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ABSTRACT

Enhanced Geothermal Systems (EGS) offer a vast potential to expand the use of geothermal energy. Heat is extracted from this
engineered system by injecting cold water into a subsurface fractures, which are in contact with hot dry rock, and brought back to
surface through production wells. Creating EGS requires improving the natural permeability of hot crystalline rocks. To develop
economically- viable EGS reservoirs, significant technical barriers (e.g., better stimulation technologies without adequate water and/or
permeability) and non-technical barriers (e.g., land access, permitting, finance) must be overcome. In this short conference paper, we
present a workflow to address a part of this challenge — “How to develop economically viable EGS using existing technologies?”. Our
workflow called the GeoThermalCloud (GTC) for EGS, leverages recent advances in machine learning, deep learning, and cloud
computing. This GTC framework is open-source and available at https:/github.com/SmartTensors/GeoThermalCloud.jl. The GTC
framework provides trained deep learning (DL) models to estimate the undiscounted cashflow of a given EGS design scenario. The
Geothermal Design Tool (https:/github.com/GeoDesignTool/GeoDT .qit), a fast and simplified multi-physics solver, is used to develop
a database for training DL models. The database consists of EGS design parameters (inputs to DL model) and their undiscounted
cashflow (output of DL model) in uncertain geologic systems. The EGS design parameters for constructing this training database are
based on UtahFORGE but include the options of more wells and deeper depths. The DL models are trained by ingesting the EGS design
parameters and estimating the corresponding undiscounted cashflow. Such an emulation allows us to screen various EGS designs
quickly and identify good development strategies by coupling them with optimization techniques. Our preliminary results show promise
in DL emulation of undiscounted cashflow. However, a lot more work is needed to improve the predictive capability of DL models (i.e.,
extensive hyperparameter tuning is necessary). This will be the primary focus of our future work.

1. INTRODUCTION

Enhanced Geothermal Systems (EGS) are engineered geothermal systems, which offer great potential for dramatically expanding the
use of geothermal energy (Brown et al., 2012). In this engineered system, cold water is injected into hot dry rock and is allowed to flow
through a fracture network. The resulting hot fluid is extracted from production wells to generate electricity. The U.S. Department of
Energy’s GeoVision report in 2019 estimates that more than 100GWe of economically viable power capacity is possible to extract from
the southwestern basins (GeoVison, 2019 DOE-MYPP 2022, EarthShot Initiative, 2022). However, high upfront costs and long
development timelines generally characterize geothermal resource development projects (Hamm et al., 2021). This can lead to lengthy
investment payback periods relative to many other utility-scale power generation projects (e.g., wind, solar). Moreover, projects
employing new EGS designs and stimulation technologies to harness this renewable resource and produce usable power can have higher
risks (Becker et al., 2018). To overcome this challenge of reducing costs and improving economics for geothermal projects, we need to
understand feasible and non-feasible EGS designs better. Specifically, a detailed techno-economic analysis is required to successfully
expand and accelerate EGS deployment in the western U.S (DOE-M YPP, 2022; Sec-2). A workflow that combines geothermal data,
multi-physics process models, and economics to assess good and bad EGS design parameters will allow us to overcome such a
challenge (Sec-2.4 and Sec-2.5 in DOE-GTO MYPP, 2022). Recent deep learning (DL) advances have shown promise in developing
such a workflow (Okoroafor et al., 2022). In this short conference paper, we provide a DL methodology to create a non-linear mapping
between EGS design parameters and the undiscounted cashflow of the resource. This DL methodology that we are developing will be
made available to the geothermal community through our open-source machine learning framework called GeoThermalCloud (GTC),
available at https:/github.com/SmartTensors/GeoThermalCloud.jl.

The outline of our paper is as follows: Section 2 provides the methods involved in developing the GTC framework, training database
using GeoDT, and workflow to develop scalable deep learning models. Section 3 provides the results describing the training database,
sensitivity analysis, and preliminary results from DL model training. Conclusions are drawn in Section 4.

2. METHODS

In this section, we describe the high-level framework of GTC for EGS, training database based on GeoDT, and proposed DL
methodology for emulating undiscounted cashflow.

2.1 GeoThermalCloudfor EGS

The GTC framework (https:/github.com/SmartTensors/GeoThermalCloud.jl) is developed to enhance data collection during exploration
and optimize the EGS design during resource development scenarios and operations (Vesselinov et al., 2021; Mudunuru et al., 2022).
Figure 1 summarizes our GTC framework. The proposed framework consists of two components (1) GTC for exploration and (2) GTC
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for resource development. The GTC for the exploration component (Ahmmed and Vesselinov, 2022) enhances the play fairway analysis
datasets and estimates the geothermal resource parameter potential. This exploration component is built using NMFk, an unsupervised
ML method available in the SmartTensors Al platform (https:/github.com/SmartTensors/NMFEkK.jl). The GTC for exploration
component is extensively tested on various play fair analysis datasets curated from DOE’s Geothermal Data Repository. Once the GTC
for exploration identifies potential resources within a given region, then EGS design scenarios are explored at these promising sites. The
second component, GTC for resource development, which is currently under development, achieves this goal of optimizing EGS
designs to find and rank the most promising site through undiscounted cashflow. This GTC for resource development utilizes recent
advances in deep learning (e.g., deep neural networks) to develop a non-linear mapping between inputs (i.e., EGS design parameters)
and outputs (i.e., thermal power production, undiscounted cashflow). Detailed sensitivity analysis is performed to identify EGS
parameters and rank them based on undiscounted cashflow. Using a simple economics model, the emulated DL models are then used in
an optimization framework to assess the resources that are viable for thermal power production (Frash et al., 2013).
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Figure 1: This figure describes the GTC framework and its two components — exploration and development. The exploration
component analyzes and curates play fairway analysis datasets to find the resource potential within a region. The
resource component builds on these potential maps and assesses the EGS prospectivity to find and rank the most
promising sites for further analysis.

2.2 Training database using GeoDT

The GeoDT (https:/github.com/GeoDesianT ool/GeoDT.qit) is a fast, simplified multi-physics solver to evaluate EGS designs in
uncertain geologic systems (Frash, 2021; Frash, 2022; Frash et al., 2022). Figure 2 shows a schematic of GeoDT workflow to estimate
EGS outputs such as thermal power production and associated economics (e.g., undiscounted cashflow). In GeoDT, a 3D network of
intersecting wells and fractures are modeled as pipes and nodes, in which fluid flow is solved. Transient thermal power production
values depend on fluid enthalpy, rock conductivity, and stored energy change over time. The combined single-flash Rankine and
isobutane binary cycle models are used in estimating electrical power generation. In the final step, the undiscounted cashflow is
computed based on geothermal cost estimation tools, electricity sales, and a simple earthquake cost model. Table 1 shows the range of
system parameters that are changed to generate this training database of realizations. Table 2 provides the summary of cost terms in the
economics model of GeoDT. DL models are built on this training database to emulate undiscounted cashflow. In our study, a total of
4078 realizations are generated, which is split into 80% training, 10% validation, and 10% testing. When the DL model identifies a
promising EGS design, it can then be further investigated in greater detail. For example, we can use high-fidelity process models and
simulation codes such as PFLOTRAN (Lichtner et al., 2015) to explore promising EGS scenarios. This study does not include the use of
high-fidelity codes.
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Figure 2: A schematic of GeoDT workflow to generate a training database for DL models. System parameters are varied and
given to various solvers. These solvers estimate power production and economics needed for training DL models.

2.3 Proposed DL methodology

In this subsection, we discuss our proposed methodology to develop DL models. Figure 3 shows the proposed approach to curate the
training database and create emulators. First, the GeoDT realizations are pre-processed and standardized for DL training. This
standardization is necessary because deep neural networks (Samek et al., 2021) learn from the training data, and the learning outcome
for EGS design scenarios heavily depends on how the data is curated. Standard scaling is selected to standardize the data among the
seven different pre-processors. We will compare the other six pre-processor scalars in our future work on DL model performance.
Standard scaling curates the data to remove the mean and scale it to unit variance, resulting in standard normal distributed data. This
curated data is given as input to deep neural networks, which are trained on multiple cores available on high-performance computing
machines (HPC). This Al training at scale is performed in parallel, allowing us to train and tune various deep neural networks in
minimal time. We combine python and Al modules such as mpi4py, multiprocessing, parallel hdf5, and TensorFlow to achieve this
training at scale. The performance of the trained DL models is compared using the validation loss, and a tuned model is then selected.
This hyperparameter tuning is computationally intensive and requires a lot of HPC resources.
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Figure 3: This figure shows the proposed DL methodology to train neural networks at scale on high-performance computing
machines or the cloud (e.g., GCP, AWS, Azure). First, the EGS design parameters from GeoDT are curated and given as
input to the deep neural network. The output of this neural network is the undiscounted cashflow. Then, various such
deep neural networks are trained on HPC/cloud to tune the hyperparameters to find reasonably accurate emulators.
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Table 1: Thistable provides the EGS design input parameters used in GeoDT conditionedon FORGE site.

DoF Category Variable Parameter Unit MinValue  Nominal value Max Value  Uncertainty (£}  Distribution Source Saurce Notes

1 SalverSetup  size Domain size [i.e, cubic sidelength]  m 1500 - - -
1 Site ResDepth Nominal reservoir depth m 4000 10000 Uniform Tester et al., 2006 Tester et al., 2006
1 Site ResGradient  Geothermal gradient Kfkm 35 55 Uniiform Bearsdmareand Cull, 2001 Bearsdmore, G.R. and Cull, 1.P
1 Site ResRho Rock density kg/m3 2550 2850 Uniform Waplesand Waples, 2004 Waples, D.W. and Waples, 1.5.
1 Site Reskt Rock thermal conductivity WmK 27 28 Uniform Bearsdmareand Cull, 2001 Bearsdmore, G.R. and Cull, 1.P
1 Site ResSv Rock valumetric specific heat capacity kIjm3K 1850 2150 Uniform Waplesand Waples, 2004 Waples, D.W. and Waples, 1.5.
1 Site AmbTempC  Ambient surface temperature C 5 30 Uniform Temperate climates Temperate climates
1 site AmbPres Ambient surface pressure MPa 0.101 - Temperate climates Temperate climates
1 Stress ResE Rock elastic modulus GPa 50 110 Uniform Carmichael, 1982 Carmichael, R. (1982) Revival:
1 Stress Resv Rock Paisson's ratio m/m 0.15 0.35 Uniform Carmichael, 1982 Carmichael, R. (1982) Revival:
1 Stress Ks3 Minimum lateral earth pressure coeffici Pa/Pa 0.5 08 Uniform Zoback, 2018 Zaback, M.D. (2018) Reservair
1 Stress Ks2 Intermediate earth pressure coefficient Pa/Pa 0.6 12 Uniform Zoback, 2018 Zaback, M.D. (2018) Reservair
0 Stress s3Azn Minimum stress azimuth deg 01 5 Normal “North” “North”

0 Stress 30ip Minimum stress dip deg 01 5 Narmal “Narth* “Narth”
1 Fracture fium Fractureset 1 count fractures 0 a0 Uniform Sub-perpendicular to wells Sub-perpendicular ta wells
2 Fracture fDia Fractureset 1 diameter m 50 1000 Unifarm Sub-perpendicular to wells Sub-perpendicular to wells
2 Fracture f5tr Fractureset 1 strike deg 112 158 Unifarm Sub-perpendicular to wells Sub-perpendicular to wells
2 Fracture fDip Fractureset 1 dip deg 67 113 Uniifarm Sub-perpendicular to wells Sub-perpendicular ta wells
1 Fracture fNum Fractureset 2 count fractures o 40 Uniform Sub-parallel to wells Sub-parallel to wells
2 Fracture fDia Fractureset 2 diameter m 50 1000 Uniform Sub-parallel to wells Sub-parallel to wells
2 Fracture fstr Fractureset 2 strike deg 22 &7 Uniform Sub-parallel to wells Sub-parallel to wells
2 Fracture fDip Fractureset 2 dip deg &7 113 Uniform Sub-parallel to wells Sub-parallel to wells
1 Fracture Num Fractureset 3 count fractures 0 40 Uniform b-parallel to wells. b-parallel to wells conjugate
2 Fracture fDia Fractureset 3 diameter m 50 1000 Uniform b-parallel to wells. b-parallel to wells conjugate
2 Fracture fstr Fractureset 3 strike deg an 270 Uniform b-parallel to wells. b-parallel to wells conjugate
2 Fracture fDip Fractureset 3 dip deg 22 23 Uniform Sub-parallel to wells conjugate set Sub-parallel to wells conjugate
3 Scaling gamma Shear displacement-length coefficient  m/m 0.001 oo’ 0.063 0.01 Truncated Lognarr Frash etal,, 2021 Frash etal,, 2021
1 Scaling ni Shear displacement-length exponent - 1 Uniform Frash et al,, 2021 Frash etal,, 2021

3 scaling a Shear displacement-dilation coefficient m/m 0 0.2 0.8 0.2 Truncated Narmal Frash etal,, 2021 Frash etal,, 2021

2 scaling b Shear displacement-dilation exponent - 1 Uniform Frash et al,, 2021 Frash etal,, 2021

2 Scaling N Witherspoan factar mfm 0 0.6 2 0.6 Special Frash et al,, 2021 Frash etal,, 2021

3 Scaling alpha Fracture compressibility 1/MPa 2.00E-09 2.90E-D8 1.00E07 2.90E-D8 Truncated Normal Frash etal., 2021 Frashetal., 2021

2 Scaling bh Default hydraulic aperture m 0.00005 0.0005 0.002 0.0005 Truncated Normal Frash etal., 2021 Frashetal., 2021
1 SalverSetup  bh_min Minimum hydraulic aperture m 0.00005 - - -
1 SalverSetup  bh_max Maximum hydraulic aperture m 1 - - -

2 site bh_bound  Boundary hydraulic aperture m 0.0001 0.002 Uniform - -

2 Scaling f_roughness  Fracture roughness - 07 1 Uniform - -
1 Well w_count Well count wells 1 [ Uniform - -
1 well w_spacing  Well spacing m 200 1100 Uniform - -
1 well w_length Well length m 800 1200 Lognarmal - -
1 well w_azimuth  Well azimuth deg 0 an Uniform - -
1 well w_dip ‘Well dip deg o a0 Uniform - -
1 well w_proportion Well proportion deg 0.4 1 Uniform - -
1 well w_phase ‘Well phase deg o 360 Uniform - -
1 well w_toe Well toe deg -15 15 Uniform - -
1 well w_skew Well skew deg -15 15 Uniform - -
1 well w_intervals  Well intervals z0nes 1 10 Uniform - -
1 Well ra Casing inner radius m 0.1 0.23 Uniform 0il County Tubular Goods, 2020 https: .susmar fi/pdefin
1 well rh Casing outer radius m ra+0.013 - - https: .susmar fi/pdefin
1 well e Borehole radius m rb+0.013 - - https: .susmar fi/pdcfin
0 well rgh Hazen-Williams friction coefficient - 80 - Jeppson, 1974 Jeppson, RW. (1974) Steady fl
1 Well CemkKt Cement thermal conductivity W/mK 2 - Asadietal., 2018 Asadi, 1., Shafigh, P., Hassan, Z.
1 Well CemSv Cement volumetric specific heat capaci kI/m3K 2000 - Kodur, 2014 Kodur, V. {2014) Properties of
0 Power GenEfficiency Electrical generator efficiency % 0.85 - Electropaedia https: .m ruk.com,
0 Power LifeSpan Project lifespan yr 205 - Vitaller et al., 2020 Vitaller, A.V., Angst, U.M., Else
0 SolverSetup  TimeSteps  Thermal analysis timesteps steps 41 - - B
1 Power p_whp Power plant inlet pressure MPa 1 - - https://thermopedia.comjcor
0 Power Tinj Injection temperature c a5 - -
1 well H_ConvCoef  Boreholethermal convection coefficien kW/m2K 3 - Kasky et al., 2013 Kosky, P., Balmer, *Full CFD +
0 SalverSetup  dT0 Initial step temperature change K 10 - - Used to stabilize early time the
0 SalverSetup  dEQ Initial step thermal energy change kfm2 500 - - Used to stabilize early time the
0 SolverSetup  PareRho ‘Water density for flow analysis kg/m3 980 - Cooper, 1.R. and Dooley, R.B. (2007) Revised relea Cooper, J.R. and Dooley, R.B. (i
0 SaolverSetup  Paremu ‘Water dynamic viscasity P 0.25 - Huber, M.L., Perkins, R.A., Laesecke, A, Friend, D. Huber, M.L,, Perkins, R.A., Laes
0 Well perf Perfaration count per injection interval perfs 1 - - - *Salver req
0 SalverSetup  r_perf Perforstion radus m 50 = = = *Initial hyd
1 well dPp Production well pressure change from a MPa -10 2 Uniform - -

0 SalverSetup  dPi Pressureincrement MPa 0.1 - Savitski and Detournay (2002) Propagation of a pe Savitski and Detou *Thiswasfc
0 Salver Setup  stim_limit Number of stimulation iterations before pressure increment 5 - - -
1 Stimulation Qstim Stimulation flow rate m3fs 0.0z 0.08 Uniform Industry quote for UtahFORGE Industry quotefor *Schlumbe
1 Stimulation  Vstim Stimulation volume m3 a 1700 Uniform Industry guote for UtahFORGE Industry quote for UtahFORGE
0 SolverSetup  bval b-value (Gutenberg Richter) 1 - Gutenberg-Richter Gutenberg-Richter

2 Fracture phi Fracture friction angle - 20 55 Uniform Lab tests on rangeof rock types Lab tests on rangeof rack type
2 Fracture mec Fracture cohesion MPa 0 20 Uniform Lab tests on rangeof rock types Lab tests on rangeof rack type
2 site hfmee Hydraulic fracture cohesion MPa 01 03 Uniform Lab tests on rangeof rock types Lab tests on rangeof rack type
2 site hfphi Hydraulic fracture friction angle deg 15 35 Uniform Lab tests on rangeof rock types Lab tests on rangeof rack type
1 stimulation Qinj Circulation injection flow rate m3fs 0.005 0.05 Uniform - -

0 Site BH_P Reservair pore pressure MPa 3B.5 96.1 - - -

0 Site BH_T Reservair temperature K 422 849 - - -

0 Stress ResG Rock shear modulus GPa 186 417 = = =

0 Stress s1 Overburden stress MPa 101 278 Uniform - -

0 Stress 2 Intermediate stress MPa 83 m Uniform - -

0 Stress 3 Minimum stress MPa 72 257 Uniform - -

0 scaling Parek Matrix permeability mD Uniform - -

0 Scaling Frack Fracture permeability mD Uniform - -

0 Stimulation sand Frac sand concentration Uniform *nat currer
0 Stimulation  leakoff Carter leakoff coefficient Uniform *nat currer

84 degrees of freedom

18 controllable design parameters



Precursor inputs Category

Model parameters Power
Model controls Power
Static inputs Pawer
Covariants Pawer
Hazard
Controllable design decisions Efficiency
Cannat bemeasured in-situ Efficiency
Intermediate calculations Efficiency
Efficiency
Efficiency

Errorindication

Efficiency
Efficiency
Intercepts
Intercepts
Intercepts
Intercepts

Parameter  Parameter

Unit Mean value  Min Value

Paut Rankine electrical power -time variable kW

hpra Production enthalpy - time variable kl/kg
dhout Extracted thermal power - time variable Kl/s
mpro Production mass flow rate kefs
max_quake  Maximum induced earthquake magnitude Mw
recovery Praduction rate f Injection rate ratio
qgain Boundary inflow rate m3fs
qleak Boundary outflow rate m3fs
apro Cumulative production rate mafs
qinj Cumulatioveinjection rate mafs
Solver error (e.g., no interwell flow) =

pinj Pressureof injected fluid MPa
hinj Enthalpy of injected fluid Kifkg
ixint Number of fractures intercepting injectors fractures
pint Number of fracturesintercepting producers fractures
hfstim Number of stimulated hydraulic fractures fractures
nfstim Number of stimulated natural fracutres fractures

Mudunuru et al.
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Table 2: This table provides a summary of cost terms in the economics model of GeoDT. We didn’t use discount rates in our
calculations as itis challenging to forecast the electricity discounts for renewables.

Parameter Unit Value Uncertainty Reference
Electricity sales per kilowatt-hour USD/kWh 0.1372 -0.056/ +0.166 EIA, 2022
Drilling cost per length USD/m 2763 +/- 536 Lowry et al., 2017
Drill pad cost kUSD 590 -590/ + 2000 Lowry et al., 2017
Power plant cost usD 2026 +/- 373 GETEM (Entingh et al., 2012)
Exploration cost perdepth USD/m 2683 +/- 472 GETEM (Entingh et al., 2012)
Operating cost per kilowatt-hour USD/kWh 0.0365 +/- 0.0079 GETEM (Entingh et al., 2012)
Seismic risk coefficient usD 0.0002 10®%t010° Frash etal., 2013
Seismic risk exponent /MW 5.0 2.0t055 Frashetal., 2013

3. RESULTS

This section provides preliminary results on the training database, sensitivity analysis, and DL model predictions. Figure 4 shows the
outputs produced by GeoDT for 4078 realizations. These time-series outputs include normalized production enthalpy and thermal power
and are used in estimating undiscounted cashflow. The training data is normalized for EGS design scenario analysis rather than the
absolute values (please see disclaimer section). These figures show that a decrease in well enthalpy may be beneficial to producing more
power output overall. This reduction in enthalpy can be attributed to the mechanism of greater heat flux (i.e., power transfer) from more
significant thermal gradients (i.e., thermal drawdown).

Ipy [

0.6 1

Mean ensemble

GeoDT ensembles

Normalized production entha

1] 2 10 15

T
20

25 30

Time-steps [-]

35

=
L

Normalized power output |-

Mean ensemble

GeoDT ensembles

() I

10

15 20 25 30 35
Time-steps [-]

Figure 4: This figure shows normalized production enthalpy and power output time-seriesobtained from GeoDT simulations.

Figure 5 shows the sensitivity analysis of EGS design parameters used in GeoDT with respect to undiscounted cashflow. Sensitivity
analysis is performed using two different approaches, F-test and mutual information (M1). F-test is a univariate linear regression tests
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returning F-statistic and p-values. It provides insights on the linear dependency of a given EGS design parameter with respect to
undiscounted cashflow, thereby allowing us to identify potentially predictive design parameters for DL model training for undiscounted
cashflow. On the other hand, mutual information provides insights on non-linear dependency between EGS design parameters and
undiscounted cashflow. The M1 between a EGS design parameter and undiscounted cashflow is a non-negative value and is equal to
zero if and only if two variables are independent, and higher values mean higher non-linear dependency. From F-test sensitivity analysis
it is evident that flow rate (Qinj, Vinj) shows strong linear dependency as expected in a simplified physics model (Brown et al. 2012).
The M1 results show that minimum stress (s3), injection temperature (Tinj), hydrualic fracture friction angle (Hfphi), minimum stress
dip (s3Dip), geothermal gradient (ResGradient), minimum lateral earth pressure coefficient (Ks3), rock density (ResRho), rock
volumetric heat capacity (ResRv), and nominal reservoir depth (ResDepth), have strong non-linear dependency.
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Figure 5: Thisfigure provides a bar plot of the sensitivity values for each GeoDT feature or parameter.

Figure 6 shows the results of DL training and prediction. This trained deep neural network model has three hidden layers, with neurons
= [1000, 500, 250] in each of these layers. Leaky RelLU is used as an activation function with alpha value = 0.1. The dropout value,
which allows for minimizing over-fitting during the training process, is assigned a value of 0.1. The total number of epochs for training
is equal to 100. Batch size, which is the number of training samples that a DL model sees for each iteration in an epoch is equal to 64.
The resulting DNN has approximately 750K trainable weights. The loss vs. epochs results show that the lower learning rate combined
with dropout reduces over-fitting. Training loss decreases; validation loss declines for over half of the epochs and then rises slowly. This
training and validation loss trend shows that the DL model tends to overfit beyond 100 epochs. The one-to-one plots from training,
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validation, and test datasets show that the DL model can perform reasonably well for low undiscounted cashflow. But for higher values
of undiscounted cashflow, the DL model performance is not satisfactory as it deviates considerably from the one-to-one line in both test
and validation datasets. Hyperparameter tuning is needed to find better DNNs that show improved performance for higher undiscounted
cashflow. The non-sensitive EGS parameters may also contribute to the reduced performance. Additional analysis is required to use
only the sensitivity parameters to train DL models, which is our next step.
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Figure 6: This figure provides the DL model training loss and one-to-one plots for training, validation, and test datasets.

4. CONCLUSIONS

We developed a DL workflow in this study to estimate undiscounted cashflow from EGS design parameters. The database for DL model
training is developed using GeoDT, a multi-physics solver. Sensitivity analysis using F-test and mutual information is performed on this
database to gain insights into the GeoDT parameters. This preliminary sensitivity analysis showed that injection rate, temperature, and
stress factors influence the undiscounted cashflow. The DL models are developed using deep neural networks, which map GeoDT
features to undiscounted cashflow. Our preliminary results showed that DL models can reasonably predict lower undiscounted cashflow
but show challenges in predicting higher undiscounted cashflow. Therefore, better predictive DNNs are needed to improve the accuracy
of undiscounted cashflow estimation. Our next step is to perform extensive hyperparameter tuning and sensitivity -analysis-guided DL
model training to achieve this. This extensive hyperparameter tuning allows us to find better DNNs with informative/sensitive GeoDT
features. In our future work, we will explore coupling DL models trained on GeoDT thermal power production with advanced techno-
economic analysis modules such as GEOPHIRES (https:/github.com/NREL/GEOPHIRES-v2). Upon satisfactory performance of DNN
and hyperparameter tuning, we will make the GeoDT training database, python scripts, Jupyter notebooks, and pre-trained DL models
available through GeoThermalCloud https:/github.com/SmartTensors/GeoThermalCloud.jl.  Once our DL model performs with
reasonably good accuracy, we will explore the EGS design parameters (as listed in Table-1) that contribute to higher undiscounted
cashflow value.

DISCLAIMER

The training database using GeoDT employs very-high estimates of seismic risk and an unproven new muti-physics model. The actual
FORGE project uses lower injection rates, lower injection volumes, closer well spacing, shallower depths, and seismicity mitigation
measures that our model needs to include. In short, this work is not a prediction for the UtahFORGE project.

This paper was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.
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