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ABSTRACT 

For understanding subsurface geology, fault locations, and fracture distribution, detailed subsurface structure information, such as velocity 

models and reflectivity images, is essential. The velocity models can be used for finding accurate earthquake locations and 

characterization. We use 3D seismic survey data collected in 2018 and a walkaway Vertical Seismic Profile (VSP) survey performed in 

2022 to refine the elastic model at the FORGE EGS site, Utah.  

We apply travel-time tomography for the 3D seismic survey, which contains nearly 1100 vibroseis shots and 1700 receivers. To increase 

the picking accuracy, we develop and test two approaches: a machine-learning-based (ML) picker and a frequency-dependent travel-time 

picker. For the ML picker, we combine the EQTransformer algorithm with cross-correlation to pick P-wave travel times. Although the 

EQTransformer is designed for earthquake waveforms, it can still pick accurate travel-times of active-seismic data compared to other ML 
pickers. The frequency-dependent picker is a new approach applied to the waveforms before correlating the vibroseis sweeps. In the 

waveforms, the sweep signals are recorded as linear upsweep signals. We use a time-frequency analysis to find the linear trend, which 

corresponds to the arrival time of the wave. Both methods match reasonably well with some differences, which will be discussed. Then 

we apply a tomographic inversion with the Eikonal solver to estimate the subsurface velocities with higher resolution than the model 

developed for migration. 

The VSP survey was recorded after the 2022 April stimulation. The survey contains 106 vibroseis shot points, two DAS systems in nearby 

boreholes (78-32A and 78-32B), and two geophone systems (58-32 and 78-32B). Direct P and S waves are clearly observed with some 

reflections. Geophones generally have a higher signal-to-noise ratio than DAS, although DAS has much better spatial sampling. We apply 

reflection imaging using reverse-time migration, which reveals several reflectors that are imaged by previous studies, but we find the 

necessity of updating the velocity model for migration because of poor focusing. 

1. INTRODUCTION 

Subsurface elastic velocity models are the foundation of understanding subsurface geology, faults and fractures, and stress and strain 

states. In addition, elastic velocity models are often used for accurately locating earthquakes, as well simulating ground-motion due to 

earthquakes. Surface and borehole seismic surveys, as well as borehole logging data,  have been widely employed for developing velocity 
models (Yilmaz, 2001). Here, we take advantage of recently observed seismic data at Utah FORGE EGS Site to develop an updated elastic 

model. 

FORGE is a test facility in Utah that is hosting several deep geothermal stimulations (Moore et al., 2019). The stimulations are closely 

monitored using an array of geophysical, geochemical, and hydrological tools.  These include seismic arrays and geodetic methods that 

are situated at or near the Earth's surface.  In order to analyze these data it is necessary to have a reasonably good model of the elastic 
velocities from the surface downward to the injection locations.  While there are models of shear wave velocity at the site, obtained by 

the analysis of surface waves (Zhang and Pankow, 2021), there are limited constraints on the compressional wave velocity.  For example, 

most available well logs do not sample above a depth of 500 m, as indicated in Figure 1.  Thus, the near-surface elastic properties of the 

site are not well characterized.  This can be an impediment in the analysis of surface-based observations given that  the velocity variations 

in the shallow regions can be quite significant. 

We use two seismic datasets: 3D seismic data collected in 2018 and Vertical Seismic Profile (VSP) data collected in 2022. We first test 

two types of travel-time picking algorithms for the 3D seismic data to accurately measure P (and S) wave arrival times. Then we apply 

eikonal tomography to invert P-wave velocities down to around 1 km depth. Next, we apply wavefield migration to the VSP survey. 

Although the image is preliminary, we obtain several reflectors potentially related to the geologic layers. 
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Figure 1. Elevation above mean sea level of the granite interface at the FORGE geothermal tes t site.  Three observation wells (58-
32, 56-32, and 78B-32) are labeled, as is the stimulation well (16A).  The distribution of points denotes the cloud of seismicity 

associated with the stimulation. Available well-log data of seismic velocities are shown in each panel. 

2. TRAVEL-TIME PICKING 

Available observations from a reflection survey in 2018 (Figure 2) are sensitive to the shallow elastic properties at the FORGE site because 

of their source-receiver geometries. The primary motivation for the survey was to image the sediment-granite interface in the area, a major 

structural interface that is critical for drilling wells and designing an effective stimulation. 

 

Figure 2. Geometry of the reflection survey used to image the structure beneath the FORGE geothermal test site. Red 

lines show the location of sources and black vertical lines are the locations of receivers. 

However, the direct arrivals in the recorded seismic waveforms also contain important information on the shallow elastic prop erties. There 

are 1114 source positions and 1769 possible receivers with the potential for almost 2 million arrival times. The traces display clear direct 
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arrivals as well as reflections from the sediment-granite interface (Figure 3). One impediment to the use of the reflection waveforms is 
the sheer amount of work required to pick first arrivals for such a large volume of data. Therefore, we adopted two automated approaches 

for determining seismic arrival times. The first is a machine-learning (ML) approach that was developed for picking first arrivals from 

regional earthquakes. The second is a novel method that makes use of the vibro-seis frequency sweep and the separation of the signal 

from the micro-seismic background noise at frequencies above approximately 15 Hz. 

 

Figure 3. Seismic traces for two sources in the reflection surveys, shots 24 and 689.  The traces are plotted as a function 

of distance from the shot. 

2.1 Machine-learning-based travel-time picking 

        

The 3D reflection seismic survey in the FORGE area acquired millions of seismic traces. Therefore, automatic and efficient methods are 

required to process this large data set. Encouraged by the superior performance of ML-based methods in picking seismic phases (Zhu and 

Beroza, 2018), we evaluate and apply ML techniques to pick the arrival times of the first breaks in the reflection seismic data set. Because 
no manual picks are available to build ground-truth labels and train dedicated ML models, we leverage existing ML models that are pre-

trained using global natural earthquakes to perform this picking task. The tested pre-trained ML models are trained on local and regional 

earthquake data sets for picking the P- and S-phases of earthquakes (Woollam et al., 2022). As most natural earthquake data sets are 

collected at 50 to 200 Hz sampling rates, these pre-trained ML models are trained and expected to work at a fixed sampling rate of 100 

Hz, requiring a particular time duration for the input segments, e.g. 30 seconds (Woollam et al., 2022). In comparison, the reflection 
seismic traces at FORGE are recorded at a 1000 Hz sampling rate and in a 4-seconds duration. Therefore, there is a systematic scale 

difference between the models’ applicable range and the applied data set. To accommodate the scale difference, we vary the data sampling 

rate of the recorded reflection seismic data to permit the successful application of ML models and mimic the scale range of t he typical 

earthquake waveforms. After different tests, we find that changing the data sampling rate to 60 Hz best fits our data set and permits a good 

performance of ML models for picking the first arrivals. 

To build an automatic ML-based picking workflow, we employ SeisBench (Woollam et al., 2022), an integrated seismological ML model 

platform, to provide available ML models. SeisBench integrates various ML architectures (e.g. U-Net, CNN and Transformer) trained on 

different data sets (e.g. STEAD, GEOFON and SCEDC). We evaluate the performance of different ML models for picking the first wave 

arrivals of the FORGE data set and determine the best-fit model. We found that the best fit model is the EQTransformer model trained on 

the GEOFON data set as shown in Figure 4. After applying the best -fit model to all traces and with a picking threshold of 0.2, we obtain 

the first arrival times of the whole data set. 
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Figure 4. ML model performance comparisons for picking the first arrivals. The figure highlights four models with the model 

names indicated in each panel. For each panel/model, the upper frame shows the recorded seismic trace and the picked first 

arrival time, whereas the bottom frame shows the picking probabilities generated by the used ML model. In comparison, the 

EQT-GEOFON model performs the best. 

Because the adopted ML model is designed and trained for picking arrival times of natural earthquakes, model generalization issues exist  
when applying the chosen ML model to the FORGE reflection seismic data. In addition, signal-to-noise ratio and non-direct phase arrivals 

with large amplitudes (e.g. surface waves and reflection waves) will affect the model’s performance and cause false and incorrect picking 

results. As the source and receiver locations are known a priori, we calculate the theoretical arrival times of direct waves (e.g. first P 

arrivals) from a preliminary layered velocity model by solving eikonal equations. The theoretical arrival times with a specific tolerance 

range are then used as references to constrain the ML picking results. ML picks falling out of the theoretical arrival time tolerance range 
are removed. By incorporating theoretical arrival time constraints, we utilize spatial coherence of arrival times in the nearby traces and 

further eliminate outliers due to low SNR or interference from strong surface/reflection waves (Figure 5). 

 

Figure 5. The left panel shows the original ML picking results for the first arrivals of a seismic profile (vertical axis for trace index 

and horizontal axis for recording time). The right panel shows the ML picking results after implementing theoretical arrival time 

constraints. The red dots in the figure highlight the picked arrival times. Note that the picking outliers which are induced by 

strong surface waves have been eliminated. 

We notice that the ML picking performance is subject to SNR and sometimes shows picking uncertainties of several milliseconds for 
traces with low SNR. To further improve the picking accuracy, we use cross-correlation to fine-tune the obtained picks. For each shot 

gather, we stack the waveforms of  high-quality picks (with ML probabilities higher than 0.5) to generate a standard wavelet of the direct 

arrivals (Figure 6a). Each picked trace in this shot gather is then cross-correlated with the standard wavelet to resolve the time lag (Figure 

6c) and shift accordingly to obtain a more precise picking result (Figure7). We notice that most picked traces (90%) have a lag time within 

10 milliseconds (Figure 6c) and a correlation coefficient larger than 0.6 (Figure 6b), which demonstrates the reliability of most ML picks 

(Figure 7). 
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Figure 6. (a) Example of a stacked standard wavelet of the direct arrivals for a shot gather. The standard wavelet is obtaine d by 

stacking the waveforms from 0.1 seconds before and 0.3 seconds after the high-quality picks. (b) The maximum cross-correlation 
coefficients between the picked traces and the standard wavelet for the same shot gather of (a). (c) The lag time in samples between 

the picked traces and the standard wavelet when the cross-correlation coefficient reaches the maximum. 

 

 

Figure 7. The picking results before (left) and after (right) applying the cross-correlation refinement. 

Overall, the complete workflow consists of three parts: (1) ML-based first arrivals picking, (2) theoretical arrival time constraint, and (3) 

cross-correlation refinement. With this automatic workflow that combines ML-picking and cross-correlation refinement(Figure 8), we 

demonstrated that we can efficiently pick the first arrivals, which, in turn, can be readily used in tomography studies. 



Nakata et al. 

6 

 

 

Figure 8. Automatic first-arrival picking workflow using ML and cross-correlation techniques (Step 1 through 3 in the text). 

2.2 Travel-time estimation from the frequency sweep 

The vibro-seis source used for the FORGE reflection survey has a clear linear increase in frequency as a function of time, visible in both 

the recorded trace and in a time-frequency decomposition of the trace (Figure 9). This trace is sufficiently close that the non-linear ground 

motion and the clipping of the signal amplitude are visible in both the raw trace and in the time-frequency decomposition. In the time-

frequency plot the non-linearity introduces frequency multiples that appear as lines with steeper slopes in the lower panel of Figure 9. The 

non-linear ground motion decreases rapidly with distance from the source and, at a sufficiently large distance, only the primary sweep is 
visible (Figure 10). An interesting feature visible in the time-frequency decomposition in Figure 10 is the separation between the 

background micro-seismic noise and the vibro-seis signal that occurs at frequencies above about 10-15 Hz. This separation between signal 

and noise is visible in traces that are over 5 km from the source. 

  

Figure 9.  (Upper panel) Seismic trace recorded 11 m from the 

vibro-seis source. (Lower panel) Time-frequency 

decomposition of the seismic trace shown in the upper panel. 

Figure 10. (Upper panel) Seismic trace recorded 3 km from 

the vibro-seis source.  (Lower panel) Time-frequency 

decomposition of the seismic trace shown in the upper panel. 
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The appearance of the linear sweep at a seismic station provides information on the arrival time of a propagating waveform from the 
source. One idea for automating the estimation of travel times from the seismic waveforms gathered during the reflection survey is to 

make use of the detection of the linear sweep at a station. Our first approach was to adopt a robust line fitting algorithm in order to define 

an 'arrival' for a particular frequency. The slopes of the lines in time-frequency space appear to be constant at the stations, indicating that 

attenuation was not strong and that the propagation is non-dispersive. Thus, we fixed the slope of the fit lines and just altered the intercept, 

for a single fitting parameter for each trace. This approach seemed reliable and the results agreed reasonably well with the machine -
learning picks and estimates from eikonal equation calculations. However, another method, based upon slant -stacking amplitudes along 

lines with the same slope but varying intercepts, seemed simpler and perhaps more robust for noisy data. As an example, consider the 

receiver that is the furthest from source 24, over 5 km away from the shot. The raw trace for this source-receiver pair is very noisy and 

even the machine-learning picking algorithm failed to pick an arrival from the correlated vibro-seis data. The linear time-frequency sweep 

of the vibro-seis is clearly seen in the time-frequency decomposition, along with a constant 60 Hz component due to electrical noise. In 
the slant-stacking method we sum the squared amplitudes along lines with the same slope as given by the vibro-seis source-time function. 

The resulting root-mean-squared amplitude as a function of the line offset is shown in Figure 11. There is a clear peak in the summation 

slightly before 1.0 second. The slant-stack approach is easy to implement as a computer code and is simple to parallelize. The non-parallel 

version runs on a work station and only takes a fraction of a second to estimate an arrival. Still, for all 1.4 million traces it took about a 

week of computing, which was done in the background. The estimated travel times are shown in map view in Figure 12 for sources 116 
and 538. Note how the arrival times are earlier for stations to the east where the granite is shallow due to its much higher velocity (see 

Figure 1). An initial velocity model was constructed from information that was available from both the well logs and from the reflection 

survey information, prior to a full tomographic inversion of all travel times. Below the granite interface that was defined by the reflection 

survey, the compressional velocity was assumed to be a constant 5.84 km/s, as indicated by the well logs in Figure 1. Above t he dipping 

sediment-granite interface, the compressional wave speeds from the velocity analysis used to reduce the reflection data was used for the 

sediments. 

 
Figure 11. Result of the summation of the amplitudes along dipping lines in time -frequency space plotted as a function of the 

lateral shift of the line. 

 

Figure 12. Map views of the arrival times for two sources (116 and 538) from the reflection survey.  The crosses denote the three 

wells labeled in Figure 1 and the well head of the stimulation well (16A)  that lies to the west of the  trio of wells. 
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3. P-WAVE TOMOGRAPHY 

Here, we use travel times estimated by the time-frequency analysis for tomography, and will incorporate the ML pickers in the future. A 

finite-difference eikonal equation solver was used to calculate the travel times through the hybrid velocity model and to define the rays 

that are used in the tomographic inversion. Comparisons between the estimated travel times and the eikonal travel times indicate general 

agreement between the observed and calculated times. In Figure 13, we plot the observed and calculated travel times as functions of  

distance from source for the two shots considered in Figure 12. There is a general agreement between the two sets of travel t imes, though 
there is much more scatter in the observed ones than in the calculated ones. Note that, for far offsets, the travel times sep arate into fast 

and slow branches, likely due to the granite that is encountered along some azimuths while sediments are found for paths in other 

directions. This branching at farther offsets is seen in both the observed and calculated travel times. 

 

Figure 13. Arrival times as functions of source-receiver separation. The open circles denote the times calculated using the ini tial 

velocity model and an eikonal solver. The plus signs denote the travel times estimated using the slant-stack approach. 

 

Figure 14. Horizontal slice through the velocity model at depths of 500 m and 1000 m. The left panels show the initial model and 

the updated model is shown on the right. 

Using the initial model as a starting point, we performed a tomographic inversion of the roughly 1.4 million arrival times. T he least squares 

QR algorithm (LSQR) was used for the sparse matrix inversion. The sensitivities were based upon ray-paths that were back-calculated 
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from the eikonal solver travel time fields for each source. That is, by starting at each receiver and traveling down the gradient of the travel 
time field until the source was reached. We show the results of a linearized inversion, as we did not iteratively update the model beyond 

the first update. Both source and receiver travel time shifts were included in the inversion to account for residual statics and shallow 

velocity anomalies as well as potential station mis-locations. The resulting updated velocity model is shown in Figures 14 and 15. 

 

Figure 15. Vertical slice through the velocity model for a plane that lies along the EW axis.  The left panel shows the initi al model 

and the model update is shown on the right. 

4. VERTICAL SEISMIC PROFILING 

For the VSP survey, 106 vibroseis shots are excited at spacing of 30 m, approximately along a 2D line in SE-NW direction (Figure 16). 

Two DAS arrays with 1010 and 1260 active channels are placed in wells 78A-32 (green dots in Fig. 16) and 78B-32 (red dots in Fig. 16), 

respectively. Two three-component 8-level geophone chains (orange and black inverted  triangles in Fig. 16) are placed at the depth of 
~1600-2000 m in wells 58-32 and 78B-32, respectively. Figure 17 displays receiver gathers at one three-component geophone in 78B-32. 

Note the strong conversion waves observed in the N- and E-components. Sample DAS data at well 78A-32 and 78B-32 are shown in 

Figure 18. Figure 19 compares the waveforms recorded by DAS and geophones. 

 

Figure 16. VSP Survey acquisition geometry. The vibroseis shots are represented by blue dots. The brown, orange and black lines 

denote the trajectories of well 16A-32 (stimulation well), 58-32 and 78B-32, respectively. 
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Figure 17. The three-component receiver gather at the deepest geophone (black triangle) in well 78B-32.  

 

Figure 18. Receiver gathers at one DAS channel at depth of 700 m in well 78A-32 and 78B-32, respectively. 

 

Figure 19. Waveform comparison of DAS channels (1 and 2) and Z-component of  two geophones (3 and 4), corresponding to 

the three vibroseis sources: (b) s1, (c) s2, and (d) s3. 
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We extract the P-wave RMS velocity along the 2D profile from the 3-D seismic reflection survey, and conduct the dix- and time-to-depth 
conversion, to obtain the 2D-Vp profile for imaging (Figure 20). We then choose the DAS data from well 78A-32 to image the subsurface 

structure. We extract the up-going components in the F-K domain (Figure 21), and apply the reverse-time migration (RTM) algorithm as 

follows: (1) we inject the time-reversed obtained data at corresponding DAS channels to obtain the receiver wavefield; (2) we simulate 

the source-side wavefield with 60-Hz (the dominant frequency of the observed data) Ricker wavelet; (3) we apply zero-lag cross-

correlation of the source- and (time-reversed) receiver- wavefield for a single-shot RTM image; and finally (4) obtain the stacked RTM 
images from multiple shots. 

 

Figure 20. Vp model along the 2D line. The DAS channels and geophones are denoted by black dots, and the vibroseis shots by 
white dots. 

 
Figure 21. A sample shot gather recorded at DAS channels in well 78A-32. Left: original data; right: decomposed up-going waves. 
 

Some sample single-shot RTM images and corresponding shot gathers are shown in Figure 22, with relatively strong upgoing reflections  
marked by colored arrows. The stacked RTM image (Figure 23a) is contaminated by strong artifacts particularly around the well, which 

is caused by the complex wavefield at these shot locations (see Figure 18). To clean the results, we clip each single-shot image outside 

the shot-receiver range. Moreover, we only select shots with strong reflections (such as those in Figure 22) and apply selective stacking. 

The final RTM image (Figure 23b) is much cleaner, with main reflectors marked by the dotted lines. 
 

 

Figure 22 Sample shot gathers (upper panels) and corresponding RTM images (lower panels) at shot (a) #7, (b) #10, and (c) #12. 
Obvious upgoing waves and the corresponding reflections are marked by colored arrows. 
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Figure 23 RTM images using (a) all shots, and (b) selected shots with acquisition artifacts removed. The black line marks the  DAS 

channels at well 78A-32, and white dots denote corresponding shot locations. 

 

5. CONCLUSIONS  

We use surface and borehole seismic data to develop an elastic velocity model at the Utah FORGE EGS site. The travel times between 

source-receiver pairs are needed for travel-time tomography, but accurately estimating them from the waveforms is nontrivial and  time 

consuming. We propose to use two different methods for the travel-time picking using machine learning and time-frequency analysis. 

Both provide reasonable results according to the visual inspection with waveforms. We will comp are the picks from both methods to 
estimate more robust travel times. Because of the dense networks of sources and receivers, we have 1.4 million travel times and use them 

for tomography. The tomography is based on the eikonal solutions of travel times. The updated velocity model follows the general trend 

of the geologic model, e.g., dipping towards west, but it shows a more detailed structure. 

We also use a walkaway VSP data recorded in April 2022. Interestingly, the shot data are recorded by both DAS and geophones. 

Geophones generally show a better signal-to-noise ratio, but the densely sampled waveforms recorded by DAS are also beneficial for 
imaging. We apply reverse-time migration to the observed DAS data in well 78A-32. Although the RTM image is contaminated by 

migration artifacts, it shows several significant interfaces potentially related to the geological layers. The dip of the lay ers corresponds to 

the general dip (of what?) in the region. We will apply travel-time tomography to this VSP data to jointly estimate better velocity models 

at the Utah FORGE, and then use them for imaging. 
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