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ABSTRACT 

We investigate the application of autoregressive time-series models in predicting the subsurface temperature of a low-temperature, 
geothermal heat exchange (GHX) system. We use subsurface temperature data from 2596 152-m-deep boreholes in a 280 m by 360 m, 

cooling-dominated, district-scale GHX field in the Midwest region of the United States. We monitored the temperature for over seven 

years via the deployment of fiber-optic distributed temperature sensing (FO-DTS). This study aims to impute a two-year gap in 

temperature measurements using the first three years of data and test the out -of-sample performance of three forecasting models. We use 

autoregressive time series forecasting models (including ARIMA and Holt -Winters Triple Exponential Smoothing) to forecast subsurface 
temperature using previously observed time series patterns. To predict subsurface temperature, we define the forecast model w ith three 

exogenous variables—air temperature, humidity, and the energy exchanged for heating and cooling the campus buildings. We observe 

that the best MSE value among all the models is 0.0100 oC2 for a prediction horizon of one month and 0.0665 oC2 for a horizon of six 

months using the Holt-Winters smoothing. Findings showcase a gradual, seasonal rise in subsurface temperature and offer valuable 
insights for designing more efficient GHX systems, conducting improved energy balance assessments, and creating long-term ground-

temperature change models. We demonstrate the potential of autoregressive time-lag models in forecasting geothermal heat exchange. 

1. INTRODUCTION 

Geothermal heat exchange (GHX) systems offer a sustainable alternative to traditional fossil-based heating and cooling technologies by 

tapping into the Earth's stable underground temperatures for space conditioning and domestic hot water production (Walker et al. 2015). 
In simple terms, GHX systems use the Earth as a leaky thermal battery, harvesting heat from the earth when needed, and injecting heat 

back to ground when necessary. GHX systems are engineered in various configurations, such as open-loop systems that utilize natural 

water sources and closed-loop systems that recirculate a heat-conducting fluid through subterranean pipes. The versatility of GHX systems 

allows for their application across different scales, from individual homes to large districts. Enhancing our grasp of the factors that 

influence the performance of GHX systems and how these variables impact the system's efficacy over time can significantly bolster our 
ability to manage, monitor, and forecast the system's behavior throughout its operational lifespan (McDaniel et al. 2018a). Monitoring can 

be further used to assess the associated environmental and working costs (Thomas et al. 2020), evaluate the system’s performance more 

accurately (Walker et al. 2015), and help make better decisions for the viability and sustainability of future projects; particularly when 

GHX fields are anticipated to become unbalanced over time (Florea et al. 2017). Fiber-optic Distributed Temperature Sensing (FO-DTS) 

is an emerging technology in this domain, offering high-resolution, accurate temperature data crucial for assessing and optimizing GHX 
systems’ functionality  (Herrera et al. 2018). FO-DTS captures Raman scattering within fiber optic cables, using laser pulses to calculat e 

the real-time temperature data along the fiber route in location and time (Suárez et al., 2011). The strategic application of FO-DTS, 

underpinned by a carefully selected calibration methodology, enables a detailed spatial and temporal analysis of the geothermal system's 

performance, aiding in more informed decision-making for future geothermal projects.  

This research exploits the sophisticated analytical abilities of ML to unravel and decode patterns found in geothermal datasets. The ML-
geothermal energy integration enhances existing processes and extends to the identification of novel exploration techniques and 

optimization strategies. Researchers and practitioners extract, process, and analyze data more effectively than ever by applying techniques 

such as neural networks, support vector machines, and ensemble methods. This leads to more accurate predictions of geothermal system 

behavior and a deeper understanding of the subsurface dynamics that govern the availability and sustainability of geothermal energy  

resources. Some significant studies include those by Tut Haklidir and Haklidir (2020), who predicted reservoir temperatures with 
hydrogeochemical data using Linear Regression, Support Vector Machines, and Deep Neural Network, and Holtzman et al. (2018),who 
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studied seismic source spectra in Geysers geothermal field using ML techniques. In Rezvanbehbahani et al. (2017), Gradient Boost 
Regression Trees was used to develop a new Greenland geothermal heat flux map with 15% accuracy. In the research conducted by Tang 

et al. (2022), the authors employed four ML algorithms to examine the correlation between Heat Extraction Rate (HER) with average 

surrounding temperature, groundwater level, soil type, grout thermal conductivity, and other factors. They analyzed the annual HERs from 

400 thermal performance tests using twelve key factors in a validated numerical simulation framework. Yang and Dashdondov (2023), 

developed ML models for predicting ground temperature (GT) on an hourly basis at depths up to 30 cm, and Guo et al. (2018) developed 

ML energy demand prediction models for building heating systems.  

Time series analyses use systematic observations recorded at consistent intervals within a specified timeframe to examine a specific 

variable or event (Burtiev et al. 2013).  The goal of such analyses is to identify recurring patterns within the variable of interest and to 

develop models that effectively quantify and forecast the dynamics among the observed phenomena. For example, Cadenas et al. (2016), 

compared single and multi-variable models for predicting wind speeds in Mexico. They studied how exogenous variables impact wind 

speed predictions. In contrast, Burtiev et al. (2013) analyzed wind speed and temperature data from 1945–2009, averaged monthly, using 

the autoregressive integrated moving average (ARIMA) and Winters models—which are discussed later in this paper—and predicted 
values for 2010 and 2011. Papaioannou et al. (2019) utilized multivariate time series analysis and the Hybrid Manifold Learning Principal 

Component Model to evaluate load management in the Greek electricity market. In contrast, Elamin and Fukushige (2018) used the 

Seasonal ARIMA with exogenous variables, or SARIMAX, to forecast hourly load using temperature, humidity, and seasonal dummy 

variables. Qiu et al. (2021) used a long short-term neural network (LSTM), a deep learning technique, to predict river water temperatures 

and how climate and dam construction changes can cause variations in the river's thermal regime over time. Numerous instances 
substantiate the use of ML and deep learning across various temperature domains. Yet, their integration within low-enthalpy geothermal 

systems remains in a nascent stage of advancement. 

In this study, we propose applying ML algorithms for imputing a two-year gap in critical time-series data. The subsequent section will 

outline the data calibration and collection and a detailed description of the chosen field site. This is followed by an exposition of ML 

methodologies applied in the analysis and projection of the time series. In the third section, we compare the effectiveness of various ML 
strategies, present the results and insights derived from them, and discuss the utility and possible enhancements of these outcomes. We 

conclude the study by offering insights into potential expansions of this research and the application of more advanced methods and 

technologies in this field. 

2. METHODOLOGY 

2.1 Measuring Methodology and Field S ite 

FO-DTS systems utilize laser pulses transmitted through fiber-optic cables, with the scattered light returning to the system due to variations 

in the fiber's composition. This technology enables the measurement of temperatures along optical fibers spanning several kilometers, 

achieving a resolution of less than a meter (Tombe et al. 2020). The need for a single cable, high-sensor density and resistance to 

environmental interference make FO-DTS an excellent alternative to conventional temperature sensors (i.e., thermocouples and 
thermistors) for measuring environmental temperatures. A FO-DTS interrogator emits brief laser pulses along an optical fiber during 

operation. The laser pulses interact with imperfections in the silica, creating scattering photons that return to the interrogator. While most 

photons scatter elastically, maintaining the pulse's original frequency, a fraction undergoes non-elastic Raman scattering events, shifting 

to higher (anti-Stokes) or lower (Stokes) frequencies than the original pulses. The intensity of both Stokes and anti-Stokes scattering varies  

with the light's intensity. Notably, anti-Stokes scattering intensity changes with temperature changes along the fiber. Consequently, the 
temperature profile along the fiber's path is derived from the adjusted ratio of anti-Stokes to Stokes scattering amplitudes. Furthermore, 

the location is of the scattering events is determined by monitoring the time and scattering event returns and knowing the speed of light  

in the fiber, enabling detailed temperature distribution measurements (Suárez et al. 2011, van de Giesen et al. 2012). Fiber-optic cables  

can be arranged in various configurations, including simple single-ended, duplex single-ended, and double-ended setups to allow the 

calibration of the optical measurements and determining the temperature along the fiber (McDaniel et al. 2018a). At any given time, t and 
position, z along the fiber, the power of the Stokes (Ps) and anti-Stokes (Pas) signals are mathematically converted into temperature 

readings as (Herrera et al. 2018; McDaniel et al. 2018; McDaniel et al. 2018, Tombe et al. 2020, van de Giesen et al. 2012): 

𝑇(𝑧, 𝑡) =  
𝛾

𝑙𝑛
𝑃𝑠(𝑧,𝑡)

𝑃𝑎𝑠(𝑧,𝑡)
 + 𝐶 − ∫ ∆𝛼 .  𝑧′ 𝑑𝑧′𝑧

0

              (1) 

where γ is the energy difference between the incoming and backscattered Raman photons, C is a dimensionless coefficient that is 
determined by the characteristics of the input laser in the interrogator, and Δα is the differential attenuation between the anti-Stokes and 

Stokes backscattered signals within the fiber. Calibration processes rely on cable segments at known temperatures to determine γ, C, and 

Δα. Our approach employs a dynamic, long-term double-ended calibration method within an intricate network of FO cables embedded in 

a low-temperature geothermal exchange field (Dutt Attri et al. 2022, McDaniel et al. 2018a, McDaniel et al. 2018b). The long-term data 

analysis allows us to observe temporal temperature fluctuations in the field and their possible implications. Additionally, we examined 
variations in the temperatures over time, potential sources of error and noise in the calibration process, and the effects of  cooling-

dominated loads on ground temperature and the system's overall efficiency.  

We deployed a FO-DTS array on the campus of large software company in the Midwest region of the United States. This campus has 19 

major office buildings and accommodates over 13,000 employees. The site operations generate significant heat, necessitating a robust 

cooling system (Dutt Attri et al. 2022, Tinjum et al. 2022). The company aims to achieve energy neutrality by utilizing wind and solar 
power complemented by four geothermal borefields and a supplemental cooling pond. Collectively, the campus manages 6,172 U-pipe 

geothermal heat exchangers (GHXs) across four borefields to deliver 48.5 MW of cooling power. With additional closed-loop exchanges  
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in a 2.2-ha stormwater management pond and an 8.5-ha, 14-m-deep Quarry Lake, the total capacity reaches 92 MWthermal. The largest of 
the borehole fields, borefield 4, is responsible for over half of the total ground-based cooling capacity and is equipped with temperature 

monitoring wells (TMWs) that house fiber-optic cables extending to their base. A sketch of the borefield is presented in Figure 1(a). The 

red circles indicate the location of sentry wells containing FO loop s for ground temperature readings. Blue squares mark the position of 

piezometric wells containing fiber optic loops and are connected to a piezometer screen in shallow and deep aquifers, allowing for water 

pressure measurements.  

The geology of the Borefield 4 is documented in Figure 1(b) (Clayton 1989, Cline 1965, Hart et al. 2022, Özdoğan Dölçek et al. 2017). 

Sediments and rock layers begin with a 10-m top layer of gravel and sand overlaying the Prairie du Chien, a hard dolomite rock with chert 

nodules and oolites. Next, there is a 10-m layer of clean quartz sandstone known as the Jordan formation. Underneath the Jordan is the St. 

Lawrence formation (a marine sandstone and dolomite group), followed by the Tunnel City Formation, which is 35 m of sandstone with 

clay and feldspathic cement, reducing its thermal conductivity. Beneath this is the Wonewoc sandstone, a cleaner quartz-rich sandstone. 
At the base is the Eau Claire Formation, a group consisting of dolomitic shale with low thermal conductivity, making it the least heat-

conductive layer in borefield 4 (Herrera et al. 2018, McDaniel et al. 2018a).  

           (b)  

Figure 1: (a) Design for borefield 4 (2596 GHX wells) showing fiber-optic temperature monitoring well locations; (b) Borefield 4 

geologic profile (after Hart et al. 2020 and Heeg et al. 2024.) 

2.2 ARIMA and Seasonal ARIMA Models 

To interpret the temperature data from Borefield 4, we deployed several time series analysis techniques. The ARIMA model represents a 

group of models that are widely applied for fitting and predicting time series data (Chaturvedi et al. 2022). In the case of stationary time 

series, the ARIMA model functions as a linear regression equation. This model predicts a value (the dependent variable) using both lagged 
terms of the forecasted values and lagged terms of the residuals (Noureen et al. 2019). The ARIMA model category is often described 

using the notation (p, d, q), encompassing three key elements, where p is the autoregressive (AR) t erm, d is the integrated (or differencing) 

term, and q is the moving average (MA) term. In these models, the extent of temporal correlation in the time series influences the AR and 

MA components, while the differencing aspect converts nonstationary series into stationary ones (Lai and Dzombak 2020). The ARIMA 

model is represented in equations (2) and (3) (Chaturvedi et al. 2022), where yt is the observation at time t. 

𝒚𝒕
′ = 𝒄 + (𝝓𝟏𝒚𝒕−𝟏

′ + ⋯ + 𝝓𝒑𝒚𝒕−𝒑
′ ) +  (𝜽𝟏𝜺𝒕−𝟏

′ + ⋯ +  𝜽𝒒𝜺𝒕−𝒒
′ ) +  𝜺𝒕       (2) 

(1 + 𝜙1𝐵 + ⋯ + 𝜙𝑝𝐵𝑝)(𝑦𝑡 −  𝜇) = (1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵𝑞)𝜀𝑡      (3) 

Here, c is a constant (the drift term when d=1), (𝜙1𝑦𝑡 −1
′ + ⋯ + 𝜙𝑝𝑦𝑡−𝑝

′ ) is the AR part with order p, whereas (𝜃1𝜀𝑡−1
′ + ⋯ +  𝜃𝑞𝜀𝑡−𝑞

′ ) 

represents the MA with order q; 𝜙 and 𝜃 are the regression weights for the lagged observations and errors terms, 𝜀𝑡 is an error 

term for random background noise at time t, and 𝑦𝑡
′ is the differencing series. The first order differencing is shown in equation (4):  

𝑦𝑡
′ =  𝑦𝑡 − 𝑦𝑡−1        (4) 
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Now, equation (3) is just a neatly rearranged form of equation (2), where B is called a backshift operator that represents the differenced 
part such that the first order difference can be written as 𝑦𝑡

′ = (1 − 𝐵)𝑦𝑡  , an hence, 𝐵𝑝𝑦𝑡 =  𝑦𝑡−𝑝 and 𝜇 is the mean of all 𝑦𝑡
′. 

The limitation of the ARIMA model is its inability to represent seasonality, which limits it in its use for time series where seasonality 

effects are significant. An extension of ARIMA, the SARIMA model (Alharbi and Csala 2022), is used to jointly model seasonal and non-

seasonal data for a univariate time series. This advancement allows the handling of both seasonal and non-seasonal data jointly for a 
univariate time series analysis. The SARIMA model is expressed as the SARIMA (p, d, q) (P, D, Q, s) model, where 'P' is the order of the 

seasonal autoregressive component, 'D' is the order of seasonal differencing, 'Q' represents the order of the seasonal moving average 

component, and 's' indicates the total number of observations within a time frame. The seasonal components of SARIMA (P, D, Q, s) 

mirror the non-seasonal elements found in ARIMA, but they apply to shifts corresponding to the seasonal cycle. Similarly, the equation 

for seasonal ARIMA or SARIMA can be represented as (Noureen et al. 2019): 

(1 + 𝜙1𝐵 + ⋯ + 𝜙𝑝𝐵𝑝) (1 + Φ1𝐵𝑆 + ⋯ +  Φ𝑃𝐵𝑃𝑆) (𝑦𝑡 −  𝜇) = (1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵𝑞) (1 + Θ1𝐵𝑆 + ⋯ + Θ𝑄𝐵𝑄𝑆) 𝜀𝑡 (5) 

We implement the following workflow to assess the feasibility of SARIMA model for our data, determine initial model parameters, 

optimize, and lastly, validate the model fit (Noureen et al. 2019, Minaravesh and Aydin 2023): 

I. Data Visualization: We plot the data to identify any patterns of seasonality and trend. This visual analysis is crucial as it helps 

in understanding the underlying patterns in the time series. 

II. Differencing for Seasonality and Trend: If seasonality or trend is present in the data, we perform differencing. For seasonality, 

use differencing with a lag that corresponds to the seasonal period (lag S). For trend, we typically use a first-order differencing. 

If both seasonality and trend are present, we may need to do both types of differencing. 

III. Analyzing Differenced Data with Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF): We use the 

ACF and PACF to analyze the differenced time series. These tools help in determining the order of the MA and AR terms for 

both seasonal and non-seasonal components. 

IV.  Model Estimation: We estimate the SARIMA model parameters. This involves identifying the best combination of p, d, q terms 

in ARIMA and the seasonal P, D, Q terms in SARIMA. 

V.  Residual Analysis: We analyze the residuals of the fitted model to ensure that it adequately captures the information in the data. 

The residuals should be independent and identically distributed with a mean of zero and constant variance. 

VI.  Model Validation and Forecasting: Finally, we validate our model by checking its performance on unseen data and use it for 

forecasting future values. 

This process is iterative and may require several rounds of model fitting and evaluation to find the best SARIMA model for your data. 
After establishing the appropriate orders and estimating the coefficients for a specific time series by adapting the model to historical data; 

thus, generation of both point and interval forecasts becomes possible.  

2.3 Holt Winters’ Exponential Smoothing 

Exponential smoothing in time series analysis prioritizes recent data by allocating higher weights to newer observations and progressively 

smaller weights to older ones. This method exponentially diminishes the influence of older data, thereby relying more heavily on recent 
observations for forecasting (Marera Supervisor and Beichelt 2016). The simple exponential smoothing is typically employed for short -

term forecasting, often up to a month. Equation (6) shows the simple exponential smoothing governing formula with only one smoothing 

parameter ‘𝛼 ’ is to be determined. determines the emphasis between recent and historical data. A higher 𝛼 (closer to 1) gives more weight 

to recent observations, while a lower 𝛼 (closer to 0) increases the weight of older data. This setting adjusts the model's sensitivity to 

changes in the time series (Lai and Dzombak 2020). 

𝑆𝑖 =  𝛼𝑥𝑖 + (1 − 𝛼)𝑆𝑖−1     𝑤ℎ𝑒𝑟𝑒,0 <  𝛼 <  1                       (6) 

This method operates under the assumption that the time series exhibits a stable mean, indicating the absence of trends or seasonality in 

the data. The approach employs a specific formula to apply this smoothing technique, focusing on maintaining a consistent mean value 

throughout the series. To include the trend component of the time series along with the level, the double exponential smoothing, or Holt’s 

method can be utilized (equations (7)):   

  Exponentially smoother series: 𝑆𝑖 =  𝛼𝑥𝑖 + (1 − 𝛼) (𝑆𝑖−1 +  𝑇𝑖−1)  𝑤ℎ𝑒𝑟𝑒, 0 <  𝛼 <  1             (7.1) 

   Trend estimate: 𝑇𝑖 =  𝛽(𝑆𝑖 − 𝑆𝑖−1) + (1 − 𝛽)𝑇𝑖−1    𝑤ℎ𝑒𝑟𝑒, 0 <  𝛽 <  1                (7.2) 

The level (St) in is computed as the end-of-period smoothed value, representing the series' current state. Concurrently, the trend component 

(Tt) is derived as the smoothed average rate of change at each period's conclusion. This model incorporates two distinct parameters, one 

each for estimating the level and trend, enabling a nuanced adjustment to both the immediate value and the directional movement of the 

time series data (Dalimunthe and Aldila 2019, Lai and Dzombak 2020). To improve upon on the Holt’s methodology and incorporate the 

seasonal trends in the time series analytics, Winters added a third parameter to deal with seasonality (Marera Supervisor and Beichelt 
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2016). Holt-Winters models, established for time series forecasting, come in two seasonal variations: additive and multiplicative. The 
additive version is best for time series with a consistent seasonal variation, where the size of the seasonal pattern does not change over 

time. On the other hand, the multiplicative version fits time series where the seasonal pattern grows or shrinks in proportion to the data's 

level, adapting to changes in the scale of the time series (Almazrouee et al. 2020). This study utilizes additive seasonality and the governing 

equations to calculate smoothed series are shown in equations (8.1 to 8.3). Subsequently, equation (8.4) allows us to forecas t ‘h’ steps 

ahead from time ‘t’ using additive seasonality (Lai and Dzombak 2020, Marera Supervisor and Beichelt 2016).  

  Exponentially smoother series: 𝑆𝑖 =  𝛼(𝑥𝑖 − 𝑝𝑖−𝑘) + (1 − 𝛼) (𝑆𝑖−1 + 𝑇𝑖−1)  𝑤ℎ𝑒𝑟𝑒, 0 <  𝛼 <  1                    (8.1) 

   Trend estimate: 𝑇𝑖 =  𝛽(𝑆𝑖 − 𝑆𝑖−1) + (1 − 𝛽)𝑇𝑖−1    𝑤ℎ𝑒𝑟𝑒, 0 <  𝛽 <  1          (8.2) 

   Seasonal factors: 𝑝𝑖 =  𝛾(𝑥𝑖 −  𝑆𝑖) + (1 − 𝛾)𝑝𝑖−1       𝑤ℎ𝑒𝑟𝑒, 0 <  𝛾 <  1          (8.3) 

And the future predictions after ‘h’ time steps can be made as 𝑥𝑖+ℎ: 

𝑥𝑖+ℎ =  𝑆𝑖 + ℎ 𝑇𝑖 + 𝑝𝑖−𝑘+ℎ        (8.4) 

where ‘k’ represents the seasonality or the length of one seasonal period, for example, for quarterly data k = 4, ′𝛾′  is the smoothing 

coefficient of the seasonal term. The additive model is optimal when seasonal variations are consistent and unchanging over time. This 

model assumes that seasonal effects are added to the trend level, remaining constant in magnitude irrespective of the level of the time 

series. Further sections discuss the utilization of these methods on a temperature time series and how the results vary. 

3. RESULTS AND DISCUSSION 

3.1 Temperature Data 

Our methodology uses FO-DTS, leveraging dynamic, double-ended calibration for continuous field monitoring to compute temperature 

profiles. Figure (2) illustrates the temperature distribution for Temperature Monitoring Well (TMW-1) depicted on a depth-time plot 
alongside the geological strata of the site. Malfunctions and operational disruptions caused the missing data intervals during the COVID-

19 pandemic. The data reveal subsurface temperatures' relative stability compared to surface readings, which are susceptible to 

atmospheric variations. Notably, seasonal effects are discernible underground, influenced by the GHX system's operational dynamics, in 

which temperatures vary between summer and winter. Our system is cooling-dominated, meaning more heat is stored in the reservoir 

during the hot summers than is extracted in cold weather on an annual basis. The impact of this can be seen as an overall increase in 
temperatures over the period of more than seven years. A notable cooler zone at around 30 m deep corresponds to a water flow in the 

karst within the dolomite formation (Hart et al. 2022). We study the temperature variations and the impact of various factors on the 

subsurface temperatures, too. In this paper, we are more focused on reconstructing a two-year interruption in temperature recordings from 

2019 to 2021 using advanced regression techniques, specifically ARIMA and Holt -Winters triple exponential smoothing models.  

The analysis commenced at an 80-m depth within TMW-1, a strategic depth that not only represents the median depth range but also 
parallels the thermal variations observed at other strata. This is illustrated in Figure 3, which plots the temperature changes over time at 

this depth. The time series analysis indicates a minor downtrend in temperatures leading up to 2019, followed by an uptrend from 2021 

onwards. A contributing factor to this temperature shift may be the expansion of the campus workforce and infrastructure, growing from 

10,000 employees in 2015 to approximately 13,000 in 2023, with the majority stationed on-site. It is also noted that data variability was 

more pronounced before 2016, which is attributable to field startup and the formative stages of the FO-DTS technology and fine-tuning 
of its calibration process. Therefore, the data preceding 2016 was excluded from our study to ensure a more accurate and reliable analysis. 

Daily average temperatures were also calculated to study the seasonality effect on the data every year. 
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Figure 2: Borehole temperature variation for TMW-1 with depth from 2015-2022 

 

Figure 3: Borehole temperature variation at 80 m depth for TMW-1 from 2015-2022 

3.2 Exploratory Statistical Analysis 

We utilized an exploratory approach to uncover significant characteristics within the dataset. For the daily average temperatures from the 

year 2016 to 2022, Figure 4 shows the quantile-quantile (Q-Q) plot. This plot assesses whether the distribution of a dataset is approximately 

normally distributed. This graphical tool plotted the quantiles of the time series data against the quantiles of a standard normal distribution. 
The data in Figure 4 were not normally distributed or had more outliers than a normal distribution would have had. To check the stationarity 

of our time series, the Augmented Dickey-Fuller (ADF) test was done. The test focuses on testing the null hypothesis that a unit root is 

present in an autoregressive model of the time series, which implies non-stationarity (Noureen et al. 2019). The ADF test statistics and 

the corresponding critical values for different significance levels were as follows: 

 Test Statistic: -1.569  

 Number of Lags Used: 4 

 Critical Values: -3.434 (1%), -2.863 (5%), -2.568 (10%)  

 p-value: 0.499  

The test statistic of -1.569 failed to fall below the critical values of -3.434, -2.863, and -2.568 for the 1%, 5%, and 10% levels, respectively. 

Furthermore, the p-value of 0.499 was significantly above the conventional threshold of 0.05. These findings support the null hypothesis, 

indicating that the data is likely non-stationary, and therefore, any analyses conducted on the raw data without addressing this issue may 
yield unreliable inferences. To proceed with ARIMA modeling or any other time series forecasting methods that assume stationarity, 

differencing, or other data transformations, it will be necessary to stabilize the mean of the time series across time. 
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Figure 4: The Quantile-Quantile (Q-Q) plot for temperatures at 80-m depth 

In the context of our study, the non-stationarity in the time series data will prompt us first to apply different techniques to achieve 
stationarity before fitting a predictive model. Hence, we went on to take the first-order difference of our series, shown in Figure (5). The 

ADF test statistics for the differenced series provided strong evidence that the time series is stationary, as the test statistic value of -3.897 

was lower than the critical values, and the p-value was 0.00205 (<<0.05), indicated a high likelihood that the results are not due to random 

chance. 

 

Figure 5: First order differenced series for borehole temperatures for TMW 1 at 80 m depth 

Figure 6a represents the decomposition of the TMW-1 80-m-depth temperature time series averaged daily. The trend for this well 
temperature shows an increase over the years. The seasonal component exhibits a consistent yearly pattern, which likely reflects the 

influence of seasonal weather and campus loads. Meanwhile, the residuals show some variability, particularly around 2021 when sporadic 

influences are not captured by the trend or seasonal components. The residuals suggest that occasional anomalies or other unexplained 

variations are affecting the well's temperature beyond the regular seasonal fluctuations and the general upward trend. Subsequently, Figure 

6b shows the seasonal decomposition of the series only from January 2016 to December 2018. We used this portion of the data set to 
model and predict for the missing period; i.e., years 2019–2020. The trend for this period was fluctuating but eventually decreasing over 

time, whereas seasonal patterns were evident and repeated annually, as seen in the third panel, reflecting expected periodic changes in 

temperature. The residual component was consistent, hovering around zero, suggesting that the trend and seasonal components have 

accounted for most of the data's variability, leaving only minor unexplained noise. 
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(a)          (b) 

Figure 6: Seasonal decomposition of the daily averaged temperature values, (a) Jan 2016 – Dec 2022, (b) Jan 2016 – Dec 2018  

We then studied the autocorrelation among the data points and Figure 7 demonstrates the autocorrelation (ACF) and partial-autocorrelation 
(pACF) graphs for our data. While we could see a strong autocorrelation among the subsequent data points (Figure 7(a)), leading us to 

plot the pACF, which measures the correlation between the time series and its lags after eliminating the variations explained by the 

intervening lags. The pACF plot (Figure 7(b)) had a significant spike at the first lag and then cut off, which typically suggested an AR 

process, meaning a first-order autoregressive model might be a good fit for this time series. The subsequent lags were within the confidence 

interval, indicating that they did not provide additional explanatory power beyond the first lag. In summary, the ACF graph indicated a 
strong seasonal pattern in the well temperature time series, while the pACF graph suggested that an autoregressive model of order 1 might 

be suitable for modeling the data after accounting for seasonality. These insights were particularly useful when building predictive models 

for this time series data, as they helped in selecting appropriate terms for ARIMA modeling.  

                

(a)          (b) 

Figure 7: (a) Autocorrelation for the TMW-1 temperature values (2016–2022), (b) Partial Autocorrelation for the TMW-1 

temperature values (2016-2022) 

3.3 ARIMA Analysis 

We used the data from January 2016 to December 2018 to model with ARIMA and test as a base model for our study. The ARIMA model 

is based on the lowest Akaike Information Criteria (AIC) values, and Augmented Dicky Fuller (ADF) test to determine the order of 

differencing. AIC evaluates models based on accuracy and model complexity, favoring simpler models that achieve a better fit with fewer 

features (Chaturvedi et al., 2022). The ADF test is commonly employed to assess the stationarity of a time series to examine the presence 

or absence of a unit root in the characteristic equation, indicating non-stationarity or stationarity, respectively (Noureen et al. 2019). The 
best model was identified as ARIMA (1,1,4) with the lowest AIC values among the tested models and this combination of parameters 

provided the best balance between model complexity and fit for your data. The model specified as ARIMA (1,1,4) indicated one 

autoregressive term, one differencing pass to ensure stationarity, and four moving average terms. The fit of the model was quite good, as 

evidenced by a log likelihood of 1038.975. Figure 8 presented is a compilation of diagnostic plots for an ARIMA model, used t o evaluate 

the quality of the model fit. The plot in Figure 8(a) is of standardized residuals and indicates no apparent patterns, suggesting a good 
model fit. Figure 8(b) shows residuals aligned with a kernel density estimate and a standard normal distribution, indicating that the 
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residuals are approximately normal, an assumption of the ARIMA model. This is important for the reliability of the model's confidence 
intervals and p-values. The Normal Q-Q plot in Figure 8(c) compares the residuals to a perfect normal distribution. The points largely 

follow the reference line, except for the tails, which may indicate outliers or heavy-tailed distribution of residuals, a common occurrence 

in real-world data. Lastly, the bottom-right correlogram or plot (d) assesses the autocorrelation of the residuals at different lags. The plot 

shows that the autocorrelations are within the confidence interval, implying that the model has successfully captured the time series' 

patterns and that the residuals are essentially random, which is ideal for a well-specified model. Overall, the diagnostics suggest a 

satisfactory fit, with minor concerns about residual normality.   

 

Figure 8: Diagnostic plots for the ARIMA (1,1,4) 

The model was trained on the training set from January 2016 to November 2018, and then predictions were made using rolling forward 

method using the previously predicted values. Figures 9 and 10 show temperatures for the whole dataset and predicted temperatures for 

the test set for TMW-1. The root mean square error (RMSE) for these predictions was 0.197, which is good enough for a rolling forward 

prediction using ARIMA.  

 

Figure 9: Predicted and observed temperature values for TMW-1 at 80-m depth using ARIMA from Oct 2018 to Dec 2018 
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Figure 10: Predicted and observed temperature values for TMW-1 at 80-m depth using ARIMA from Jan 2016 to Dec 2018 

Since the RMSE value for predictions and the model looked promising, we then forecast the temperatures for the year 2019. Figure 11 

shows the predicted values starting from January 2019 until December 2019. The forecasted values followed the trend, especially for the 
first few months and then did not really follow the pattern expected. This made sense since our ARIMA (1,1,4) model does not include 

seasonality. Since our temperature measurements are averaged for daily observations, the potential seasonality component would be 365, 

which we use as our seasonality parameter. We decompose and remove seasonality by subtracting the average seasonal pattern from the 

original time series. Using these averages, the seasonal adjustment is performed by subtracting the seasonal signal. The ARIMA model is 

applied to model correlations at different spatial lags on the seasonality -adjusted data for analysis and forecasting. The seasonality 

component is superimposed on the autoregressive forecasts defined using ARIMA.  

Figure 11: Temperature predictions for 2019 using ARIMA (1,1,4) for TMW-1 at 80-m depth.  

3.4 Holt Winters’ Smoothing   

The exponential smoothing (section 2.3) is a technique that models the time series data as a linear combination of time lags with smaller 

lags (more recent time steps) having higher weight than the larger lags. by giving more weight to recent observations and progressively 

less weight to older ones. There are Three primary variations of exponential smoothing techniques exist, namely: single, double, and triple 

exponential smoothing. Single smoothing is applicable to time series homoscedastic time series that do not have a trend comp onent. 
Double smoothing models the impact of trend, while triple smoothing has a lag, trend, and season component. Thus, for our dat aset, triple 

exponential smoothing, also known as Holt Winter’s Smoothing, is the most appropriate. 

We split the dataset was taken from 2016 to 2018 and we divided our dataset into training and testing sets, parting where we used the on 

November 30th, 2018, time step to split the data. We initially utilized Simple Exponential (Single) Smoothing, premised on the notion 

that which assumes that the time series oscillates around a constant mean, indicating stationarity, and lacking any trend or seasonal 
variations. The single smoothing result is depicted in Figure (12) as a weighted mean using optimal smoothing coefficients inferred from 

using the training data. Single smoothing defines the forecast as a single value for the entire forecast horizon, as within t he 80% CI in 

Figure 12.   
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Figure 12: Predicted and observed temperature values for TMW-1 at 80-m depth using Simple Exponential Smoothing 

from Jan 2016 to Dec 2018 

We define a forecast model with triple exponential smoothing—Holt-Winter’s exponential smoothing, HW-ES—to explicitly model the 

trend and seasonality components to our predictions. Figure 13 and 14 demonstrates the predictions for our test periods using the HW-ES 

method where the impact of seasonality is observed. The RMSE value for the predictions was 0.168, which shows that the addition of the 

trend and seasonality components improves forecast accuracy significantly compared to the ARIMA model.  

 

Figure 13: Predicted and observed temperatures for TMW-1 at 80-m depth using the HW-ES method from Oct 2018 to Dec 2018 

 

Figure 14: Predicted and observed temperature values for TMW-1 at 80-m depth using HW-ES from Jan 2016 to Dec 2018 
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We define the HW model to impute the missing temperature measurements between 2019 and 2021. The result in Figure 15 shows that 
the model captures seasonality correctly. The mismatch for 2021 is observed due to the non-linearity of the temperature increase that is 

dictated by what we believe to be campus operational changes early in the COVID-19 pandemic rather than natural variation under 

constant operating conditions. 

 

Figure 15: TMW-1 temperature data at 80-m depth from 2016 to 2022 with imputed values for 2019 and 2020 using the HW-ES  

method.  

4. CONCLUSIONS AND FUTURE WORK 

In conclusion, our results demonstrate some significant insights into the subsurface temperature dynamics of a geothermal heat exchange 

system. We have imputed a two-year data gap and tested the efficacy of ARIMA, and HW-ES models for forecasting. Our results indicate 

that the Holt-Winters smoothing model yielded more accurate predictions, with the lowest root mean squared error, adeptly capturing the 
gradual seasonal rise in subsurface temperatures. Both the models incorporated the trend components of the time series in the predictions, 

but including the seasonal component was much easier and computationally faster with the HW-ES method. Our work underscores the 

versatility and robustness of the time series models in forecasting geothermal heat exchange. While this provides a strong base to utilize 

regression analysis and machine learning for data imputation, the results can be further improved. Moving forward, the research opens 

avenues for further exploration into the integration of additional exogenous variables and the application of more sophisticated machine 
learning or deep learning algorithms to enhance predictive accuracy. The methodologies and insights gained from this study will serve as 

a cornerstone for future work aimed at optimizing the operation and performance of geothermal exchange fields.  
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