
PROCEEDINGS, 48 th  Workshop on Geothermal Reservoir Engineering 
Stanford University, Stanford, California, February 6-8, 2023 

SGP-TR-224 

1 

Geostatistical Simulation of Reservoir Convection Indicators in Ďurkov Hydrogeothermal 

Structure (Slovakia) 

Ladislav Vizi1, Branislav Fričovský2 

1) Dept. 3D/4D of Geological Modelling, State Geological Institute of Dionýz Štúr, Jesenskeho 8, 04001 Košice, Slovakia 

2) Dept. of Hydrogeology and Geothermal Energy, State Geological Institute of Dionýz Štúr, Mlynská dolina 1, 81704 Bratislava, 

Slovakia 

ladislav.vizi@geology.sk 

 

Keywords: convection indicators, reservoir modelling, geostatistics, simulation, volumetrics 

ABSTRACT 

Since pioneering exploration in the '70s and following hydrogeothermal evaluation in the '90s, the Ďurkov hydrogeothermal structure is 

considered amongst the most prospective geothermal water bodies in Slovakia. The geothermal resources were definitely proven in 1999 
through the realisation of 3 geothermal wells, GTD-1 to GTD-3, quantifying 42 MWt for free-flow and 92 MWt for pumping strategy. 

The resource is geothermal water at up to 180 °C and moderate-high thermodynamic quality in the deepest parts of the system. Although 

numerous plans for production exist, there is no project online at the site yet. Reservoir characterization using a combination of geothermal 

techniques and geostatistical modelling tools have been used to produce a realistic 3D reservoir model consisting of the simulated 

convention indicators. Geostatistical simulations have become very popular in different areas of spatial modelling for spatial simulation 
of properties, geometries or heterogeneities. The geostatistical approach is supportive of the quantification and interpretat ion of possible 

convection formation, necessary to understand reservoir engineering and construction of reservoir prediction and response models. 

Turning band method of the spatial simulation was used to create multiple realisations of selected convection indicators within the 

reservoir body due to evident non-stationary behaviour in the vertical direction. Turning band simulations were conditioned by universal 

kriging using modelled directional variograms of the global trend residuals with respective drift functions for each studied convection 
indicator. The volumetric curves were derived from final numerical models and probable volumes above the indicator thresholds were 

calculated and visualised. Based on simulations carried out, the possibility of isolated convection cells has been identified in deeper parts 

of a system, not exposed to any bifurcation or a phase change. Limited heat and mass flux explain the observed overheating ratio 

distribution, implying weak breaks of generally diffuse, conduction-dominated geothermal profile in a reservoir body. 

1. INTRODUCTION 

All common definitions refer the geothermal energy as to the heat of the Earth. A non-disturbed vertical temperature distribution following 

the thermal gradient characterizes the conductive environment (Ledru & Gillou-Frottier, 2010), while systems encountering perturbations 

to the stable thermal profile define the convective environment (Kühn et al., 2006) due to the heat and mass fluxes consequent to a non-

uniform heat source or reservoir media density gradients. The convection as a process of energy and mass transport within geothermal 
systems contributes at various scales in controls on energy balance, boiling, (re)equilibration at water-rock interface, or moderates an 

impact of thermal breakthrough (e.g. Bodvarsson et al., 1982; Toth, 2012; Wang a Horne, 2000). Although reservoir convection cannot 

be measured directly, several methods to analyse its plausibility and magnitude have already been introduced into a praxis. Amongst them, 

the numerical indices are applied mainly. Comparison between the actual Rayleigh number Ra and critical Rayleigh number Rc forms a 

basis of the linear stability analysis. General agreement exists that the convection sets on if Ra ≥ Rc (Kassoy & Zebib, 1975).In general 
the rule is valid for horizontally bedded and uniformly heated media. If the latter does not apply, the rule is valid no more as long as the 

correction by the overheat ratio  is not included in the Rc calculation (Hanano, 1998).  

Geostatistical simulations have become very popular for a spatial simulation of studied reservoir properties and processes as well as to 

solve many others problems related to the subsurface reservoir engineering (Vidal and Archer, 2015). Geostatistical simulation is a process 

of generating of one realisation from all possible realisations at a given point or within a volume (Ravenscroft, 1994). Unlike the traditional 
deterministic methods of spatial interpolations, that always give a unique solution in sense of input parameters, the geostatistical 

simulations represent a set of possible versions of the reality, coherent with the input data values and a used model of variability. Each 

realisation also replicates the statistical and spatial characteristics of the input data. The set of the realisations constitutes a numerical 

model with a range of possible values at any location within a studied domain and thus it provides a distribution of the values for each 

location. These distributions of the numerical model are basis for different risk analyses, decision-making or uncertainty evaluation. For 
instance, a numerical model can be used to answer different questions as “What is probability to exceed overheating ratio equal to 0.2?” 

or “What is a mean value of overheating ratio values above 0.2?” etc. Traditional estimation techniques do not provide a correct answer.  

The Ďurkov hydrogeothermal structure represents a depressed morphostructure of Mesozoic carbonates beneath Neogene sedimentary 

basin fill of the Košice Depression, which is the northward promontory of the Pannonian Basin (Pereszlenyi et al., 1999). Limits are set 

along tectonic margins with the neovolcanic Slanské vrchy Mts. to the east, Bidovce depression on the north and west, and the W–E faults 
on the south, where carbonate blocks elevate nearby Vyšný Čaj (Fig 1). The deep geological structure reflects a typical vertical profile of 
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Neogene sedimentary basins in the Western Carpathians. Quaternary accumulations (fluvial, proluvial and deluvial forms) are only several 

meters thick; thus are neglected in the deep structural models.  

 

Figure 1: Ďurkov hydrothermal structure localization map and geological model.  

 

Neogene profile thickness reaches up to 1,600 – 2,600 m. It consists of siliciclastic formations with variable contribution of sandstones 

and claystones, occasionally intercalated with evaporates in basal Karpatian profile, where also conglomerates and dolomitic breccia occur 
(Pereszlenyi et al., 1999). The Middle Triassic carbonates form a primary reservoir body, increasing in thickness in the NW–SE and SW–

NE direction from 200 to 2,200 m. A very few is known about pre-Mesozoic underbed, however, analogously to the Western Carpathians, 

crystalline complex (magmatites and metamorphites) of the Veporic unit is expected instantly beneath (Pereszlenyi et al., 1999). 

The structure is repeatedly considered amongst the most prospective in the country, with highest sampled reservoir (Tres = 150 °C) and 

wellhead (Twh = 135 °C) temperatures. Models on thermodynamic parameters (Fričovský et al., 2018) assume moderate thermodynamic 
quality and a single phase, saturated fluid as a resource at natural conditions. However, questions arise on the existence of a gaseous cap 

at a top of the reservoir documented by sampling high CO2 fluxes. Analysis of convection plausibility may, thus, help answering a problem 

of an origin of the phase, as well as can contribute on general understanding of hydrogeothermal systems, generally referred as conductive-

only. 

The aim of the paper is application of geostatistical modelling and stochastic simulation to identify a possibility of isolated convection 
cells within the Ďurkov hydrogeothermal structure in sense of spatial modelling of the convention indicators like Rayleigh number and 

overheating ratio. Geostatistical simulations are used to model probability to obtain positive values of differences between calculated 

Rayleigh number and critical Rayleigh number as well as probability of getting overheating ratio values above 200. 
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2. GEOSTATISTICAL MODELLING 

Geostatistics is a rapidly evolving scientific branch of applied statistics and mathematics that studies the spatial-temporal phenomena and 

thus extends the concept of traditional statistical methods of data processing in a spatial form. It was originally developed by George 

Matheron of Centre de Morphologie Mathématique in France for solving the problems of the ore reserve estimation in the mining industry 

but it is nowadays very popular not only in geology but also in many other areas of the natural science. Spatial data, in the framework of 

geosciences, exhibit some degree of spatial correlation, which is a function of the distance – the greater the distance between samples, the 
lower the similarity between the data, but on the contrary, the higher is their variability (Matheron, 1963). The paper does not intend to 

present a deep review of geostatistics with all its algorithms and methods. A number of geostatictical books are available that document 

the principles, methods and techniques, include for instance Journel and Huijbregts (1978), Isaaks and Srivastava (1989), Clark and Harper 

(2000), Armstrong (1998), Goovaerts (1997), Webster and Oliver (2001), Wackernagel (2003), Chilès and Delfiner (2000), Olea (1999), 

Lantuéjoul (2002), Leuangthong et al. (2008) etc, Tonnes of notes, courses and papers that have been published to study the topic. Since 
its definition in 1962 by George Matheron, initially developed for ore reserve estimation problems in the mining industry, geostatistics 

has evolved extremely, including many methods, techniques and approaches for spatial modelling of natural phenomenon in the Earth 

sciences. From mining, geostatistics has spread and has become an important methodology in many fields of application like petroleum 

industry, geology, climatology, agriculture, soil science, forestry etc. For these reasons, only a very brief introduction of geostatistics and 

very basic principles and terms will be given in this section. 

Geostatistics provides a wide variety of tools to quantify and model the degree of spatial similarity and spatial variability. The aim of 

geostatistical methods for modelling of spatial variability is a random variable Z distributed in space and/or time. In geostatistical 

applications, a random variable is a function of spatial coordinates at any point of the studied area, in which each point u is determined 

by geographic (and/or time) coordinates in one, two or three-dimensional space; u = (X, Y, Z). Set of such random variables at each point 

u of the studied domain D represents a random function Z(u). One realization of a random function, or one realization of each random 

variable in the space, consists of a set of values z(u) called a regionalised variable (Matheron, 1971). 

In geostatistical application, a random function Z(u) can be expressed as the sum of two parts (Dowd, 2004):  

1. A deterministic part m(u), called drift or trend, represented by a deterministic function of location (linear, quadratic, etc.). 

2. A stationary random function R(u) with a constant mean that represents the deviation from the mean m(x), so called residuals, and 

can be estimated by the standard techniques of stationary methods. 

The above terms yield to the following expression of the random function Z(u): 
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If we assume that the mean m(u) is constant, then we have the basis for the geostatistical methods of overcoming the problems imposed 

by stationarity. A decision of stationarity of available data used for spatial modelling is necessary for all geostatistical modelling. However, 

as stated by Journel (1986), stationarity is a constitutive property of the random function and not an intrinsic property of the studied 

phenomenon and therefore a decision about stationarity is, in fact, a model itself. 

2.1 Variogram 

The variogram is the basic structural tool to model spatial continuity in geostatistical applications. It represents bivariat e statistics, which 

express the variability of increments of the values z of random variables Z at points u separated by a vector h. This direct variogram can 

be expressed as follows: 
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where C(h) represents covariance between Z(u) and Z(u + h) with constant mean m and C(0) = Var[Z(u)] = 2 represents apriori variance 

of Z(u).  

The expression (2) simply describes how the values of Z at two points u and u + h become different as the separation vector h between 

pairs of points increases. Graphically, the variogram is a positive function increasing with h and it describes the change of the spatial 

variability of the studied features in the studied area for any distance and any direction of space (Armstrong, 1998). 

The final model of the variogram describes the change of the spatial variability and, consequently, it is used in the geostatistical modelling. 

The main role of geostatistics is to make an estimation of the unknown value at unsampled locations. 

2.2 Kriging 

The geostatistical estimation procedure is called kriging, developed by George Matheron in 1963, and it is named in honour of Daniel G. 

Krige, following his university thesis. Nowadays, under kriging we understand “a collection of generalized linear regression techniques 

for minimizing an estimation variance” (Olea, 1991) that is used to estimate unknown values at unsampled locations using surrounding 
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data z(u). It is beyond the scope of the paper to present all different kriging techniques due to their wide variation. The paper present the 
general model named universal kriging (UK) (M atheron, 1971) assumes that the mean in (1) can be written in a form of finite polynomial 

of order K, or trend, in practise of first or second order: 
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Since kriging is a method of a linear regression, a weighted linear estimator at unsampled location uo in the stationary case where the 

mean m is known can be written as: 
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where  are the weights assigned to the no data z within a search neighbourhood available for estimation. The estimation variance for 

universal kriging is given by (Dowd, 2004):  
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with sample-to sample variogram of residuals γR
 , sample-to-target variogram oγR

  and a set of Langrange multipliers k for a given 

trend order K.  

 

The weights  in equation (4) are derived by minimizing of the estimation variance (5) and solving a kriging system of linear equation: 
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Associate kriging variance, independent of available data values, becomes: 
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2.3 Geostatistical simulation 

The aim of kriging is to produce the best accurate estimation of the mean value of a random variable Z at an unsampled location uo, 

E[Z(uo)] in the sense of the least-square method because of minimizing the local estimation variance e
2. The spatial structure of the 

estimated values differs from that of the actual ones (de Fouquet, 1993). The map of kriged estimates is interpreted as a set  of expectations 

of the random variables at all locations uo and tends to smooth out the local variability of the data. That means that low values are 
overestimated whereas high values are underestimated. The smoothing effect of kriging is a serious disadvantage when trying t o reproduce 

the extreme values. One important fact is that the smoothing effect of kriging depends on the data location – smoothing is smaller close 

to the data location and conversely. The final kriged map is therefore less variable than the data. 

Stochastic simulation produces the maps of realisations zs(uo) of a set of random variables Z(uo) at all unsampled locations uo. The aim 

of the simulation is to randomly draw several realisations of the random function that reflect the variability of the sample values (data 
histogram and variogram). Each simulated realisation represents a possible version of reality coherent with the data values and a used 

model of variability as well. A simulation that does not honour the experimental data values is called non-conditional simulation (NS). 

There are many methods for generating a realisation of the non-conditional simulation (for example sequential methods, spectral methods, 

LU covariance matrix decomposition, turning bands, etc.). Each method has its own advantages and disadvantages, as may be seen for 

example in Chilès and Delfiner (1999) or Lantuéjoul (2002). In general, non-conditional simulation is one possible realisation of a random 
function that has the same variogram model as the one modelled from the sample data, but it is otherwise totally unrelated to them (Chilès 

and Delfiner, 1999). Non-conditional simulation is conditioned by kriging. Conditioning is a process by which we can pass from a non-
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conditional simulation ZNS to a conditional simulation ZCS that match the sample points z(u) of random function Z(u). Non-conditional 
and conditional simulations are independent, but with the same input variogram model. Conditional simulation ZCS(u) is built by adding 

of the kriging error [Z(u) – ZK
*(u)] to the kriging estimation ZK

*(u). However, the kriging error is unknown because Z(u) is not known. 

Therefore the kriging variance is replaced by non-conditional simulation of the kriging variance [ZNS(u) – ZNS
*(u)] where non-conditional 

simulation ZNS(u) is known on a simulated grid and is based on the variogram modelled from the sample data. Estimation of the non-

conditional simulation ZNS
*(u) is based on kriging of the values of the non-conditional simulation at the sample locations x using the 

same variogram model. 

A set of L independent and equal probable realisation of random function from conditional simulation constitutes a numerical model. 

Simulation post-processing and ranking of the realisations from the smallest realisation to the largest one enables to construct an inverse 

distribution curve for any single cell of simulated grid, a group of cells or the entire area under consideration. The curve represents a 

probability, or risk curve. 

 

 

Figure 2: 3D grid of Ďurkov hydrothermal reservoir (A.) and spatial arrangement of 1650 calculation points within (B.).  

 

The Turning Band (TB) algorithm was selected for studied variables simulation. It was the earliest algorithm for simulation of 

autocorrelated random processes in two or three dimensions (Deutch and Journel, 1998). The principle is to produce a non-conditional 
simulation that reflects the variogram structure but does not honour the input data. Independent one-dimensional realisations are first 

simulated along lines radiating from central points. Then, each point in 3D space is orthogonally projected into every line and the simulated 

values nearest to the projected points are averaged. The non-conditional simulation is then conditioned by kriging, which is used to 

interpolate the experimental error between data and non-conditional simulated values at the data points.  The TB algorithm is suitable for 

all covariance models, does not assume Gaussian type model (Chilès and Delfiner, 1999) and it is great compromise between quality and 

computing time.  

3. INPUT DATA 

Creation of final model begins with a primary reservoir body dissection into 150 points regularly spaced of 500x500 m located on the top 

surface of the reservoir. Then, the reservoir was vertically divided into proportionally distributed 10 sublayers according to an overall 

reservoir thickness at given point on top reservoir surface. Thus, the studied hydrogrothermal reservoir Ďurkov was subdivided into 1650 

points u in total (Figure 2, B.) for calculation of the studied convention indicators. 

The calculation points served to calculate reservoir matrix and fluid parameters prior processing in a refined 3D 50 x 50 x 10 m stabled-

surface model with more than 1.4 million grid nodes for using of geostatistical simulations to create a numerical models of variables under 

study (Figure 2, A.). To study plausibility of reservoir convection, we decided to follow a Linear Stability Analysis concept in combination 

with the Rayleigh number Ra and overheat ratio  application. 

The Rayleigh number Ra [–] is a dimensionless vigour on a buoyancy forces applied to a geothermal reservoir media in a ratio to the 

viscous forces (Bories & Combarnous, 1973). It assumes the uniform heating at a base of the porous environment. Because of horizontally 

bedded porous media concept applied, this study does not account for reservoir inclination to the impact of a gravity field (Rabinowicz et 

al., 1999; Pasquale et al., 2013; Lipsey et al., 2016). For the presented paper, it is not necessary to express Rayleigh number calculation 

because of its complexity. The important thing that the Rayleigh number is function of temperature T as well as the terms used for its 
calculation as the coefficient of thermal expansion αvw, reservoir fluid density ρw, heat capacity cw and dynamic viscosity νD. That will 

affect the following steps in the spatial modelling as an exploratory data analysis, variography  or simulation itself.  

The critical Rayleigh number for the onset of free, temperature driven convection is Rc = 39,5, so that the creation of convection cells 

may be expected when Ra ≥ 39.5. This is, however, a valid condition for uniformly heated (Hanano & Kajiwara, 1999) porous media. 
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Due to the distribution of formation temperatures at the studied structure, the overheat ratio  concept (8) is applied (Hanano, 1998), 
comparing top and bottom thermal conditions to expected steady conductive distribution. The ratio, thus, compensates for non-uniform 

heat increment to the reservoir (9): 

 1
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τ    i i
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T T

T
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
             (8) 

 4.176τ38.71    Rc e            (9) 

We can see from the above expression (8) that the  values is nothing than difference between a base temperature Ti+1 and a top temperature 

Ti standardized by Ti+1 to get values between 0 and 1. The calculated values of the overheating ratio  ranging from 0.00654 to 0.29515 

that give us the range of the  values equal to 0.28861. The calculated values were multiplied by 1000 to “stretch” the range. It prevents 

of possible underestimation of the  values and getting negative results. Thus, new  values ranging from 6.54 to 295.15 with mean value 

of 98.98. Figure 3 D. shows experimental histogram of calculated  values at 1650 sample points. The histogram shows skewing toward 

to the lower values with only approximately 7% values higher than 200. 

 

Figure 3: Experimental histogram of raw calculated data (A., D.) their respective histograms of residuals (B., E.) and final 

variogram models of residuals (C., F.). 

 

The calculated values of Rayleigh number Ra ranging from 0.06 to 112 with a mean value 15.61. The critical number Rc ranging from 

11.29 for max to 37.66 for min with a mean value 15.61. The final values of calculated Rayleigh number Ra and critical Rayleigh numbers 

Rc were used to create a new variable called Ra at 1650 point as differences between Ra and Rc: Ra = Ra – Rc. The Ra ranging from 

-37,52 to 95,9 with mean value -10,84. Respective experimental histogram is shown on Figure 3 A. The histogram is highly skewed 

toward to lower values with less than 30% values positive values higher than 0.  

4. RESULTS AND DISCUSSION 

As a matter of fact, the calculated variables andRa, and thus Ra, described in section 3, are function of temperature, which is, in fact, 

function of depth. It can be seen on Figure 2, B. where the  values at the calculation points are shown in coloured scale with obvious 

tendency Therefore, a non-stationary model was considered during spatial modelling phase under assumption of systematic increasing the 

values of studied variables with depth in vertical direction. To build the non-stationary model, the first step consisted in modelling a trend 
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function by means of the least square polynomial method fitting. Under assumption of stationarity in a horizontal plane XY; a linear model 

in form of m(Z) = a0 + a1Z was fitted to obtain a stationary residual variables RRa(u) and R(u) The final residuals follow a normal 

distribution with zero means (Figure 3 B and E, respectively).  

The experimental variograms were calculated for the residual variables: two experimental variograms in N-S and E-W directions in 

horizontal planes with lag distance 500 m in accordance with the sample spacing, and one experimental variogram in vertical direction. 

Nested basic structures of spatial variability were fitted to the directional experimental variogram to build variogram models. The final 

variogram models of calculated residuals are shown in Figure 3 C for RRa and Figure 3 F for R. Both variogram models perfectly fit the 

directional experimental variograms with low nugget effect values and parabolic behaviour at the origins of models. They also exhibit a 

strong anisotropical pattern with apparent zonal anisotropy in horizontal plane prolonged in N-S direction, coincident with reservoir body 

and direction of main geological faults, and vertical direction toward the north, which is in accordance with stratified structure of the 
calculated variables under study. There is also presence of geometrical anisotropy between E-W and vertical directions and with higher 

continuity in E-W, which indicates the lowest continuity of studied variables in vertical direction, higher continuity in E-W direction and 

the highest continuity in N-S direction. By adding the variogram models of residual variables to the linear trend model initialized at the 

trend modelling stage, the required non-stationary models are obtained and used during geostatistical simulations.  

Simulated grid consisted of more than 1.4 million grid nodes on a three-dimensional regular grid 50 x 50 x 10 m with the total volume 
more than 35 milliards m3. One hundred of realizations in total were simulated by Turning Bands method using a given model variogram 

and search neighbourhood. Non-conditional simulations were conditioned by universal kriging due to using non-stationary structural 

model.  

 

Figure 4: Probability model of positive Ra (A.) with extracting the probabilities lower than 0.1 (B.), 0.5 (C.) and 0.9 (D.). 

 

The final numerical model consists of 100 simulated reservoir bodies filled by simulated values of Ra and . The individual simulations 

of the numerical model slightly exceeded experimental minimal and maximal values observed from the input data for both studied 

variables due to using non-stationary modelling approach. It is well know that non-stationary approach often exceeds input data range 

mainly in extrapolation areas of studied domain. The maximum values for the individual simulations of numerical model are well 

reproduced. 

Simulation post-processing consists in splitting each of 100 realization into two parts – above and below of a boundary condition: 0 for 

Ra and 200 for . On the grid node basis, post-processing continues with counting the number of times when the simulated values of 

each realization exceed the boundary condition. This number above boundary condition is normalized by total number of simulations to 

obtain probability values ranging from 0 to 1.  
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Figure 4 A. shows probability model for Ra ≥ 0. As can be seen on the figure, there is very tight transition in vertical direction among 
very low probabilities in the upper part of reservoir and the very high probabilities underneath it. The Figures 4 B., C. and D. show 

different reservoir proportions for positive Ra being above the probabilities 0.1, 0.5 and 0.9 respectively. It can be seen decreasing 

tendency in total reservoir volume with increasing probability. For instance, only 37% of total volume gains probability more than 0.1. 

Similarly, there is only 31% of total reservoir volume with probabilities more than 0.5 and only 26% with probabilities more than 0.9. 
The probability curve of reservoir volume in millions m3 [Mm3] is shown in Figure 6 A. Probable volume of the reservoir for positive 

values of Ra ranging from 10,870 Mm3 to 11,483 Mm3 with average volume about 11,127 Mm3, which correspond to approximately 

one third of the total reservoir volume fulfilling the boundary condition Ra ≥ 0. 

Figure 5 A. shows probability model for  ≥ 200. The highest probabilities are located at the very bottom part of the reservoir, mainly in 

the eastern part, with continuity direction NNE–SSW. The Figures 5 B., C. and D. show different reservoir proportions for  ≥ 200 being 

above the probabilities 0.1, 0.5 and 0.9, respectively. There is only 14% of total reservoir volume with probabilities above 0.1, decreasing 

to 9% for probabilities above 0.5, and less than 6% with probabilities above 0.9. The probability curve of reservoir volume in millions m3 

is shown in Figure 6 B. Probable volume of the reservoir for  ≥ 200 ranging from 2,974 Mm3 to 3,760 Mm3 with average volume about 

3,350 Mm3, which correspond from 9 to 11% of the total reservoir volume fulfilling the boundary condition. 

A steady-state pre-production model has been used to analyse sources, plausibility and extension of reservoir overheating (a closed-system 

model) and convection formation (linear stability analysis). At a given overheating ratio range τ local highs of τ ≥  200 locate in the eastern 

part of the reservoir at depths of 2,800-4,000 m, however, 90 % probability of τ ≥  200 is fairly reduced to depths below 3,500 m, which 

haven’t been drilled yet. A conditional simulation yields fining upwards trend in overheat. Lateral allochtonous heat sources are missing 
at the site, implying a tectonics-controlled overheating at contacts between dissected Mesozoic blocks of different uplift tendencies, so 

that the heat flux to the base or at walls is distributed unevenly. A trail-off overheating trend eastward from the Ďurkov tectonic block 

towards Neogene volcanics, preserving only fining-upwards profile limits their impact on recent thermal field regime in the reservoir. 

The zone with positive Ra has been identified at depths below 2,500 m, following a same distribution as the overheat ratio does. There 
is, thus, a possibility for convection formation in deeper parts of the system. If it is so, convection cells may form individually, bound to 

particular tectonic blocks, with uplift zones along faults that dissect the reservoir facies, whereas downflow realizes through connected 

karstified channels in the rock. Convective heat and mass flux may be even more promoted where discontinuities intercept and fissure or 

matrix permeability is, obviously, increased. 

Out of the entire reservoir, the highest plausibility for convection creation is the polygon between towns of Ďurkov – Olšovany and Svinica 
– Bidovce (Figure 1). Still, presented approach follows the concept of horizontally bedded strata. Tectonic dissection itself, however, 

expects application of inclined porous media approach, and so to introduce an angle of tilt into critical Rayleigh number analysis to account 

on a detailed reservoir geometry. This is a topic for the future research. 
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Figure 5: Probability model of  (A.) with extracting the probabilities lower than 0.1 (B.), 0.5 (C.) and 0.9 (D.). 

 

 

Figure 6: Volumetrics risk curves for studied variables Ra (A.) and  (B.).  

5. CONCLUSION 

Understanding reservoir heat and mass flux mechanisms is key in setup of reservoir response and reservoir chemistry models. The Ďurkov 

hydrogeothermal structure, as a low to moderate enthalpy  closed system, was assumed purely conductive environment. Although thermal 

diffusion prevails clearly, overheat-modified linear stability analysis shows that even under conductive profile, limited convection cells  

may form, not compromising the basic concept of the entire geothermal play -type. The presented paper deals with a methodology allowing 

for identification of convection indicators for given boundary conditions in a probabilistic framework using geostatistical s imulations. 
Carried simulations show that the most plausible zone for convection formation extend at greater depths that those already drilled, below 

3,500 m. Now let us assume that the critical permeability is enhanced along tectonic systems. Yet at given Rayleigh number, the convection 

appears concentrated into a few insulated cells with very limited vertical extent. Then, with upwards-fining temperature gradient, the 

velocity of upflow is expected to slow so that viscous forces prevail and slow cooling takes part. Consequently, with decreas ing upflow 

velocity, the rate of pressure and temperature change decreases, limiting boiling processes. Although evaded, most of a gas condensates 
during a rise or is saturated into a reservoir media. Limitation of the only natural process of gas cap formation points to an artificial 

origination of the cap. Indeed, high CO2 content potentially forming the cap is, thus, resultant to deep geological drilling in 70’s, during 

a country-wide prospection on natural gas and oil. 
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