown significantly due to societal pressure to reduce CO, emissions
from natural hydrocarbon use. However, the intermittent nature of solar and wind energy poses a challenge, as their peak generation times
do not align with the high energy consumption periods in buildings, especially during colder seasons Dorsey-Palmateer (2019).

To address this issue, Aquifer Thermal Energy Storage (ATES) stores heated water in the subsurface, enhancing the efficiency of the
terrestrial energy system Dickinson et al., (2009). ATES involves cyclic operations between summer and winter, extracting cold water in
summer for cooling and reinjecting it in the aquifer, while in winter, the process is reversed for heating Sommer (2015). Hybrid energy
systems, combining low enthalpy geothermal sources with wind or solar energy, have been explored for increased efficiency Kastner et
al., (2017), Lau etal, (2019). However, there is a lack of data and models for high-depth applications.

Recently, subsurface Electromagnetic (EM) heating was introduced as a novel approach for energy storage in deep aquifers Almeida et
al, (2022)a, see Fig. 1. Unlike traditional methods, EM heating is less affected by reservoir heterogeneity, allowing uniform heat
distribution Cerutti etal., (2013). Experiments have shown fasterand more efficient heating than traditional methods, with reduced thermal
losses Eskandari et al., (2015), Jha et al., (2011), Mukhametshina and Martynov (2013). However, the impact of EM propagation on
energy storage efficiency and the role of various energy losses in the context of geothermal sources remain less understood. Previous
studies on EM heating focused on polluted soil cleanup and enhanced oil recovery Bera and Babadagli, (2015), Chhetri and Islam (2008),
Hasanvand and Golparvar (2014), Pazet al., (2017), Pizarro and Trevisan (1990), Sahni et al., (2000), Shafiai and Gohari (2020). The
present paper aims to explore these aspects, considering deep reservoirs and the potential for increased renewable energy usage.
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Figure 1: Schematic representation of Electromagne tic-assisted Water Flooding.

The present paper focuses on developing the analytical solution for a simplified model describing high-temperature ATES. Analytical
solutions are of scientific interest because they reveal, more generally than empirical numerical simulations, the relationships between
system parameters and outcomes of interest, such as the thermal recovery efficiency Tang and Rijnaarts (2023).

We organized the paper as follows. Section 2 provides the mathematical model. Section 3 presents an analytical solution to the simplifie d
model. In Section 4, the numerical methods are formulated. Section 5 focuses on validating the presented approach with direct numerical
simulations. Section 6 presents a study of the efficiency of the energy recovery for different values of thermal losses. Finally, Section 7
gives some conclusions.

2. MODEL

In what follows, we itroduce the mathematical model describing Electromagnetic-assisted Water Flooding (EMAWF), representing a
two-dimensional extension of the model employed in Almeida et al., (2022)a, with EM energy absorption modeled through Maxwell's
equations.

2.1. Energy Balance Equation
Following Almeida etal., (2022)a,b, Chen et al., (2006), Paz etal.,, (2017) we write the total energy balance equation as:

Ce(Sy)0:0 + Ci(Sy)u- VO = K (Sy)AB + H (0 —6y) + W, @)

where u represents the Darcy velocity. The coefficients in (1) can be described as the total specific heat of the system (C.(Sy,)), the total
specific heat of the fluids (C;(S,,)), the total thermal conductivity of the system (K;(S,,)), thermal losses coefficient H;, and the total
source of electromagnetic energy (W). Following Almeida et al., (2022)a, these coefficients are given by:

Ce(Sw) = (ow dSw + ps (1 — P)cs), 2
Ci(Sw) = (bwCw)Sw, 3)
K (Sw) = ¢ (Kw)Sw) + K (1 — ¢)), 4)

where Kg is the thermal conductivity, cg is the specific heat, pg is the density, sub-index B = w,s refers to water, and solid phases.
Following Paz et al., (2017), the coefficients above can be described as total specific heat of the system (C.(S,,)), the total specific heat
of the fluids (C;(S,,)), the total thermal conductivity of the system (K;(S,,)), and the total source of electromagnetic energy (W). We
consider these three coefficients constant as in Almeida et al., (2022)a. Table 1 presents these parameter values estimated for S, = 1.

The EM energy absorption (volumetric heat dissipation) function is given by

—Po (2¢ 1 —2a(r-ry)

_Znh(r +r2)e ’ Q)
where Py is the incidence power and A = (2rry, h) is the cross-sectional area normal to the radial direction of a right circular cylinder,
with 7, the wellbore radius, h is the thickness (radial) and « is the attenuation factor (absorption coefficient). Its derivation is based on
Maxwell's equations, encompassing Faraday's Law, Ampere's Law, Gauss's Laws, and uses the average Poynting vector; see Almeida et
al., (2022)a, for details.

To estimate the heat transfer rate g [W] per unit of time within the material in the vertical direction we follow Eq. (1) combining it with
Fourier's thermal conduction law, yielding:

q = K;Ad,0, 6)
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where K; is the thermal conductivity [W/(m K)], and A [m?] is the area of the cross-section perpendicular to the flow's direction. By
equating the total energy loss from (6) for a reservoir of dimensions L X L X h (length, width, and height), using the linear thermal loss
coefficient C;, we obtain H; = K, /h?.

Table 2: Physical parameters used in calculations, see Almeida et al., (2022)a, Pazet al., (2017), Sudiko (2014), Viswanath et al.,

(2007).

Sym Physical quantity Value Unit (SI)
a water EM energy absorption 4.185e-01 [1/m]
& vacuum electric permittivity 8.854e-12 [F/m]
€ medium electric permittivity 81 [F/m]
6o initial temperature 308.15 K]
k9, final point waterrelative permeability| 0.25 [-]
k permeability 500 [mD]
Uo vacuum magnetic permeability 4re-07 [H/m]
Uy medium magnetic permeability 1 [H/m]
) porosity 0.220 [-]
Ds porous media density 2.650e03 [Kg/m3]
D water density 997 [Kg/m3]
o medium conductivity 0.02 [S/m]
w angular frequency 2nf [rad/s]
Cs PM specific heat capacity 0.920e03 [J/KgK]
Cw water specific heat capacity 4.2¢03 [J/Kg.K]

frequency 2.45 [GHz]

h reservoir thickness 1 [m]
T wellbore radius 0.135 [m]
A cross-sectional area of EM incidence | 0.82 [m?]
Ce system specific heat 2.82 [MJ/m3 K]
C, total fluid specific heat 419 [MJ/m3 K]
K; total system thermal conduc. 1.92 [W/m.K]
Ly, reservoir length and width 40 [m]

s PM thermal conductivity 2.30 [W/m.K]
Ky water thermal conductivity 0.58 [W/m.K]

power of the EM emitter 250 [kW]

3. ANALYTICAL SOLUTIONS
We now seek analytical solutions for the simplified version of the Energy Balance Equation (1).

3.1. Dimensionless energy balance equation
First we rewrite the energy balance equation (1) in the dimensionless form by substituting

~ t ~ x ~ = 6-6 L
f=t x=% =X 7% 2
t* x* y* AB* |ul

(N
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x* = Ll’ y* = Lz, L= maX{Ll,Lz}, AG* = 90. (8)
The resulting equation is:
0;T +V-(T) = bAT + cT +dW, (O
where
— Keot P - CrerpL — Kem @LSy (10)
CrotLlul’ Ceotlul’ Crot|ulAf+
and
Cig®* Uy Cligd*uz
= =\—)—) 11
v=(01,v2) ( Ceotlul ” Ceorlul ) (D

3.2. ENERGY BALANCE

To explore the energy balance relation (9), we consider the initial data T'(x,y, 0) = Ty = 0 in the rectangular domain 0 < x < oo and
—o0 < y < oo, Applying the transformation Polyanin (2001) given by

T(x,y,t) = eWt+8x+8:3) y(y y, 1), (12)
with §; = v, /2b, §, = v,/2b,and P = ¢ — v 2/4p — vy 2 /4D, the system (9) is rewritten as

we(x,y,t) = bAw(x,y, t) + ®(x,y,t),
w(x,y,0) = f(x,y), (13)
w(0,y,t) =g, t),

where ®(t,x,y) = dWe~Wt+81X+8Y) and f = T,e~(81%+82Y),
We solve (13) using Duhamel's principle, which involves solving a simplified system of equations.

we(x,y,t) = bAw(x, y,t) + P(x, y,t),

Casel: {w(x,y,0)=0, (14)
w(0,0,t) = 0.
we(x,y,t) = bAw(x, y,t),

Case2: {w(x,y,0) = f(x,y), (15)
w(0,0,¢) = 0.

we(x,y,t) = bAw(x, y,t),
Case3: {w(x,y,0)=0, (16)
w(0,y,t) =g,0).

The Duhamel method involves the individual resolution of each system and subsequently combining their solutions to achieve the
complete solution, Evans (2010). In this process, it is imperative to carefully select the iitial and boundary conditions for eachresulting
system, playing a crucial role in the comprehensive definition of the problem at each stage. While solving each system, specific
mathematical methods and suitable techniques are applied to address the unique characteristics of each isolated component. The
subsequent step involves the integration of the solutions from individual systems, resulting in the complete solution of Eq. (13). This
approach proves particularly effective when dealing with dynamic or evolving problems, enabling a more accessible analysis by breaking
down the complexity into more manageable parts. Following this procedure, it follows that

wey, )= [y [ fEMGCC Y& t)dy dE
+b o LLgmole @y ene—o| _ dndr a7
+15 Jy I @@ n D6y, & n,t = 1) dn dE dr.
Here Green's function associated with System (3.2) is given by:

Gy, 6nt) =

soaeexp () e (- SHETE)) "
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4. NUMERICAL SOLUTIONS

To ensure the accuracy of the analytical estimates, we compare our results with their numerical counterpart. This comparison serves as a
crucial step to ensure quality, ensuring that the theoretical foundations captured by analytical methods align harmoniously with the
practical approximations derived from numerical techniques.

We employ a numerical approach utilizing the Galerkin Least-Squares Finite Element Method (GLS-FEM) (see Hughes et al., (1989)) for
solving Equations (1). The GLS-FEM combines the accuracy of the standard Galerkin method with the stability of the Least Squares
method, demonstrating exceptional efficiency, especially in scenarios characterized by high convection and low diffusion, Lube and Weiss
(1995).

4.1. Galerkin Least-Squares Finite Element Method
We consider the boundary value problem (9) with boundary conditions given by:

-n-VT =q(T—gp)—gn, T €0Q, (19)

where Q is a closed domain with boundary d(), and the real numbers gp, gy, and q determine the boundary conditions used: Robin,
Dirichlet, or Neumann. In the case defined in (13), the corresponding values are gp =0, gy =0, and g = 0.

Following the GLS-FEM formulation, the discrete solution of Equation (9) is given by the linear combination of the test basis functions
Pi:
Th =& O @1(x,y) + O 92 (x, Y) +.. .+ (O @i (%, Y), (20)

where Ty, is a piecewise function in the Hilbert space H?, and &; = &;(t) must be determined for i € {1,2,3,...,1}. Considering the
differential operator L = d, + V + A, the weak formulation for Eq. (9) is given by:

(LTh, @i + SLo;)
(LTh, @i) + 86(LTy, Lop;)

(Th + W, @; + 6Lo;),
(T, @i) + (W, @;) + 8(Ty, Lo;) + W, Lopy),

2y

where the parameter § is taken to increase the method's accuracy and varies according to the coefficients of Equation (9). Details about
the method and how to estimate & canbe found in Hughes etal., (1989).

Finally, the ordinary differential equation is solved by using the implicit Euler method Strikwerda (1989).

5. VALIDATION OF THE ANALYTICAL APPROACH

We simulated the dimensionless Eq. (9) to validate the analytical estimates. As an illustration, we showcase a configuration with a
horizontal well featuring one EM wave emitter; see Fig. 2. The EM emitter, located at position (—2,20), possesses a power of P and is
mathematically modeled by Eq. (5). The initial state of the reservoir is saturated with water at room temperature 6;, and the parameter
values as detailed in Table 1. Temperature considerations involve implementing a Dirichlet boundary condition on the well bore perimeter
(6(0,y,t) = 6y) and Neumann null boundary conditions elsewhere, following the approach outlined in Alomair et al., (2014).

Wwell

EM heater

Water Water

Aquifer Aquifer

Figure 2:Schematic representation of the reservoir with two horizontal wells and one EM emitter used for estimate validation.

The analytical solution, detailed in Subsection 3.2, is plotted in Fig. 3. On the other hand, the numerical solution employs the discrete
formulation outlined in Subsection 4.1 and is shown in Fig. 4.
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Figure 3: Analytical solution for temperature distribution  Figure 4: Numerical solution for temperature distribution
along the reservoir after three months injection. along the reservoir after three months injection.

We refine the spatial mesh to assess the numerical implementation's convergence. Table 2 provides the distance between the numerical
and analytical solutions using the standard L, norm. The relative distance is calculated as (Il 84 — 8N [I) /Il 64 IIx 100, where OV
represents the numerical solution, and 84 corresponds to the analytical solution. Notably, reducing the diameter of the elements by half
results in a fourfold increase in the total number of elements. The implemented algorithm exhibits quadratic behavior, aligning with the
data presented in the table.

Table 2: Numerical method's convergence showing different meshes and corresponding errors for temperature field.

Mesh 312 1248

Relative Error 12,8% 2.7%

Examining analytical and numerical solutions for the temperature distribution along the reservoir after six months of injection has provided
valuable insights into the convergence behavior of the numerical method across different mesh resolutions. Fig. 3 illustrates the analytical
solution, while Fig. 4 showcases the numerical solution. Table 2 summarizes the results, indicating that for amesh containing 312 triangles,
the relative error concerning the analytical solution was 12.8%. Increasing the mesh complexity to 1248 triangles demonstrates a
substantial improvement, with the relative error reduced to 2.7%. These findings underscore the sensitivity of the numerical solution to
the mesh employed, showcasing the convergence of the method as the mesh is refined. The comparative plot between the analytical and
numerical solutions represents the disparities and similarities between the results.

6. RESULTS

Inthis section, we discuss the process of storing and recovering energy generated by the electromagnetic emitter located within the aquifer.
We consider three cases. In the first one, we do not consider thermal losses within the aquifer, thus setting the term H; = 0 in Eq. 1. For
the second one, we provide a realistic estimate for the thermal loss coefficient H;. Finally, we consider an overestimate for H,
corresponding to more significant thermal losses.

We consider a cycle consisting of storage and energy recovery phases, each lasting 6 months. During the storage phase, water at ambient
temperature (300 K) is continuously injected. A constant velocity field towards the water-injected well is assumed with horizontal well
configuration; see Fig. 2. The energy recovery phase commences immediately after the storage period. In this phase, the injection flow is
reversed; that is, the extraction well becomes the injector, and the previously used injector becomes the extractor. This premise is justified
by observations in Figs. 5-10, where we cannote that the heat profile near the injection well in phase 1 is higher. All the data used canbe
found in Table 1.
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Figure 5: Analytical solution for temperature distribution
along the reservoir after six months of energy storage
disregarding thermal losses inside the reservoir.
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Figure 7: Analytical solution for temperature distribution
along the reservoir after six months of energy storage with
estimated thermal losses inside the reservoir.
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Figure 9: Analytical solution for temperature distribution
along the reservoir after six months of energy storage with
estimated thermal losses inside the reservoir five times
greater.
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Figure 6: Analytical solution for temperature distribution
along the reservoir after six months of energy recovery
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Figure 8: Analytical solution for temperature distribution
along the reservoir after six months of energy recovery with
estimated thermal losses inside the reservoir.
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Figure 10: Analytical solution for temperature distribution
along the reservoir after six months of energy recovery with
estimated thermal losses inside the reservoir five times
greater.



Almeida, Zitha and Chapiro

In Table 3, in Case 1, it was observed that by disregarding thermal losses (H; = 0), the total amount of electromagnetic energy emitted
and stored amounted to 134 GW. It is worth noting that, in this context, the aquifer fully absorbed all emitted electromagnetic energy
during the storage phase, converting it into heat, as illustrated in Fig. 5. From this total, 100 GW could be recovered, justified by the fact
that, at the end of the recovery phase, the aquifer retains a portion of the stored energy residually, as evidenced in Figure 6. The efficiency
in this case is 74%.

For Case 2, where the estimated thermal loss coefficient was H; = 0.02, there was a thermal loss in energy storage of 5 GW, as shown in
Fig. 7. This loss, combined with residual loss, see Fig. 8, resulted in a lower recovery of the total stored energy (96 GW) and, consequently,
an efficiency of only 68% in the cycle.

For Case 3, an evaluation was conducted with an overestimating thermal losses, doubling the coefficient (H; = 0.04). In this scenario, the
energy stored in the reservoir decreasedto 122 GW. Upon analyzing the temperature profile, Fig. 9, it was found that the energy recovered
at the end of the cycle was 78 GW, resulting in an efficiency of 58% of the total emitted. This considers both thermal and residual losses
in the reservorr, as illustrated in Fig. 10.

Table 3: Efficiency in recovering the stored energy (injection per cycle ~ 134 GW).

Thermal loss coeff. Stored En. Recovered En. Efficiency
H;=0.00 134 100 74%
H;, =0.02 129 92 68%
H; =0.04 122 78 58%

7. CONCLUSIONS

To further motivate the investigation of high-temperature energy storage (HT-ATES) in deep, high-temperature aquifers, we proposed
simplifying the model presented in the literature, allowing an analytical solution taking into account the thermal losses. This solution is
in agreement with numerical simulations. The following main conclusions canbe drawn from this study:

e  The obtained analytical solution evidence a stable thermal front spreading the energy through the aquifer with temperatures
below the boiling point.

e The recovery efficiency, even with the overestimated heat losses, is up to 58% and agrees with the literature, see Almeida et
al., (2022)a. The efficiency values are comparable with the low-temperature ATES, as reported in the literature.
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