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ABSTRACT

Naturally fractured reservoirs can pose challenges for geothermal energy production where a clear understanding of mass and heat transfer
is essential for developing and managing operations. The dynamic behavior of these reservoirs is greatly affected by fracture properties
such as orientation and aperture, whose magnitude is mainly influenced by the stresses on the reservoir rocks. M ethodologies for accurate
modeling of thermal multiphase flow within fractured reservoirs are limited. Therefore, simulating fractures and their behavior tends to
be computationally intensive, which often limits the use of data assimilation methods for uncertainty quantification. However, recent
advances in Discrete Fracture Models (DFM) have successfully decreased computational costs and allow for the explicit inclusion of
discrete fractures in reservoir simulations. This study explores data-assimilation techniques to help quantify uncertainties of energy
production from naturally fractured reservoirs. We combine a recent implementation of DFM in the Delft Advanced Research Terra
Simulator (DARTS) with both ensemble and gradient-based data-assimilation methods. The data-assimilation workflow, first developed
with a synthetic naturally fractured reservoir for two phase flow, is extended in this study and applied to a real outcrop-based geothermal
reservoir model. Our results show that data assimilation can help to characterize the main dynamic processes of geothermal energy
production from fractured reservoirs. Using this technique, we obtain a more accurate representation of the stresses acting on the reservoir
and how they affect the fracture aperture. This information is essential for the accurate representation of fractured reservoirs and their
efficient reservoir management

1. INTRODUCTION

Geothermal energy has the potential to provide a renewable and sustainable source of power. However, extracting energy from naturally
fractured reservoirs can be challenging due to the complexity of the rock structure and the resulting heat and mass transfer p rocesses.
Accurate modeling ofthese processes is important for the successful development and management of geothermal operations, but existing
methodologies for simulating thermal multiphase flow in fractured reservoirs are limited and computationally intensive. An advanced
methodology for accurately modeling fractured reservoirs is the Discrete Fracture M odel (DFM ), proposed by Karimi-Fard et al. (2004).
In DFM, fractures are explicitly represented by individual elements in the reservoir grid, and fracture apertures can be computed using
fracture orientation-dependent formulation (Barton & Bandis, 1980).

This approach has been successfully tested by Boersma et al. (2021) and de Hoop (2022) for geothermal productionin Delft Advanced
Research Terra Simulator (DARTS), which is a multi-physics python/C++ based simulator. DARTS relies on Operator Based
Linearization (OBL) formulation to solve the governing equations (Khait & Voskov, 2018; Wang et al., 2020) and is capable of simulating
a wide range of geothermal energy production scenarios in a computationally efficient way. However, there are still challenges in
understanding the uncertainties that affect the thermal behavior of fluids in fractured reservoirs due to limitations in quantifying fractures
properties accurately. Data assimilation can help understand the uncertainty of states and parameters usually predicted by numerical
models, incorporating observations into the model.

Data assimilation is often used in fields such as meteorology, oceanography, and geoscience to improve the accuracy of weather and
climate forecasts, ocean state prediction, and subsurface flow modeling, respectively. There are various methods of data assimilation, that
can be divided in ensemble-based methods and gradient-based methods. Ensemble-based data assimilation methods, such as the Ensemble
Kalman Filter (EnKF) and ES-M DA, are Monte Carlo based techniques that use a set of model simulations, known as an ensemble, to
represent the uncertainty in the model and approximate the sensitivity of the unknowns in respect to the objective function avoiding the
calculation of gradients. Gradient-based data assimilation methods, such as the RML and 4DVar methods, use variational optimization
techniques to update the model's initial conditions based on the difference between the model's predicted output and the observations
(Evensen et al. 2022). Ensemble-based and gradient-based data assimilation methods are widely used in geoscience applications to
improve the accuracy of numerical models by incorporating observations from various sources, such as satellite data, in situ observations,
and remote sensing data.

In this work, we explore the potential of data assimilation techniques to help understanding the effect of in-situ stresses, initial fracture,
and matrix permeability on the thermal behavior of naturally fractured geothermal reservoirs. We apply ES-M DA and RM L, an ensemble-
and a gradient-based method, respectively (Evensen et al. 2022). We follow a similar integrated workflow proposed by Seabra et al.
(2022), where data assimilation was applied to a synthetic reservoir with a naturally fractured network with two phase isothermal flow
and maximum in-situ stress angle and initial fracture aperture were considered as the unknown parameters for the data assimilation.
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However, we extend the workflow to thermal effects and include the matrix permeability as one of the unknown properties. We also use
areal outcrop based reservoir model to test the data assimilation workflow.

To account for a realistic representation of the reservoir, we use a real outcrop based reservoir model, the Whitby Mudstone Formation.
Boersma et al. (2015) interpreted aerial images of the outcrop in the aspect of its fractures orientation, length and density. In this study, a
digital map ofindividual fractures was constructed. Based on this map of the Whitby M udstone, de Hoop (2022) built the DARTS dynamic
model used to simulate geothermal energy production, and performed sensitivity analysis on the effect of fractures discretization on energy
production. The present study extends de Hoop (2022) sensitivity analysis, performing the described data assimilation workflow for
uncertainty quantification. The succeeding sections of this paper first describe the reservoir model and the data assimilation workflow.
Then, we present the results of the data assimilation workflow for the Whitby Mudstone reservoir model. Finally, we discuss the results
and conclude

2. METHODOLOGY

2.1 Forward Modeling

The DFM scheme implemented in DARTS is utilized to accurately capture the pressure responsetriggered by flow in fractured networks.
The following subsections describe this aspects of the study.

2.1.2 Discrete Fracture M odel simulation with DARTS

In order to accurately predict the behavior of mass and heat flow in fractured geothermal systems, asuitable fracture model is essential to
reflect the reservoir response. Among several existing methods, the discrete-fracture model (DFM) accurately and reliably captures the
pressure response triggered by flow in fractured networks by explicitly characterizing the fracture networks via individual control volumes
(Karimi-Fard et al. 2004). Wang et al. (2021) presented the framework for the simulation of DFM with DARTS, where after selecting a
fracture network configuration, the apertures are distributed using an empirical relationship of the mechanical closure of initially open
fractures due to applied normal stress to each fracture (Barton & Bandis 1980). This stress-to-aperture mechanical relationship is described
in Boersma et al. (2021), the fracture aperture is computed as a hyperbolic function as described as follows:
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where e,, is the fracture mechanical aperture, e, the initial fracture aperture, o,, is the in-situ stress normal to the fracture plane, and two
empirical measured parameters, v, the maximum fracture closure and K,,; the fracture stiffness, which are functions of material
parameters and e, (de Hoop, 2022). Then, a power law model is applied to account for fracture permeability as a function of fracture
aperture:
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Note that the resulting permeability of each fractured segment is highly dependent on the stress acting normal to the fracture plane.
Therefore, the in-situ stress directions will have an effect on the flow along each fracture plane, fractures parallel to the maximum in-situ
stress directions will have bigger permeability than those normal to it. Finally, fractures are included in DARTS model as additional
elements with the correspondent permeability. The DARTS framework for geothermal modeling of fractured systems has been validated
against commonly used numerical simulators in the geothermal industry, and details about the governing equations for this problem can
be found in Wang et al. (2020) and Wang et al. (2021). De Hoop (2022) conducted an analysis of grid optimization and heat transfer
dynamics in a synthetic fracture model, as well as in models based on outcrops.

2.1.2 Model Description

All simulations in this study are based on a model of the Whitby M udstone Formation. The Whitby M udstone Formation is a sedimentary
rock formation located in the northeast of England. Itis composed mainly of mudstone, a type of fine-grained sedimentary rock formed
from consolidated mud, and is known for its rich fossil content. The outcrop is a popular site for geothermal research due to its properties
and geology, which make it suitable for studying geothermal energy production. (de Hoop, 2022), which uses a direct heat production
strategy commonly employed in low enthalpy geothermal doublets. Fora period of 20 years, cold water is injected into the reservoir at a
temperature of 308.15 K, while the temperature of the reservoir is 348.15 K. During this time, hot water is produced to generate energy.
The positions of the producer and injector wells, as well as the Whitby fracture network, are depicted in Figure 1.

2.2 Data Assimilation

Data assimilation is a process that combines observed data with a physical model in order to estimate the state of a system. To perform
data assimilation, the first step is to sample the prior distribution, which represents the range of possible values for uncertain parameters.
This is done by generating an ensemble of samples from the prior distribution, which allows for a representative sample of the uncertain
parameters to be obtained. Observed data is collected through measurements that provide information on the dynamics or mechanics of
the system. Finally, a data assimilation workflow is constructed, typically involving the use of a data assimilation method such as ES-
MDA or RML, to compute the objective function and update the model based on the observed data. The updated model can then be used
to make more accurate predictions about the system. The performance of a data-assimilation scheme can be tested by assimilating synthetic
data, that is, data created from a model simulation.
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Figure 1 — Geothermal simulation model configuration with doublets position and Whitby fracture network configuration.

2.2.1 Sampling the prior

Sampling the prior distribution is an important step in data assimilation because the samples selected (i.e., the specific parameter values
chosen) reflect the prior understanding of the uncertainties held by theuser. This is achieved by generating an ensemble of samples from
the prior distribution, which are expected to represent the uncertainty in the parameters. By forward simulating the state based on the prior
choice of parameters, we can also better understand how the parameter uncertainty may affect the model predictions.

In this study, we investigate two different sets of prior unknown parameters. The first set consists of the maximum in-situ stress angle and
initial fracture aperture, similar to the approach taken by Seabra et al. (2022). To sample the prior distribution for these uncertain
parameters, we generate an ensemble of 100 members. The maximum in-situ stress angle is uniformly distributed from 0° to 90°, while
theinitial fracture apertureis normally distributed with a mean of 0.15 mm and a range from 0.10 mm to 0.25 mm. The second set of prior
unknown parameters includes the matrix permeability, which is normally distributed with a mean of 100 mD and a range from 10 mD to
1000 mD. Figure 2 shows the histogram of the three prior unknown parameters.
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Figure 2 - Prior distributions of unknown parameters

2.2.2 Reference cases for the Data Assimilation

In this study, we selected three scenarios with three distinct stress angles from the ensemble members to generate synthetic data (reference
cases) to evaluate the performance of the data assimilation method. These different values of the chosen stress angle are: 0°,45°, and 90°.
Thereference models for these scenarios all have the same initial fracture aperture and permeability values, which are setto 0.15 mm and
100 mD, respectively. The results of the analysis show that the temperature drop in the producer well is highly influenced by the direction
of the maximum horizontal stress (Figure 3). For instance, in the 0° reference case, the temperature drop occur after only 4 months of cold
water injection, while in the45° and 90° cases, the temperature drop occur after 105 months and 143 months, respectively.

Figure 4 presents the temperature distribution in the reservoir at these times for all three reference cases and suggests that the direction of
the maximum horizontal stress has a significant impact on the temperature drop in the producer well. This difference occurs because when
the stress angle is 0°, the temperature tends to flow directly towards the producer well, leading to a faster temperature drop. On the other
hand, when the stress angle approaches 90°, the temperature tends to flow in a direction p erpendicular to the producer well, causing a
dispersion effect that delays the temperature drop. This is due to the fact that the path of flowing in a direction perpendicular to the
producer well has a higher conductivity. Overall, the map illustrates how the direction of the maximum horizontal stress can have a
significant effect on the temperature distribution in naturally fractured reservoirs.
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Figure 3 - Bottom hole temperature for the three reference cases, highlighting the time for a Sdegrees temperature drop in each
case.
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Figure 4 -Reservoir temperature distribution, in Kelvins, for the three reference cases for 4,105 and 143 months after the start of
injection

2.2.3 Data Assimilation workflow

Our work follows an integrated data assimilation workflow similar to that proposed by Seabra et al. (2022), where both ES-MDA and
RML were applied to anaturally fractured reservoir. DARTS s used to compute the simulated data. In the first moment, we used the same
workflow for the geothermal simulations, then we added matrix permeability to the list of unknown properties. Observed data, generated
by a synthetic case are assimilated with the framework presented in Figure 5 to evaluate the capability of two data-assimilation methods
(ES-MDA and RML) to quantify uncertainties in the unknown parameters.

It is important to highlight that different data assimilation methods compute the objective function in different ways which are
characteristic of each method. ES-M DA and RM L, for example, compute the objective function based on their own distinct premises. A
unified formulation for various well-known data assimilation methods, including ES-M DA and RML, can be found in Evensen et al.
(2022). In the next section, we will present the results of our proposed data assimilation framework applied to geothermal simulations of
the Whitby model, where we evaluate the performance of ES-M DA and RM L in quantifying uncertainties in the unknown parameters.
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Figure 5: Data-assimilation workflow proposed by Seabraetal. (2022).

3. RESULTS

3.1 Evaluation of the Data Assimilation workflow with ES-MDA

First, the ES-M DA method is applied in the data-assimilation process to perform history-matching on the models. This process involves
using synthetic observations, generated from three reference cases, to perform the history of the prior ensemble. To make the process
more realistic random noise is added to the bottomhole temperature data collected during the first 15 years of production, which is used
as the observed data. The last 5 years of production are then used to evaluate the behavior history- history--matched models during the
extrapolation period.

3.1.1 — Considering maximum in-situ stress angle (8. ) and initial fracture aperture (ey) as unknown parameters

As described in section 2.2.1, the initial set of prior unknown parameters consists of the maximum in-situ stress angle and initial fracture
aperture. The results show that the posterior distribution of rates, as determined by the ES-M DA method, is closer to the observed data
than the prior distribution of rates in all three stress angle scenarios (as shown in Figure 6). The posterior distribution of the maximum in-
situ stress angle and initial fracture apertureis also significantly narrower than the prior distribution after assimilating data (Figure 7) for
all reference cases. This indicates that the applied data-assimilation framework is successful in creating a posterior with less uncertainty
than the prior, and identifying what would be the dominant stress angle acting on the fractures of the reservoir. Figure 8 illustrates the
evolution of the objective function for each of the four ES-M DA iterations needed to achieve good history-history --matchingresults.
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Figure 6 - Comparison of posterior and prior distributions of rates for different stress angle scenarios using ES -MDA method
when maximum in-situ stress angle (6, ) andinitial fracture aperture (e,) are considered as unknowns.
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Figure 8 - Evolution of ES-MDA objective function for all three reference cases when maximum in-situ stress angle (6, ) and
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3.1.2 — Considering maximum in-situ stress angle (6 ). initial fracture aperture (e4) and matrix permeability (k) as unknown parameters

The incorporation of permeability as an additional unknown factor significantly enhances the complexity of the problem and presents a
greater challenge for the data-assimilation algorithm. In an effort to address this challenge, the ES-MDA framework was initially
implemented with four iterations. Many studies in the literature have found that this number of iterations is effective for addressing
subsurface problems (Canchumuni et al., 2021). However, the outcomes of this initial approach are not satisfactory, as illustrated in
Figures 9 and 10. Thus, we obtain better results (smaller error for the history--matching) increasing the number of iterations from four to
eight, as illustrated in Figures 11 and 12. This decision was taken taking into account our previous experiences and the additional
unknowns present in this case. . It is worth noting that increasing the number of iterations in the ES-M DA method requires starting the
process from the beginning, as it is not possibleto increment the number of iterations one by one. The reduction of the ES-M DA objective

function for the different numbers of ES-M DA iterations is illustrated in Figure 13.
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Figure 10 - Prior and posterior distribution of initial fracture apertures and stress angle for the three reference cases when

permeability is added as an unknown parameter and with four ES-MDA iterations.

6




Seabra, de Hoop, Voskov and Vossepoel

Figure 11 - History- matching for the three reference cases when permeability is added as an unknown parameter and with eight

Figure 12 - Prior and posterior distribution of initial fracture apertures and stress angle for the three reference cases when
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Figure 13 Evolution of the objective function for the cases: stress angle, initial fracture and permeability and four ES-MDA
iterations (left), and, initial fracture and permeability and eight ES-MDA iterations (right).

Figure 14 depicts the evolution of two parameters (permeability and maximum stress angle) at each iteration of the ES-M DA algorithm
for the reference case 9(,:900 when eight iterations are performed. Each point on the plot represents a set of parameter values, and the
color of the point indicates the corresponding value of the objective function. As the algorithm progresses, the parameter values move
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towards values that minimize the objective function. The plot shows that the parameter values generally converge towards the optimal
solution (9(,:900 and k = 100 mD), indicated by the concentration of points near the reference value for each parameter where the
objective function is at its lowest. However, during the initial steps, there are also some points scattered throughout the plot that do not
converge towards the optimal solution , suggesting that the algorithm may get stuck in or oscillate around local minima. Overall, Figure
14 provides a visual representation of how the parameters evolve during the data assimilation process.
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Figure 14 - Evolution of permeability and maximum stress angle for the reference case OU=900 in the ES-MDA algorithm colored
by the objective function.

Including the matrix permeability in the data assimilation problem is especially a challenge because matrix permeability and fracture
conductivity are important factors in determining fluid conductivity. The temperature drop in the producer well is largely influenced by
the connectivity between wells. When the stress angle is below 30 degrees, the matrix permeability does not significantly affect the
temperature drop in the producer. However, when the stress angle is above 30 degrees, the matrix permeability becomes a dominant factor
in the temperature drop, with high matrix permeability leading to an early temperature drop and low matrix permeability resulting in a
later temperature drop (Figure 15).
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Figure 15 — Influence of maximum in-situ stress angle (6, ) and permeability on the time for temperature drop in the producer
well for all 100 prior models. The size of the circles is the magnitude of permeability.

The results demonstrate the effectiveness of the ensemble-based data assimilation method in estimating the uncertainty of producer well
temperature, stress angle, and initial fracture aperture. A key aspect of this method is its ability to use dynamic data from the reservoir, in
this case the bottomhole well temperature, to constrain the in-situ stress angle. While incorporating additional unknown parameters, such
as permeability, make the problem more complex, the ES-M DA framework is able to produce improved results with additional iterations.

3.2 Evaluation of the Data Assimilation workflow with RML

After conducting data assimilation with ES-M DA, we apply the RM L method to perform history-matching. As a gradient-based approach,
the RM L method involves optimizing a set of parameters through an iterative process by following the gradient of an objective function
(Evensen et al. 2022). While the overall data assimilation framework is similar, the RM L method does not involve history-matching for
an entire ensemble of models. Instead, a single prior model is selected on which history-matching is applied. We first evaluate the RML
method using synthetic data in which the initial guess is randomly chosen from the prior ensemble described before and has stress angle
of 40° and initial fracture aperture 0.138 mm. We perform data assimilation with the three different reference models with maximum in-
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situ stress angles of 0°, 45° and 90° and an initial fracture aperture of 0.15 mm. Similarly to the ES-M DA, the first attempt at history-
matching only considers the angle of maximum in-situ stress and the initial fracture aperture. We allow the gradient to be calculated a
maximum of 25 iterations of minimization of the RM L objective function using Sequential Least Squares Programming (Kraft & Powell,
1994), a optimization algorithm from scipy Python package, to calculate the numerical gradients. Figure 16 presents the results of the
three different history-matchings. The posterior values of the estimated parameters are presented in Table 1. It is noteworthy that the
reference stress angle of the 90° in-situ stress angle case had the largest misfit of all of the cases. This may be due to the fact that models

with higher stress angles exhibit similar temperature responses,, leading to similar objective function values, and this can pose challenges
for gradient-based data assimilation methods.
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Figure 16 - Comparison of history-matching results for the temperature using the RML method for three reference cases. The
red line indicates the reference forecast, and the dashed black line marks the end of the history-matching period.

Table 1 - Posterior values of the parameters for the three history-matching cases using the RML method for the first set of

unknown parameters.

Parameter for history-matched model (posterior)

Reference 8,=90°

Reference 6,=45°

Reference 6,=0°

M aximum in-situ stress angle (6, ) [°]

81.8

44.7

1.3

Initial fracture aperture (eq) [mm]

0.148

0.149

0.149

Next, we add permeability as a third unknown parameter in the data assimilation framework. This time, another prior model is randomly
chosen from the prior ensemble and has a stress angle of 35°, while initial fracture aperture is 0.144 mm and matrix permeability 10 mD.
All reference models have a matrix permeability of 100 mD. This time, the gradient calculation requires a maximum of 100 iterations for
the minimization of the RM L objective function for each case. Figure 17 presents the results of the three different history-matching, all
with a good fit to the observations. The posterior values of these parameters are presented in Table 2. It is worth noting that when an
additional parameter is included in the set of unknown parameters, it is necessary to increase significantly the number of maximum
iterations to achieve a good fit to the data in the history-matching. One potential reason for this may be the use of numerical derivative
methods to calculate gradients. However, there are more efficient methods for computing gradients analytically, such as the adjoint
method, as described in Tian et al. (2021). While the adjoint method can be more efficient than numerical gradients, it requires additional
implementation and changes to the code of the simulator, which is beyond the scope of this work.
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Figure 17 - Comparison of history-matching results for the temperature using the RML method for three reference cases when

permeability is included as an unknown parameter. The redline indicates the reference forecast, and the dashed black line
marks the end of the history-matching period.
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Table 2 - Posterior values of the parameters for the three history-matching cases using the RML method for the second set of

unknown parameters.
Parameter for history-matched model (posterior) Reference 6,=90° Reference 6,=45° Reference 6,=0°
Maximum in-situ stress angle (6, ) [°] 87.4 44.7 2.5
Initial fracture aperture (eq) [mm] 0.152 0.148 0.149
M atrix permeability (k) [mD] 98.1 101.5 109.3

Overall, these results show that while the RM L method can effectively perform history- matching, it is much more computationally
intensive compared to the ES-M DA method. The ES-M DA method requires running 100 models for each iteration, providing a more
comprehensive exploration of the parameter space and a better description of the uncertainty. In contrast, the RML method uses a
sequential process and stops when the objective function is below a certain threshold, or a maximum number of iterations is reached
(which was set at 100 iterations per model in this case). Figure 18 shows the evolution of the RM L objective function, respectively, for
the first (stress angle and initial fracture aperture) (left) and second (stress angle, initial fracture aperture and matrix permeability) (right)
set of unknown parameters along the iterations of the optimization algorithm for each case.
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Figure 18 - Objective function values for 25 iterations of the RML algorithm for the firstset of unknown parameters (left) and
objective function values for 100 iterations of the RML algorithm for the secondset of unknown parameters (right).

4. CONCLUSIONS

This study explores the use of data assimilation techniques to improve our understanding of geothermal energy production in naturally
fractured reservoirs. It combines a recent implementation of the Discrete Fracture M odel (DFM ) in the Delft Advanced Research Terra
Simulator (DARTS) with both ensemble and gradient-based data assimilation methods. The data assimilation workflow is applied to a
real outcrop-based naturally fracture configuration to generate the geothermal reservoir model, the Whitby M udstone Formation.

The main findings of the research can be summarized as follows:

1. Data assimilation can help to characterize the main dynamic processes of geothermal energy production from fractured
reservoirs. Using this technique, we were able to obtain a more accurate representation of the stresses acting on the reservoir
and how they affect the fracture aperture.

2. The ES-M DA method was able to achieve good results with relatively low computational costs, while the RM L method was
more computationally expensive but still able to achieve good results.

3. The inclusion of additional unknown parameters, such as permeability, can increase the computational demands of the data
assimilation process. In this study, we found that the RM L method required significantly more iterations to achieve similar
results to those obtained with ES-M DA when permeability was included as an unknown parameter.

4. The data assimilation results showed that stress angle and fracture aperture have a significant effect on the temperature drop in
the producer well. Specifically, when the stress angle is below 30 degrees, the matrix permeability does not significantly affect
the temperature drop, while above 30 degrees the matrix permeability has a larger influence.

Overall, the study demonstrates that data assimilation techniques can be used for a more accurate description of of geothermal energy
production in naturally fractured reservoirs. The results of this study provide valuable insights into the dynamic processes of these
reservoirs, and highlight the importance of accurately representing the stresses acting on the reservoir and their impact on the fracture
aperture. Further research could explore the potential of data assimilation techniques to improve our understanding of other types of
naturally fractured reservoirs, with the aim to optimize geothermal energy production operations in naturally fractured reservoirs.
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