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ABSTRACT  

Enhanced Geothermal Systems (EGS) offer a vast potential to expand the use of geothermal energy. Heat is extracted from this 

engineered system by injecting cold water into a subsurface fractures, which are in contact with hot dry rock, and brought back to 
surface through production wells. Creating EGS requires improving the natural permeability of hot crystalline rocks. To develop 

economically- viable EGS reservoirs, significant technical barriers (e.g., better stimulation technologies without adequate water and/or 

permeability) and non-technical barriers (e.g., land access, permitting, finance) must be overcome. In this short conference paper, we 

present a workflow to address a part of this challenge – “How to develop economically viable EGS using existing technologies?”. Our 

workflow called the GeoThermalCloud (GTC) for EGS, leverages recent advances in machine learning, deep learning, and cloud 
computing. This GTC framework is open-source and available at https://github.com/SmartTensors/GeoThermalCloud.jl. The GTC 

framework provides trained deep learning (DL) models to estimate the undiscounted cashflow of a given EGS design scenario. The 

Geothermal Design Tool (https://github.com/GeoDesignTool/GeoDT.git), a fast and simplified multi-physics solver, is used to develop 

a database for training DL models. The database consists of EGS design parameters (inputs to DL model) and their undiscounted 

cashflow (output of DL model) in uncertain geologic systems. The EGS design parameters for constructing this training database are 
based on UtahFORGE but include the options of more wells and deeper depths. The DL models are trained by ingesting the EGS design 

parameters and estimating the corresponding undiscounted cashflow. Such an emulation allows us to screen various EGS designs 

quickly and identify good development strategies by coupling them with optimization techniques. Our preliminary results show promise 

in DL emulation of undiscounted cashflow. However, a lot more work is needed to improve the predictive capability of DL models (i.e., 

extensive hyperparameter tuning is necessary). This will be the primary focus of our future work. 

1. INTRODUCTION 

Enhanced Geothermal Systems (EGS) are engineered geothermal systems, which offer great potential for dramatically expanding the 

use of geothermal energy (Brown et al., 2012). In this engineered system, cold water is injected into hot dry rock and is allowed to flow 

through a fracture network. The resulting hot fluid is extracted from production wells to generate electricity. The U.S. Department of 
Energy’s GeoVision report in 2019 estimates that more than 100GWe of economically viable power capacity is possible to extract from 

the southwestern basins (GeoVison, 2019 DOE-MYPP 2022, EarthShot Initiative, 2022). However, high upfront costs and long 

development timelines generally characterize geothermal resource development projects (Hamm et al., 2021). This can lead to lengthy 

investment payback periods relative to many other utility-scale power generation projects (e.g., wind, solar). Moreover, projects 

employing new EGS designs and stimulation technologies to harness this renewable resource and produce usable power can have higher 
risks (Becker et al., 2018). To overcome this challenge of reducing costs and improving economics for geothermal projects, we need to 

understand feasible and non-feasible EGS designs better. Specifically, a detailed techno-economic analysis is required to successfully 

expand and accelerate EGS deployment in the western U.S (DOE-MYPP, 2022; Sec-2). A workflow that combines geothermal data, 

multi-physics process models, and economics to assess good and bad EGS design parameters will allow us to overcome such a 

challenge (Sec-2.4 and Sec-2.5 in DOE-GTO MYPP, 2022). Recent deep learning (DL) advances have shown promise in developing 
such a workflow (Okoroafor et al., 2022). In this short conference paper, we provide a DL methodology to create a non-linear mapping 

between EGS design parameters and the undiscounted cashflow of the resource. This DL methodology that we are developing will be 

made available to the geothermal community through our open-source machine learning framework called GeoThermalCloud (GTC), 

available at https://github.com/SmartTensors/GeoThermalCloud.jl.  

The outline of our paper is as follows: Section 2 provides the methods involved in developing the GTC framework, training database 
using GeoDT, and workflow to develop scalable deep learning models. Section 3 provides the results describing the training database, 

sensitivity analysis, and preliminary results from DL model training. Conclusions are drawn in Section 4. 

2. METHODS 

In this section, we describe the high-level framework of GTC for EGS, training database based on GeoDT, and proposed DL 

methodology for emulating undiscounted cashflow. 

2.1 GeoThermalCloud for EGS 

The GTC framework (https://github.com/SmartTensors/GeoThermalCloud.jl) is developed to enhance data collection during exploration 

and optimize the EGS design during resource development scenarios and operations (Vesselinov et al., 2021; Mudunuru et al., 2022). 

Figure 1 summarizes our GTC framework. The proposed framework consists of two components (1) GTC for exploration and (2) GTC 

mailto:maruti@pnnl.gov
https://github.com/SmartTensors/GeoThermalCloud.jl
https://github.com/GeoDesignTool/GeoDT.git
https://github.com/SmartTensors/GeoThermalCloud.jl
https://github.com/SmartTensors/GeoThermalCloud.jl
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for resource development. The GTC for the exploration component  (Ahmmed and Vesselinov, 2022) enhances the play fairway analysis 
datasets and estimates the geothermal resource parameter potential. This exploration component is built using NMFk, an unsupervised 

ML method available in the SmartTensors AI platform (https://github.com/SmartTensors/NMFk.jl). The GTC for exploration 

component is extensively tested on various play fair analysis datasets curated from DOE’s Geothermal Data Repository. Once the GTC 

for exploration identifies potential resources within a given region, then EGS design scenarios are explored at these promising sites. The 

second component, GTC for resource development, which is currently under development, achieves this goal of optimizing EGS 
designs to find and rank the most promising site through undiscounted cashflow. This GTC for resource development utilizes recent 

advances in deep learning (e.g., deep neural networks) to develop a non-linear mapping between inputs (i.e., EGS design parameters) 

and outputs (i.e., thermal power production, undiscounted cashflow). Detailed sensitivity analysis is performed to identify EGS 

parameters and rank them based on undiscounted cashflow. Using a simple economics model, the emulated DL models are then used in 

an optimization framework to assess the resources that are viable for thermal power production (Frash et al., 2013). 

 

Figure 1: This figure describes the GTC framework and its two components – exploration and development. The exploration 

component analyzes and curates play fairway analysis datasets to find the resource potential within a region. The 
resource component builds on these potential maps and assesses the EGS prospectivity to find and rank the most 

promising sites for further analysis. 

2.2 Training database using GeoDT 

The GeoDT (https://github.com/GeoDesignTool/GeoDT.git) is a fast, simplified multi-physics solver to evaluate EGS designs in 

uncertain geologic systems (Frash, 2021; Frash, 2022; Frash et al., 2022). Figure 2 shows a schematic of GeoDT workflow to estimate 
EGS outputs such as thermal power production and associated economics (e.g., undiscounted cashflow). In GeoDT, a 3D network of 

intersecting wells and fractures are modeled as pipes and nodes, in which fluid flow is solved. Transient thermal power production 

values depend on fluid enthalpy, rock conductivity, and stored energy change over time. The combined single-flash Rankine and 

isobutane binary cycle models are used in estimating electrical power generation. In the final step, the undiscounted cashflow is 

computed based on geothermal cost estimation tools, electricity sales, and a simple earthquake cost model. Table 1 shows the range of 
system parameters that are changed to generate this training database of realizations. Table 2 provides the summary of cost terms in the 

economics model of GeoDT. DL models are built on this training database to emulate undiscounted cashflow. In our study, a total of 

4078 realizations are generated, which is split into 80% training, 10% validation, and 10% testing. When the DL model identifies a 

promising EGS design, it can then be further investigated in greater detail. For example, we can use high-fidelity process models and 

simulation codes such as PFLOTRAN (Lichtner et al., 2015) to explore promising EGS scenarios. This study does not include the use of 

high-fidelity codes. 

https://github.com/SmartTensors/NMFk.jl
https://github.com/GeoDesignTool/GeoDT.git
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Figure 2: A schematic of GeoDT workflow to generate a training database for DL models. System parameters are varied and 

given to various solvers. These solvers estimate power production and economics needed for training DL models. 

2.3 Proposed DL methodology 

In this subsection, we discuss our proposed methodology to develop DL models. Figure 3 shows the proposed approach to curate the 

training database and create emulators. First, the GeoDT realizations are pre-processed and standardized for DL training. This 

standardization is necessary because deep neural networks (Samek et al., 2021) learn from the training data, and the learning outcome 

for EGS design scenarios heavily depends on how the data is curated. Standard scaling is selected to standardize the data among the 
seven different pre-processors. We will compare the other six pre-processor scalars in our future work on DL model performance. 

Standard scaling curates the data to remove the mean and scale it to unit variance, resulting in standard normal distributed data. This 

curated data is given as input to deep neural networks, which are trained on multiple cores available on high-performance computing 

machines (HPC). This AI training at scale is performed in parallel, allowing us to train and tune various deep neural networks in 

minimal time. We combine python and AI modules such as mpi4py, multiprocessing, parallel hdf5, and TensorFlow to achieve this 
training at scale. The performance of the trained DL models is compared using the validation loss, and a tuned model is then selected. 

This hyperparameter tuning is computationally intensive and requires a lot of HPC resources. 

 

 

Figure 3: This figure shows the proposed DL methodology to train neural networks at scale on high-performance computing 

machines or the cloud (e.g., GCP, AWS , Azure). First, the EGS design parameters from GeoDT are curated and given as  

input to the deep neural network. The output of this neural network is the undiscounted cashflow. Then, various such 

deep neural networks are trained on HPC/cloud to tune the hyperparameters to find reasonably accurate emulators. 
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Table 1: This table provides the EGS design input parameters used in GeoDT conditioned on FORGE site. 

 

 



Mudunuru et al. 

 5 

 

Table 2: This table provides a summary of cost terms in the economics model of GeoDT. We didn’t use discount rates in our 

calculations as it is challenging to forecast the electricity discounts for renewables. 

Parameter Unit Value Uncertainty Reference 

Electricity sales per kilowatt-hour USD/kWh 0.1372 -0.056/ +0.166 EIA, 2022 

Drilling cost per length USD/m 2763 +/- 536 Lowry et al., 2017 

Drill pad cost kUSD 590 -590/ + 2000 Lowry et al., 2017 

Power plant cost USD 2026 +/- 373 GETEM (Entingh et al., 2012) 

Exploration cost per depth USD/m 2683 +/- 472 GETEM (Entingh et al., 2012) 

Operating cost per kilowatt-hour USD/kWh 0.0365 +/- 0.0079 GETEM (Entingh et al., 2012) 

Seismic risk coefficient USD 0.0002 10-8 to 10-3 Frash et al., 2013 

Seismic risk exponent 1/MW 5.0 2.0 to 5.5 Frash et al., 2013 

 

3. RESULTS 

This section provides preliminary results on the training database, sensitivity analysis, and DL model predictions. Figure 4 shows the 

outputs produced by GeoDT for 4078 realizations. These time-series outputs include normalized production enthalpy and thermal power 

and are used in estimating undiscounted cashflow. The training data is normalized for EGS design scenario analysis rather than the 

absolute values (please see disclaimer section). These figures show that a decrease in well enthalpy may be beneficial to producing more 

power output overall. This reduction in enthalpy can be attributed to the mechanism of greater heat flux (i.e., power transfer) from more 

significant thermal gradients (i.e., thermal drawdown). 

 

Figure 4: This figure shows normalized production enthalpy and power output time-series obtained from GeoDT simulations. 

Figure 5 shows the sensitivity analysis of EGS design parameters used in GeoDT with respect to undiscounted cashflow. Sensitivity 

analysis is performed using two different approaches, F-test and mutual information (MI). F-test is a univariate linear regression tests 
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returning F-statistic and p-values. It provides insights on the linear dependency of a given EGS design parameter with respect to 
undiscounted cashflow, thereby allowing us to identify potentially predictive design parameters for DL model training for undiscounted 

cashflow. On the other hand, mutual information provides insights on non-linear dependency between EGS design parameters and 

undiscounted cashflow. The MI between a EGS design parameter and undiscounted cashflow is a non-negative value and is equal to 

zero if and only if two variables are independent, and higher values mean higher non-linear dependency. From F-test sensitivity analysis 

it is evident that flow rate (Qinj, Vinj) shows strong linear dependency as expected in a simplified physics model (Brown et al. 2012). 
The MI results show that minimum stress (s3), injection temperature (Tinj), hydrualic fracture friction angle (Hfphi), minimum stress 

dip (s3Dip), geothermal gradient (ResGradient), minimum lateral earth pressure coefficient (Ks3), rock density (ResRho), rock 

volumetric heat capacity (ResRv), and nominal reservoir depth (ResDepth), have strong non-linear dependency.  

 

Figure 5: This figure provides a bar plot of the sensitivity values for each GeoDT feature or parameter. 

Figure 6 shows the results of DL training and prediction. This trained deep neural network model has three hidden layers, with neurons 

= [1000, 500, 250] in each of these layers. Leaky ReLU is used as an activation function with alpha value = 0.1. The dropout value, 

which allows for minimizing over-fitting during the training process, is assigned a value of 0.1. The total number of epochs for training 
is equal to 100. Batch size, which is the number of training samples that a DL model sees for each iteration in an epoch is equal to 64. 

The resulting DNN has approximately 750K trainable weights. The loss vs. epochs results show that the lower learning rate combined 

with dropout reduces over-fitting. Training loss decreases; validation loss declines for over half of the epochs and then rises slowly. This 

training and validation loss trend shows that the DL model tends to overfit beyond 100 epochs. The one-to-one plots from training, 
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validation, and test datasets show that the DL model can perform reasonably well for low undiscounted cashflow. But for higher values 
of undiscounted cashflow, the DL model performance is not satisfactory as it deviates considerably from the one-to-one line in both test 

and validation datasets. Hyperparameter tuning is needed to find better DNNs that show improved performance for higher undiscounted 

cashflow. The non-sensitive EGS parameters may also contribute to the reduced performance. Additional analysis is required to use 

only the sensitivity parameters to train DL models, which is our next step. 

 

Figure 6: This figure provides the DL model training loss and one-to-one plots for training, validation, and test datasets. 

4. CONCLUSIONS  

We developed a DL workflow in this study to estimate undiscounted cashflow from EGS design parameters. The database for DL model 

training is developed using GeoDT, a multi-physics solver. Sensitivity analysis using F-test and mutual information is performed on this 

database to gain insights into the GeoDT parameters. This p reliminary sensitivity analysis showed that injection rate, temperature, and 
stress factors influence the undiscounted cashflow. The DL models are developed using deep neural networks, which map GeoDT 

features to undiscounted cashflow. Our preliminary results showed that DL models can reasonably predict lower undiscounted cashflow 

but show challenges in predicting higher undiscounted cashflow. Therefore, better predictive DNNs are needed to improve the accuracy 

of undiscounted cashflow estimation. Our next step is to perform extensive hyperparameter tuning and sensitivity-analysis-guided DL 

model training to achieve this. This extensive hyperparameter tuning allows us to find better DNNs with informative/sensitive GeoDT 
features. In our future work, we will explore coupling DL models trained on GeoDT thermal power production with advanced techno-

economic analysis modules such as GEOPHIRES (https://github.com/NREL/GEOPHIRES-v2). Upon satisfactory performance of DNN 

and hyperparameter tuning, we will make the GeoDT training database, python scripts, Jupyter notebooks, and pre-trained DL models 

available through GeoThermalCloud https://github.com/SmartTensors/GeoThermalCloud.jl.  Once our DL model performs with 

reasonably good accuracy, we will explore the EGS design parameters (as listed in Table-1) that contribute to higher undiscounted 

cashflow value. 

DISCLAIMER  

The training database using GeoDT employs very-high estimates of seismic risk and an unproven new muti-physics model. The actual 

FORGE project uses lower injection rates, lower injection volumes, closer well spacing, shallower depths, and seismicity mitigation 

measures that our model needs to include. In short, this work is not a prediction for the UtahFORGE project. 

This paper was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States 

Government nor any agency thereof, nor any  of their employees, makes any warranty, express or implied, or assumes any legal liability 

or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents 

that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade 

name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by 
the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or 

reflect those of the United States Government or any agency thereof. 

https://github.com/NREL/GEOPHIRES-v2
https://github.com/SmartTensors/GeoThermalCloud.jl
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