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ABSTRACT  

High-resolution delineation of subsurface anomalies associated with geothermal reservoirs is a costly and significant geophysical and 

geological effort. We present a novel seismic tomographic approach that employs machine-learning traveltime picks obtained on 
distributed acoustic sensing (DAS) data recorded on existing telecommunication fibers located within the Long Valley caldera, California. 

Our imaging methodology can resolve the seismic features related to the shallow hydrothermal system present within the caldera. 

1. INTRODUCTION  

The identification of the subsurface structures where high-temperature fluids are present within geothermal systems is critical to 

developing an effective exploitation strategy of the heat sources for energy production (Huenges and Ledru, 2011; Dobson, 2016). 
Magnetotellurics methods can characterize shallow subsurface structures but  lack the resolution to characterize the connectivity between 

heat reservoirs or deep hydrothermal systems (Aizawa et al., 2009). On the other hand, seismic imaging methods can resolve the 

mesoscale velocity structures characterizing a geothermal system (Paulatto et al., 2022). However, the success of seismic imaging and 

monitoring efforts is contingent upon the spatial density of the deployed recording devices. 

In recent years, DAS deployed on telecom optical cables has shown the potential of recording seismic data with an unprecedented spatio-
temporal resolution that could not be achieved with conventional instruments (Ajo-Franklin et al., 2019).  A modern DAS instrument can 

transform up to 100 km of a telecom fiber into a dense array of channels with meter-level spacing, which is opening new opportunities 

for monitoring natural and induced earthquakes and characterizing subsurface structures by transforming the ever-expanding 

telecommunication infrastructure into sensing antennas (Zhan, 2020).  

Besides the deployment of DAS on telecom fibers, such technology can be employed on cables placed within boreholes, which permits 
the recording of deformation signals close to induced seismicity  (Jin and Roy, 2017). Such recordings enable the imaging of the natural 

or stimulated fracture network necessary to estimate rock permeability and monitor induced seismicity due to enhanced geothermal system 

(EGS) activities. Compared to conventional borehole instrumentation, DAS employs fiber cables that can withstand high-temperature 

environments (Ma et al., 2022), making this technology suitable for recording seismic signals during EGS operations. We developed a 
subsurface imaging workflow with km spatial resolution enabling the identification of high-temperature formations. Our methodology 

makes use of thousands of seismic channels in known locations obtained by converting existing optical fiber into sensitive acoustic sensors 

to achieve ultimate spatial resolution and AI-based algorithms to convert optical signals into geophysical parameters. We first describe 

the mathematical formulation of our tomographic workflow and then showcase a synthetic example where a low-velocity anomaly can be 

resolved by inverting traveltimes from subsurface events recorded with surface instruments. We then describe a field-data application of 
our approach on DAS data recorded using pre-existing telecommunication cables located in the Long Valley caldera, California. Our 

method can resolve the low-velocity features associated with the shallow hydrothermal systems, which are currently used for geothermal 

energy production. This field example demonstrates the potential for exploiting the existing fiber network for geothermal prospect 

exploration, which in turn would significantly decrease the cost of geophysical analysis. 

2. ADJOINT-STATE EIKONAL TOMOGRAPHY 

Within our tomography workflow, we consider the Eikonal equation to accurately model event traveltimes. For a given event at location 

xs, its traveltime field 𝛕 at any location x within the considered event is constrained by the following partial-differential equation:  

 ∇ ∙ ∇𝛕(𝐱) =
1

𝒗2(𝒙)
    𝑠. 𝑡.  𝛕(𝐱𝑠) = 0,      (1) 

where v represents the velocity field. Similarly, as well-known tomographic packages (Zhang and Thurber, 2006), we perform our 

methodology using a double-difference (DD) approach (Waldhauser and Ellsworth, 2000). Compared to these methodologies, however, 
our inversion scheme is matrix-free and based on non-linear optimization iterative schemes. We compute the necessary objective function 

gradients using the adjoint-state method applied to the Eikonal equation (Plessix, 2006; Li et al., 2013; Tong, 2021). By following a 

matrix-free approach during the optimization process, we can invert millions to billions of traveltime picks obtained using the thousands 

of channels composing any commonly deployed DAS arrays. Within a DD framework, the size of the considered least -squares matrices  

would be on the order of billions of elements, which on modern computational architectures would be impossible to invert within a 
reasonable time. For this reason, we implement our workflow using an operator-based optimization approach (Biondi et al., 2021). To 

alleviate the location and velocity structure trade-off, we perform the traveltime inversion in an alternate-direction fashion (Tong, 2021): 
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we first relocate the events for fixed P- and S-wave velocity structures, then we fix the earthquake locations and invert the P- and S-wave 
models. These two steps are alternated until convergence is reached based on locations and velocity model changes. For the relocation 

step, we minimize the following objective function: 

𝜙(𝑥𝑠 ) =
1

2
‖ [

 𝜆𝐴𝑰 
 𝜆𝐷𝐷𝑫   

] [𝒇𝒗(𝒙𝑠) + 𝝉0 − 𝝉𝑜𝑏𝑠]‖2
2 +

𝜖

2
‖𝒙𝑠 − 𝒙𝑠,0‖2

2,    (2) 

where 𝜆𝐴  and 𝜆𝐷𝐷 are the relative weights of the absolute and double-difference traveltime errors (Zhang and Thurber, 2006), 

respectively, 𝝉𝑜𝑏𝑠 are the observed P- and S-wave traveltimes, fv is the solution to equation 1 for a fixed velocity structure (White et 

al., 2020), 𝝉0 is event origin times, and D is the double-difference operator (Waldhauser and Ellsworth, 2000). The regularization term 

based on the initial event locations xs,0, and weight by the scalar 𝜖 is necessary to avoid inversion instabilities when 𝜆𝐴=0 (Waldhauser 

and Ellsworth, 2000). For each event, the optimal origin time is found at the beginning and at the end of the relocation process with the 

following equation: 

𝜏0
𝑗 =

1

𝑁𝑟

∑ [𝜏𝑜𝑏𝑠
𝑗,𝑘 − 𝑓𝑣

𝑗,𝑘(𝑥𝑠 )]𝑁𝑟
𝑘=1 ,     (3) 

where optimal origin time for the j-th event is simply the average of the traveltime residuals over the picked Nr stations. 

The velocity models are obtained by minimizing the following cost function: 

𝜓(𝑣) =
1

2
‖ [

𝜆𝐴𝐼 

 𝜆𝐷𝐷𝐷  
][𝑓𝑥𝑠

(𝑣) + 𝜏0 − 𝜏𝑜𝑏𝑠]‖2
2,     (4) 

where fxs is the Eikonal operator for fixed event locations xs. Smoothness in the model is imposed by applying a Gaussian filter to the 

computed gradient during the optimization process. We employ the Broyden–Fletcher–Goldfarb–Shanno (Liu and Nocedal, 1989) iterative 
scheme to minimize both objective functions and the iteration process is stopped when the considered model parameters are not changing 

significantly. 

 

Figure 1: Synthetic tomography test. (A) Initial velocity model where the sources and receivers considered are plotted as red stars 
and cyan triangles, respectively. (B) True subsurface model assumed for the synthetic test. (C) Velocity model retrieved by 

our tomographic Eikonal matrix-free algorithm. 

2.1 Synthetic example 

We test our tomographic workflow on a simple 2D synthetic test. We assume to obtain traveltimes from 11 events located at the bottom 

of the domain and recorded by a surface array with a channel distance of 50 meters (Figure 1a). The true velocity model contains a 
Gaussian low-velocity anomaly located in the center of the domain (Figure 1b), while our initial guess is a laterally invariant velocity field 

(Figure 1a). The smoothness of the model is achieved by applying a Gaussian filter of 2 km during the inversion process. The iterative 

process convergences after 26 iterations and achieves a traveltime matching of 0.1 ms on average starting from a maximum traveltime 



Biondi et al. 

 3 

error of approximately 6.6 s, highlighting the numerical accuracy of our inversion methodology. From the inverted model (Figure 1c), we 

can observe that our method can successfully image the missing anomaly despite underestimating the velocity decrease within its core. 

 

Figure 2: Area considered for the field experiment. Conventional stations are depicted by the blue triangles while the green line 

indicates the locations of the DAS channels. The earthquakes are indicated by the red dots whose sizes are proportional to 

their magnitude. The inset map shows the location of the study area. 

 

Figure 3: Representative example of traveltime picking. Strain recorded by the DAS arrays induced by a local event. The red and 

blue curves depict the P- and S-wave PhaseNet- DAS-picked traveltimes. 

2.2 Field example: Long Valley caldera 

We apply our tomographic workflow on DAS data recorded on two telecommunication fiber cables located in the Long Valley caldera 

(Figure 2), located in the Eastern Sierra, which is one of the largest calderas in the North American continent. This geological feature was 
formed approximately 767 ka by a single eruptive event that released 650 km3 of rhyolitic material into the atmosphere (Bailey et al., 

1976; Hildreth and Wilson, 2007). The hydrothermal system of this caldera has been producing geothermal energy since 1984 wit h a 

current capacity of 45 MW (Sorey et al., 1995). Our two DAS arrays are composed of more than 9000 channels covering an approximately 

100-km north-south transect across the caldera, whose locations are obtained using a precise tap -test methodology (Biondi et al., 2023a). 

Over a span of 12 months (between November 2020 and November 2021), we recorded more than 6000 local and regional events as p art 
of the catalog maintained by the Northern California Earthquake Data Center (NCEDC) Waldhauser and Schaff (2008). From these events, 

we select 843 earthquakes whose signal-noise ratio (SNR) on the DAS data is on average approximately 40 dB. We estimate the SNR of 

each event by computing the noise and signal energy using 2-second and 0.8-second windows before and after the initially predicted P-

wave traveltime, respectively. 
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Figure 4: Initial Long Valley caldera properties. Long Valley subsurface properties extracted from the initial 3D model at two 
different depth levels with respect to the mean sea level. (A and C) S -wave wave speed perturbation with respect to a 

reference 1D velocity model. (B and D) Vp/Vs ratio for the same depth slices. 

Accurate arrival times play a crucial role in any efficient and successful tomographic process. To obtain such traveltimes  from DAS data, 

we utilized a machine-learning (ML) algorithm to precisely capture more than 12 million arrival times for P- and S-waves called PhaseNet-

DAS (Zhu et al., 2023). In comparison to tables generated from conventional seismic arrays, even those with high density, DAS data 
yields arrival time tables with a substantially larger number of picks—by 2 to 3 orders of magnitude—posing a computational challenge 

for existing tomographic methodologies. Figure 3 displays an example of traveltime picking for a local event recorded on our DAS array. 

Using a cross-correlation methodology and assuming Gaussian distributed traveltime picking errors (Li et al., 2023), we estimate picking 

errors of our ML approach to have standard deviations of 49.5 ms and 99 ms for P- and S-wave, respectively. 

To initialize our tomographic workflow for this field dataset, we employ velocity models based on full waveform inversion of surface 
waves between 6 and 20 s Lee et al. (2014). The panels in Figure 4 depict the VS anomalies (relative to a 1D velocity model) and the 

VP/VS ratio for two depth slices. In these panels, a single anomaly centered within the caldera is visible, with no discernible small-scale 

features. 

 

Figure 5: Inverted Long Valley caldera properties from fiber tomography. Long Valley subsurface properties extracted from our 

fiber-tomography results for the same depth levels as in Figure 4. (A and C) S -wave wave speed perturbation with respect 

to a reference 1D velocity model. (B and D) Vp/Vs ratio for the same depth slices. 

After applying our tomographic workflow (Figure 5), the shallow structures are resolved, particularly well for shallow depths . In 

particular, two kilometric-scale low velocities anomalies with a high VP/VS ratio (greater than 1.8) are imaged within the bounds of the 
caldera. These features are likely associated with the shallow hydrothermal system currently utilized for geothermal energy p roduction. 

Their locations align with previously identified resistivity anomalies from magneto-telluric methods and the presence of surface 

hydrothermal springs Pakiser et al. (1960); Peacock et al. (2015). A more detailed discussion of the system-scale images and their scientific 
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implications is provided in Biondi et al. (2023b). This field-data example demonstrates the efficacy of our approach to resolving the 

hydrothermal system commonly present within volcanic calderas. 

3. CONCLUSIONS  

We introduce an innovative matrix-free and computationally efficient adjoint traveltime tomography workflow. The mathematical 

formulation is outlined, and a synthetic example showcases the method's capability to delineate subsurface velocity anomalies  using 

seismicity, whether natural or induced, recorded by surface seismic instrumentation. To illustrate its potential in geothermal geophysical 
exploration, we apply this methodology to seismic data obtained through DAS units deployed on telecommunication fibers within  the 

Long Valley caldera. Our approach yields high-resolution images of the shallow hydrothermal system, offering valuable insights for 

guiding geothermal energy exploitation. Leveraging both natural seismicity and existing telecommunication infrastructure, this method 

has the potential to significantly reduce geophysical exploration costs in geothermal energy projects. 
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