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ABSTRACT 

The high-altitude geothermal reservoir of Jilondi is located 125 km east of Khorog (South-Western Pamir, Tajikistan) at an altitude of 

3500 m above sea level and includes 10 wells for the use of geothermal resources. These wells were installed between 1980 and 1990 and 

used to measure higher temperatures than at the Icarus hydrogeological site (Western Pamirs). Detailed stratigraphic, lithographic, and 

geochemical data were made. However, a model containing important geophysical changes has not yet been drawn up for this reservoir.  

Here we consider the permeability function in the form of a random three-dimensional field and, using perturbation and averaging 
methods, establish the effective conductivity of filtration processes in the field. In the simplest case, it is possible to conduct a correlation 

analysis of the main components of the stochastic system. This takes into account the fractal nature of geothermal systems. T he ultimate 

goal of our study is thermohydromechanical modeling of the hydrothermal circulation of the Jilondi object. 

 

1. INTRODUCTION 

The Jilondi thermal spring is located on the left bank of the Tokuzbulak River, 300 meters west of the village of the same name, at an 

absolute altitude of 3500 meters above sea level. Ten manifestations, located in one line, knock out small notches on the river bank, taking 

nitrogen and other gases with them. The temperature of the water in the manifestations varies from 35℃ to 67℃. The water with the 

highest temperature is used by the locals for medical purposes. Another source Tokuzbulak consists of 6 manifestations overlooking the 

right bank of this river, 17 km from the village, at an altitude of 3360 m above sea level. The largest outlets are two with a water temperature 
of 36℃. The water from the springs forms a stream connected to the river. This water is inhabited by freshwater mollusks (Mellanoides  

tuberculatus pamiricus sub-Lindholm), currently living only in Africa and tropical Asia. This species of mollusk in the Pamirs was 

considered extinct. But it turns out that it survived the harsh climate of the ice age and was discovered in the source. 

In the last decade, researchers in European countries have implemented geothermal projects based on advanced geothermal system (EGS) 
technologies. This concept consists in increasing the permeability of the reservoir through hydraulic, thermal, and chemical influences, 

and then the forced circulation of natural brines in deep  wells using the thermal anomaly associated with a large-scale hydrothermal system 

in porous and fractured rocks (Valier B. at all (2018), Tester at all (2016), Shvidler at all (2010), Gerard at all (2016), Schill at all (2017)). 

Unfortunately, in our conditions, there is a lack of completeness of data, which is available in the location of European scientists. In this 

regard, the compilation of a detailed and adequate model of the Geothermal Reservoir of Jilondi is a matter of the future. In this paper, 
we present an analysis of this geothermal system by mathematical methods of perturbation and averaging. The structure of the work is as 

follows. The second section presents the results of geothermal research in the Pamirs, carried out mainly by the efforts of Dushanbe and 

Tashkent geologists and their students (Akimov A.P., Semenov G.S. (1972), Gorbunov A.P. (1972), Kutas R.I. (1979), Churshina N.M., 

Krat V.N. (1979), Rao A. U. M., Rao G. V., Nazain H. (1976), Zuev Yu.N., Ponomarev A.A. (1984)).  In the article by Kireeva T.A. et 

al. (2020) new data on the chemical composition of the Mineral Springs of the Pamirs (Firuza - Moscow State University, Garm-Chashma) 
are presented and the geological conditions of their distribution are considered. A number of works are devoted to the evaluation of the 

parameters of fractal porous media under conditions of uncertainty in filtration processes (Egorov A.A. at all (2020), Sakhaee-Pour A. 

(2016), Ilolov at all (2022), Mandelbrot B. (2002)). 

The third section of the work is devoted to non-stationary filtration in a porous-fractured environment with random permeability. Note 

that the asymptotics of the Green function in the correlation approximation of the perturbation method was studied in the work of  Shvidler 
M.I. (1985). In the work of Shvidler M.I. (1986), the process of filtration transport of a homogeneous liquid in an inhomogeneous  

composite medium composed of 𝑚  phases homogeneous in physical characteristics is considered. In section 3, for a detailed description 

of the process in such environments, conditional functionals are practically important - the average fields for individual phases of the 

composite medium. The task of describing the process is reduced to the definition of globally and conditionally averaged fields or 

fractional order equations that bind them, to elucidate the thermohydrodynamic mechanism of mass transfer between phases in a porous 

medium. 

The fourth section is devoted to the analysis of the stochastic differential equation with the Levy discontinuous process. Boundary and 

initial problems for such equations more adequately reflect the real processes occurring during hydrothermal circulation in fields. For the 

first time, such problems are studied in a monograph Holden H. at all (2010). 
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2. GEOTHERMAL RESEARCH IN THE PAMIR 

The first geothermal scientific and thermal research work in the Pamirs was carried out under the program of the Pamir-Himalayan 

International Project in 1977 by joint efforts of geologists from Dushanbe and Tashkent. They carried out comprehensive geological and 

geophysical studies of the lithosphere on the profile of Kalai-Khumb - Khorog - Ishkashim (see e.g. Gorbunov A.P. (1979)). In the course 

of geothermal works, the thermal carrotating was carried out with thermistor sensors in the well №7 in the Icarus site and well №32 in the 

Kuhilal site (Fig. 1). 

 

Figure 1: Thermograms from wells a) №32 (Kuhilal site), b) №7 (Icarus site), 1 - forsterite, jadeite, ecstatic rocks; 2 – marble; 3 - 

diluvit quaternary; 4 quartz diorites). 

The depth of penetration of sensors in wells №7 and №32 is small. The obtained thermograms make it possible to record the temperature 

and depth of the "neutral" layer, but do not make it possible to characterize the normal hydrothermal gradients. 

Well, №7 was drilled from an underground chamber. Its mouth is 300 m horizontally and 230 m vertically removed from the daytime 
surface, so the thermogram is free of gradient variations associated with annual fluctuations in the Earth's surface temperature. Before 

thermometry, the well was dormant for more than nine months, which is enough for the thermal regime in it, disturbed during drilling, to 

balance. 

The nonlinearity of the thermogram (Fig. 2) is due to various regional and local distorting factors. This is primarily the influence of 

topography, the daytime surface, neotectonics movements, later glaciation cycles, and groundwater dynamics. 

 

 

Figure 2: Thermograms from wells №7 (Icarus site), 1 - andesits; 2 – crushing zones; 3 quartz diorites. 

Let's consider each of them in more detail. 

2.1 Neotectonics and relief 

The average rate of elevation of the Rushan Range area in the Holocene (t=104 years) is 2.5 ∙ 10−4 m/ year. 3. The same figure shows the 

relief correction calculated from a topographic map of a scale of 1:100,000 by the Jeffreys–Bullard method. For such elevation speed, the 

curve 𝛾/𝛾𝐻 = 𝑓(ℎ) shown in Figure 3 is calculated. The same figure shows the relief correction calculated from the topographic map at 

a scale of 1:1000000 by the method of Jeffreys Bullard. Curve 3 in Figure 3 shows the combined effect of a change in the normal 

geothermal gradient under the influence of relief and neotectonics. 
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Figure 3: Reduction to geothermal gradient in Icarus site. 1-3 curves: 1 – correction for neotectonics motion; 2 – relief correction; 

3 is the resulting curve correction for relief and neotectonics. 

2.2 Climate correction 

In the Pamirs, the most recent glaciation is the Arzyng glaciation, which took place at the end of O4, lasted together with the late phase of 

the onset time of 2.5 ∙ 104 years and ended 0.5 ∙ 104 years ago (Gorbunov A.P. (1972)). The influence of this glaciation is expressed in 

the increase in the geothermal gradient to a depth of at least one and a half kilometers from the surface. Below is a climatic correction for 

the Icarus site (Table 4). 

Table 4: Climate correction in Icarus S ite. 

Depth from day surface, m 10 50 100 200 500 1000 2000 

∆𝜸= (𝜸𝒎𝒆𝒂𝒔 − 𝜸𝒏𝒐𝒓𝒎) ∙ 𝟏𝟎−𝟐℃/𝑴 0,470 0,466 0.465 0.460 0.426 0.426 0.116 

Thus, accounting for relief corrections, neotectonics motions, and glaciations somewhat evens out the measured geothermal gradient, but 

the shape of the thermogram remains concave to the depth axis, indicating hydrodynamics as the main temperature-distorting factor. 

Generalized results on thermal conductivity are shown in Table 5. 

Table 5: Thermal conductivity of rocks from the regions of the South-Western and Central Pamirs. 

Square Rock Age  Thermal conductivity 

W/(m.K.) 

Icarus Diorites Р3 2.99 

Quartz diorite … 3.34 

Corneas  …  3.24 

Corneas with sulfide minerals …  4.73 

Andesites  К3 2.50 

Kuhilal Magnesia marble АН-РН 5.74 

Jadeite-ecstatit rock …  5.38 

Ecstatit-tremolite rock …  2.95 

Marble  …  3.82 

Marble with forstreet …  4.81 
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2.3 Radiochemical and seismic studies 

On the profile of Kalai-Khumb - Khorog - Ishkashim, radiochemical and seismic studies were carried out that made it possible to determine 

the average capacities of various layers of the lithosphere and specific heat generation of rocks. Based on these data, it is possible to build 

a radio thermal model of the lithosphere and trace the release of radiogenic heat flux in layers in it (Table 6). 

With a layer-by-layer model, the total radiogenic flux created within the lithosphere is 67.6 mW/m2. Assume that radioactive heat sources 
are distributed in the mantle up to the upper limit of the nucleus, then the heat flux on the surface created by them is equal to the value of 

the following integral (Kutas R.N. (1979)): 

𝑞0 =
1

𝑅2 ∫ 𝐴(𝑥)𝑥2𝑑𝑥

𝑅−𝑑

𝐻

, 

where is 𝑞0 – heat flux on the surface of the Earth, 𝑅 – radius of the Earth, 𝑑 – depth to the upper limit of the kernel, 𝐴(𝑥) – heat source 

distribution function, 𝑥 – depth coordinates, 𝑥 = 𝑅 − ℎ where ℎ - the depth of 𝑟 the point at which is defined 𝑞0. 

Table 6: Radiothermal model of the lithosphere of the Central Pamirs. 

Lithosphere layer Average power, 

layer, km 

Specific heat 

generation A, 

μW/m2 

Radiogenic heat 

flux𝑞0 mW/m2 

"Sedimentary" layers 

Structural and formational floors 

 

a) Orogenic volcano plutonic К3-М 3.5 0.235 8.25 

b) geosynclinals (terrigen-carbonate) Т3-К3 3.0 0.188 5.65 

c) Sub-platform Cm – T3 7.0 0.134 9.34 

Consolidated crust  

a) Granit metamorphic Ar – Pt1 24 0.137 32.96 

b) granulite-basalt layer 20  11.39 

including  

in the roof  0.83  

in the sole  0.03  

Total on the earth's crust 57.5 - 67.60 

 

Integral solution for 𝐴(𝑥) = 𝐴0𝑒𝑘𝑥 equals 𝑞 =
1

𝑘
𝐴0𝑒𝑘ℎ. 

The heat flux at a point ℎ = 0 (i.e., on the surface of the Earth) is calculated in this way  71.0 mW/m2. This value can be considered close 
to the regional background of the Central Pamirs. Thus, the boundaries of the change in the conductive density of the heat flux determined 

in the Icarus site will become closer, namely  

71.0 < 𝑞 < 128.7 mW/m2. 

2.4 Convective heat flow 

On the territory of the Pamirs, modern geothermal activity is widely and intensively manifested. The geothermal activity of t his region is 

subject to tectonic zonation. About 73% of the discovered sources operate in the zone of the South-Western Pamirs (Fig. 7). They are 

grouped mainly in the zones of deep faults, fracture, and to a lesser extent in the areas of Neogene magmatism. All the rising sources of 

the Pamirs carry thermal energy from the depths of the earth's crust, the concent rated power of which at various points ranges from 100 
to 1000 watts. The sources of the South-Western Pamir zone have the greatest power. Along individual segments of deep fault zones, for 

example, Gunt-Alichursky, the specific power of heat loss reaches 8 mW/m2. 
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In addition to hydrothermal, heat-intensive gases such as He and H2 also carry heat from the interior.  These gases carry a certain amount 

of heat, the capacity of which for the Pamirs has not yet been established, but may be close to the amount of heat carried by hydrothermal. 

Gases He and H2 have a unique high permeability, lightness, and heat capacity and probably play the role of a "seed" in the formation of 

porous channels in the thickness of rocks. 

 

 

Figure 7: 1 - deep faults (interzonal); 2 - faults and fracture zones with the highest convective heat loss; 3 - zone of the greatest 

convective heat loss in the earth's crust (South-Western Pamir); 4 - zone of average convective heat loss in the earth's crust 

(South-Eastern and Central Pamirs); 5 - zone of the least convective heat loss in the earth's crust (Northern Pamir); 6 – an area 

of distribution of predominantly nitrogen therms; 7 – sources; 8 - travertines 

2.5 Some models of porous media reflecting the stochastic-fractal nature of the Jilondi geothermal reservoir 

In the analysis of porous media, an average description of the ratio of matrix segments and porous space is often used. For example, the 

ratio of the volume of fluid filling the pore space to the total volume. The very concept of the density of the medium is an average indicator 

that gives only a rough estimate of the ratio of mass to volume. One of the key issues is the actual value of the volume of t he liquid to the 

porous medium, and the area of interaction of the liquid to the porous medium. In turn, the estimation of the interaction area is complicated 
by the fractal nature of the matrix of the porous medium. The calculation and estimation of the volume and area directly depends on the 

accuracy of the measurement (Ilolov M. at all (2021)). We used as digital models fractal pore structures created based on the stochastic 

fractal "Perlin noise". 

Figure 8 shows 3D matrices derived from stochastic fractals. 

The matrices shown in Fig. 8, are 3-dimensional cubes in size 257 × 257 × 257. The models were built with the specified binary filtering 

parameter 𝑓 = 500. As a result, based on Perlin noise, the porosity value was 49.84%, and density50.16%. 

 

Figure 8: Matrix of Perlin noise 

The porosity of the model was calculated as the ratio of the volume of pores to the volume of the body: 

𝜀 =
𝑉𝑝𝑜𝑟𝑒

𝑉𝑓𝑢𝑙𝑙
 . 

The density of the ratio of the volume of frame elements to the dense volume of the body: 

1 − 𝜀 =
𝑉𝑐𝑎𝑟𝑐𝑎𝑠𝑠

𝑉𝑓𝑢𝑙𝑙
 . 
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By changing the parameters of noise generation and binary filtering parameters, it is possible to change the structural characteristics of 
the model and achieve the required porosity and permeability. The dimension of the matrix is determined by the size of the generated 

fractals and the dimension of the grid that forms the frame of the internal structure. 

2.6 Determination of the fractal dimension of porous media 

Regardless of the method of construction, all fractals have a fractal dimension, this is a certain number 𝐷, called the Hausdorff fractal 

dimension (Egorov A.A. at all (2020)). For size models 257 × 257 × 257, 𝐷 – Hausdorff fractal dimension is defined as follows. 

Let's take in three-dimensional space a set of points 𝑁0. To cover this set, it is necessary 𝑁(𝜀) – cubes with a characteristic size 𝜀, and 

𝑁(𝜀) ≈
1

𝜀𝐷 at𝜀 → 0 is defined by the law of similarity . For the value 𝐷 have a limiting expression 

𝐷 = lim
𝜀→0

log 𝑁(𝜀)

log 𝑁(1/𝜀)
 . 

Calculations have shown that fractal dimensionality has an inverse relationship with the number of open pores. An increase in filtration 

leads to a decrease in the dimensionality of the fractal (Fig. 9). 

Fig. 9 shows a graph of the dependence of the dispersion of fractal dimension on the filtering parameter. 

??? 

Figure 9: Graph of the dependence of the variance on the binary filtering parameter (see Egorov A.A., 2020) 

Table 10 shows the fractal dimensions of the model with a fixed filtering parameter 𝑓 = 500. 

Table 10: Fractal dimensions. 

 

3. FILTRATION FIELDS IN FRACTAL INHOMOGENEOUS MEDIA 

Non-stationary filtration in a fractal medium with random permeability is considered. The corresponding process is described by t he 

methods of the theory of stochastic differential equations with fractional derivatives both in time and in coordinates. A significant role in 

this is played by the asymptotic analysis of the Green function in the correlation approximation of the perturbation method. 

For macroscopically significantly heterogeneous porous media, the corresponding tasks were studied in the works of Shvidler (1985), 

Shvidler (1986). 

More specifically, we will study the process of filtration transport of a homogeneous liquid in a heterogeneous composite medium 

composed of 𝑚 phases homogeneous in physical characteristics. The physical parameters of the phases are considered to depend only on 
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spatial coordinates and are random fields. For detailed analysis, conditional functional-average fields for individual phases of the 

composite medium will be needed. 

The task of describing the process is reduced to the definition of globally and conditionally averaged fields or equations that connect them, 

to elucidate the mechanism of mass transfer between phases. 

Let Ω ⊂ ℝ𝑛 – domain in 𝑛 – dimensional Euclidean space ℝ𝑛. Consider in the field of Ω initial problem 

𝛼 𝐷𝑡
𝛼𝑢 − 𝑑𝑖𝑣 (𝜎∇𝑢) = 𝑓(𝑥, 𝑡),𝑐                                 (1)

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑢𝑏Ω = 𝜑(𝑥, 𝑡),                         (2)
 

where is 𝑢(𝑥, 𝑡) – pressure, 𝑣 = −𝜎∇𝑢 – filtration rate vector, 𝜎(𝑥) – positively defined and symmetrical conduction tensor, 𝛼(𝑥) – 

positive random function of elastic-capacitance system of liquid-porous medium, 𝑓(𝑥, 𝑡) – density of non-random sources, 𝑢0(𝑥)  - initial 

and 𝜑(𝑥, 𝑡) – boundary functions. Because in a composite environment 𝜎(𝑥) and 𝛼(𝑥) are discontinuous, then the solution of the problem 

(1), (2) is understood as a generalized solution satisfying the corresponding integral equations. 

Let's introduce into consideration the average for the ensemble of implementations of random fields 𝜎 and 𝛼 of field 𝑢(𝑥, 𝑡) и 𝑣(𝑥, 𝑡) 

𝑈 =< 𝑢 >, 𝑉 =< 𝑣 >                                          (3) 

and let us assume that 𝛿 – characteristic scale of heterogeneity of stochastically homogeneous fields 𝜎(𝑥) and 𝛼(𝑥) satisfy inequality 

𝛿 ≪ 𝑙Ω,  where 𝑙Ω – scope of the domain Ω. Then the probabilistic averaging in (3) can be replaced by averaging by the volume of the 

domain 𝜔∆, scale of which ∆ satisfies inequality  𝛿 ≪ ∆≪ 𝑙Ω. 

For a detailed description, let's move on to conditional averaging of fields 𝑢 and 𝑣 phases and introduce random indicator functions 

𝑧𝑖(𝑥) = {
1, 𝑖𝑓  𝑥 ∈ Ω𝑖         

0, 𝑖𝑓 𝑥 ∈ Ω ∖ Ω𝑖 ,
                             (4) 

where Ω𝑖 – part of the domain Ω, occupied by the 𝑖-th phase. Obviously, ∑ 𝑧𝑖(𝑥)𝑖 = 1, < 𝑧𝑖 >= 𝜇𝑖, 𝜇𝑖 – volume fraction of the 𝑖 -th phase 

in the composite. 

Conditional averaging refers to the operator 

<∙>𝑖=<∙>, 𝑥 ∈ Ω𝑖 ,                                           (5) 

and for any random field 𝑦(𝑥, 𝑧) 

< 𝑦 >𝑖=< 𝑧𝑖𝑦 >/μ𝑖,                                         (6) 

i.e. for conditional averaging 𝑦 , it is sufficient to unconditionally average  𝑧𝑖𝑦 and the result is renormalized. 

Now taking into account (4) – (6), we introduce the average pressure and filtration rate in phases 
𝑈𝑖 =< 𝑢 >𝑖 , 𝑉𝑖 =< 𝑣 >𝑖                                         (7) 

and let's move on to conditional averaging of differential operators, given that the conditional averaging operator, unlike unconditional 

averaging, generally speaking, does not commute with differentiation by spatial variables. It is easy to see that 

< 𝑑𝑖𝑣 𝑣 >𝑖= 𝑑𝑖𝑣 𝑉𝑖 +
𝑄𝑖

𝜇𝑖
⁄ ,                                    (8)  

where 𝑄𝑖 = −< 𝑣∇𝑧𝑖 >, ∑ 𝑄𝑖 = 0𝑖 . 

Similarly 

< ∇𝑢 >𝑖= ∇𝑢𝑖 + 𝜓𝑖 /𝜇𝑖,                                          (9)  

where 𝜓𝑖 = −< 𝑢∇𝑧𝑖 >, ∑ 𝜓𝑖𝑖 = 0. 

Using (8) and (9) and the conditionally averaging system (1), we get  

𝑑𝑖𝑣 𝑉𝑖 + 𝛼𝑖 𝐷𝑡
𝛼𝑐 𝑈𝑖 + 𝜇𝑖

−1𝑄𝑖 = 1,                                (10) 

𝑉𝑖 = 𝜎𝑖(∇𝑢𝑖 + 𝜇𝑖
−1𝜓𝑖).                                       (11) 

In addition, from (8) and (9) follow equalities 
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∑ 𝜇𝑖∇𝑢𝑖

𝑖

= ∇𝑢, ∑ 𝜇𝑖𝑉𝑖

𝑖

= 𝑉, ∑ 𝜇𝑖𝜎𝑖
−1𝑉𝑖 = −∇𝑈.            (12) 

Multiplying equation (10) by 𝜇𝑖 and summing for all 𝑖, we get taking into account (12) and will find 

𝑑𝑖𝑣 𝑉 + ∑ 𝛼𝑖𝜇𝑖

𝑖

𝐷𝑡
𝛼𝑐 𝑈𝑖 = 𝑓.                                 (13) 

The system (10), (11), although it is not closed, since correlations are not calculated 𝑄𝑖 and 𝜓𝑖, can be interpreted as exact transfer 

equations in the phase-continuum. In this case, since the generalized function ∆𝑧𝑖 is different from zero only at the boundaries of different 

phases 𝜕Ω𝑖, the correlation 𝑄𝑖 is the specific average flow from the 𝑖-th continuum-phase to the rest, and the correlation 𝜓𝑖is the average 

specific force of pressure flowed from other phases to the surface limiting the 𝑖-th phase. 

To close the conditionally averaged system (10), (11) it is natural to take advantage of the results of the unconditional (global) averaging 

of the system (1). As is known, the averaged system is a consequence of the decomposition of the averaged op erator into a series by 

powers of the parameter 𝜀 = 𝛿/𝑙Ω. When small enough 𝜀 for fields 𝑈 and 𝑉 there is an averaged system that does not contain 𝜀: 

𝑑𝑖𝑣 𝑉 + 𝛼∗ 𝐷𝑡
𝛼𝑐 𝑈 = 𝑓, 𝑉 = −𝜎∗∆𝑈;                           (14) 

𝑈(𝑥, 0) = 𝑢0(𝑥)      𝑈/𝜕Ω = φ(𝑥, t),                           (15) 

where 𝛼∗ =< 𝛼 ≥ 𝑐𝑜𝑛𝑠𝑡, and 𝜎∗ = 𝑐𝑜𝑛𝑠𝑡 – an effective conductivity tensor, which can be determined from an experiment or from the 

solution of some auxiliary stationary problem [1]. 

Thus, in terms of average fields 𝑈 and 𝑉 at known fields 𝛼∗ , the 𝜎∗ in system (14) gives in the considered approximation a closed 
description of the process of non-stationary filtration in an inhomogeneous medium. The main difficulty of its implementation lies in the 

definition of the tensor 𝜎∗, and the efficiency is determined by the degree of heterogeneity and fine scale of the medium, and also depends 

on the type of process under consideration, i.e. the smoothness of the functions 𝑢0(𝑥) and 𝜑(𝑥, 𝑡). 

Comparing (13) with the globally averaged equation (14), write down the equation for 𝑈𝑖 

∑ 𝛼𝑖𝜇𝑖

𝑚

𝑖=1

𝐷𝑡
𝛼𝑐 = 𝛼∗ 𝐷𝑡

𝛼𝑐 𝑈, ∑ 𝛼𝑖𝜇𝑖

𝑚

𝑖=1

                      (16) 

to which we add an obvious relation 

∑ 𝜇𝑖

𝑚

𝑖=1

𝐷𝑡
𝛼𝑐 𝑈𝑖 = 𝐶 𝐷𝑡

𝛼𝑈.                                        (17) 

If 𝑚 = 2 and 𝛼1 ≠ 𝛼2, then the system (16), (17) has a single solution 

𝐷𝑡
𝛼𝑐 𝑈1 = 𝐷𝑡

𝛼𝑐 𝑈2 = 𝐷𝑡
𝛼𝑐 𝑈.                                     (18) 

Under 𝑚 > 2 condition (18) is also the solution of the system, since it is natural to accept 𝑈𝑖(𝑥, 0) = 𝑢0(𝑥) , then from (18) follows 

𝑈𝑖(𝑥, 𝑡) = 𝑈(𝑥, 𝑡).  

It should be noted that an approximate scheme of closing system of equations for filtering immiscible liquids in crack-porous media, in 

which the equality of pressures in cracks and blocks is assumed, and the total flow of liquids is determined, is given in (Svidler M.I. 

(1985)). 

Let 𝑚 = 2. Put in (11) and (12) 𝑈1 = 𝑈2 = 𝑈, find that the vectors 𝜓𝑖 have the form 

𝜓1 = (𝜎2 − 𝜎1)−1(< 𝜎 > −𝜎∗)∇𝑈

𝜓2 = (𝜎1 − 𝜎2)−1(< 𝜎 > −𝜎∗)∇𝑈,
                      (19) 

where is the tensor < 𝜎 >= 𝜇1𝜎1 + 𝜇2𝜎2. 

From (19) it follows that 𝜓𝑖 = 0 only in a layered system, provided that ∇𝑈 it is directed along the layers. Using the calculated 𝜓1 and 

𝜓2 in (9) we will find the average values of the pressure gradient in the phases 

< ∇𝑢 >2= 𝜇1
−1(𝜎2 − 𝜎1)−1(𝜎2 − 𝜎∗)∇𝑈, 

< ∇𝑢 >2= 𝜇2
−1(𝜎1 − 𝜎2)−1(𝜎1 − 𝜎∗)∇𝑢. 

Substituting (19) into (10), (11) we get the system 
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𝑑𝑖𝑣 𝑉𝑖 + 𝛼𝑖 𝐷𝑡
𝛼𝑐 𝑈 + 𝜇𝑖

−1𝑄𝑖 = 𝑓1, 𝑉𝑖 = −𝜎𝑖𝑓𝑖
∗∇𝑈,                             

𝑓𝑖
∗ = 𝜇1

−1(𝜎2 − 𝜎1)−1(𝜎2 − 𝜎∗), 𝑓2
∗ = 𝜇2

−1(𝜎1 − 𝜎2)−1(𝜎1 − 𝜎∗).
(20) 

Tensors 𝑓𝑖, which are naturally called relative phase conductions, satisfy the obvious relation 

∑ 𝜇𝑖𝑓𝑖
∗

𝑖

= 𝐼        ∑ 𝜇𝑖𝜎𝑖𝑓𝑖
∗

𝑖

= 𝜎∗. 

Since the system (20) is joint with the globally averaged system (14), it is possible to determine the flows between the phases from these 

systems, 

𝑄𝑖 = 𝜇𝑖[𝑑𝑖𝑣 [(𝜎𝑖𝑓𝑖
∗ − 𝜎∗)∇𝑈] − (𝛼𝑖−< 𝛼 >) 𝐷𝑡

𝛼𝑐 𝑈].           (21) 

Suppose in the real component 𝑖-i phase is distributed as a set of inclusions. By isolating a Ω characteristic volume in space𝜔∆, we calculat e 

the specific flux through the surface of the inclusions of the 𝑖-th phase 

𝑞𝑖 = |𝜔∆|−1  ∫ 𝑣 𝑑𝑠𝑖𝑗

𝑆𝑖𝑗

,                                          (22) 

where 𝑠𝑖𝑗-surface - boundary - separating 𝑗-e inclusion of the 𝑖-th phase. In this case, a certain part of the inclusions will be dissected by 

the boundary 𝜕𝜔∆ and, therefore, in addition to the flow from the inclusions of 𝑖-th phase of the volume to other phases, in (22) there will 

also be a phase flow through the surface 𝜕𝜔∆. Moving to (22) to the integration by volume using (1) and taking into account for the scale 

∆, we get the complete flow from 𝑖-th phase 

𝑞𝑖 = 𝜇𝑖 < 𝑑𝑖𝑣 𝑣 >𝑖= 𝜇𝑖(𝑓 − 𝛼𝑖 𝐷𝑡
𝛼𝑐 ).                       (23) 

Comparing (8) and (23), we find the relationship between the flows 𝑞𝑖 and 𝑄𝑖: 

𝑄𝑖 = 𝑞𝑖 + 𝜇𝑖𝑑𝑖𝑣(𝜎𝑖𝑓𝑖
∗∇𝑈). 

where 𝑄𝑖 , 𝑞𝑖 have different physical meanings. If 𝑞𝑖 is a complete flow on the 𝑖-th phase, then it 𝑄𝑖 is a characteristic of the mass transfer 

between different phases. Suppose, for example, stationary filtration in a medium without sources is considered. Obviously, then 𝑞𝑖 = 0. 

On the other hand, if 𝜎∗ it is anisotropic, and ∆𝑢 ≠ 𝑄 𝑧, then when 𝜎𝑖 ≠ 0 the flow between phases 𝑄𝑖 ≠ 0. 

Consider a two-phase composite with isotropic phases at 𝜎1 ≫ 𝜎2.  Then (20) will take the form 

{
𝑑𝑖𝑣 𝑉1 + 𝛼1 𝐷𝑡

𝛼𝑐 𝑈 + 𝜇1
−1𝑄1 = 𝑓, 𝛼 𝐷𝑡

𝛼𝑐 𝑈 − 𝜇2
−1𝑄1 = 𝑓

𝑉1 = −𝜇1
−2𝜎∗∇𝑈, 𝑉2 = 0.                                                        

    (24) 

In this case, 𝑄𝑖 = 𝑞𝑖, and the exclusion from the system (24) of the flow 𝑄2, as it should be, leads to the system (14). 

Thus, the conditional averaging of the equations of the filtration process in inhomogeneous systems shows that the description in terms 𝑈 

and 𝑉 is sufficient to determine the macroscopic phase characteristics  of < 𝑢 >𝑖 , < ∆𝑢 >𝑖 , 𝜓𝑖 , < 𝑣 >𝑖 , 𝑄𝑖 , 𝑞𝑖 flow slow, the more accurate 

the globally averaged equations used in the closure of phase systems. 

4. FRACTIONAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH THE LEVY PROCESS  

This section is devoted to the study of one class of fractional differential equations of the diffusion type with the Levy process. An attempt 

is made to construct an analysis of the theory  of the white noise for the Levy process. 

4.1 Levy's processes 

The Lewy process ℎ(𝑡) denoted through the stationary and independent increments similar to Brownian motion 𝐵(𝑡), but unlike 𝐵(𝑡) 

carried from 𝜂(𝑡)  allows discontinuous trajectories. This process allows us to explore more realistic models.  For example, (Di-Ninno G. 

(2004)) found that classes of models based on Levy discontinuous processes more accurately describe data on stock prices compared to 

the classic Samuelson-Black-Scholes model derived from Brownian motion. The work (Osin A.V. (2007)) introduces the fractal Levy 

motion in the form of a fractional Riemann-Liouville integral 

𝐿𝛼 ,𝐻(𝑡) =
1

Γ(𝐻 + 1/2)
∫(𝑡 − 𝜏)𝐻−1/2𝑑𝐿𝛼(𝜏)

𝑡

0

, 

here is the usual symmetry 𝐿𝛼(𝑡)-stable Levy motion, 0 < 𝛼 ≤  2,0 < 𝐻 ≤ 1. Such movements occur in the analysis of complex 

geophysical objects, for example, in the analysis of geothermal or oil-bearing reservoirs (Dyshin O.A. and Maharramov F.F. (2018)). 
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4.2 Levi-Hida-Kondratev spaces 

This subsection defines the Levi analogs of the Hida-Kondratev basic functions space and the dual Hida-Kondratev distribution space. 

The space of the main stochastic functions of Levi-Hida-Kondratev denoted by (𝑆)𝜌  = (𝑆)𝜌
𝐿  consists of functions  

φ = ∑ 𝑐𝛼𝐾𝛼(𝜔) ∈ 𝐿2(𝜇
(𝐿)

)
𝛼∈𝐽

, 𝑐𝛼 ∈ ℝ, 𝐽 ∈ ℝ+ 

such that 

‖𝜑‖𝜌,𝑘
2 = ∑ 𝑐𝛼

2(𝛼!)1+𝜌(2ℕ)𝑘𝛼 < ∞
𝛼 ∈𝐽

.  

The space of stochastic Levi-Hida-Kondratev distributions denoted by means (𝑆)𝜌  — (𝑆)𝜌
𝐿  consists of formal decompositions 

𝐹 = ∑ 𝑏𝛼𝐾𝛼(𝜔)
𝛼∈𝐽

 

such that 

‖𝐹‖ −𝜌,−𝑞 = ∑ 𝑏𝛼
2 (𝛼!)1+𝜌(2ℕ)𝑞𝛼 < ∞

𝛼∈𝐽

, 𝑞 ∈ ℕ. 

Space (𝑆)0 — (𝑆)
0
(𝐿)

 is called the Space of Basic Stochastic Levi-Hida Functions, and (𝑆)∗ — (𝑆)
−0
(𝐿)

 the space of stochastic Levi-Hida 

distributions. 

Everywhere here 𝐾𝛼(𝜔) = 𝐼|𝛼|(𝛿 ⊗̂𝛼)(𝜔), 𝜇(𝐿) - Levy's random measure. The Levy White Noise Process 𝜂̇(𝑡) defined as a decomposition 

𝜂̇(𝑡) = 𝑀1/2  ∑ 𝜉𝑖(𝑡)𝐾
𝜀(𝑘(𝑖,1))(𝜔)

∞

𝑖=1

. 

4.3 Vic's multiplication, the Levi-Hermite transform, and the Skorokhod integral  

Let  

𝐹 = ∑ 𝑎𝛼𝐾𝛼

𝛼∈𝐽

∈ (𝑆)
−1
(𝐿)

, 𝐺 = ∑ 𝑏𝛽𝐾𝛽

𝛽∈𝐽

∈ (𝑆)
−1
(𝐿)

. 

Then Vic's multiplication 𝐹 ⋄ 𝐺 is specified by decomposition 

𝐹 ⋄ 𝐺 = ∑ 𝑎𝛼𝑏𝛽𝐾𝛼 +𝛽

𝛼,𝛽∈𝐽

= ∑ ( ∑ 𝑎𝛼𝑏𝛽

𝛼+𝛽=𝛾

) 𝐾𝛾

𝛾∈𝑗

. 

In (Holde H. at all (2010)) proves that space (𝑆)𝜌  и (𝑆)−𝜌 0 ≤ 𝜌 ≤ 1  are closed relationships with respect to Vic`s multiplication. 

Let 𝐹 = ∑ 𝑎𝛼𝐾𝛼𝛼∈𝐽 ∈ (𝑆)
−1
(𝐿)

. The Levi-Hermite Transformation ℋℱ is a function from space (ℂℕ)𝑐 of all finite sequences of complex 

numbers in ℂ defined by equality 

ℋℱ(𝜉1, 𝜉2, … ) = ∑ 𝑎𝛼𝜉 𝛼

𝛼∈𝐼

∈ ℂ, 

where is 𝜉 = (𝜉1, 𝜉2, … ) ∈ ℂ and 𝜉 𝛼 = 𝜉1
𝛼1, 𝜉2

𝛼2, … , 𝜉𝑚
𝛼𝑚 if 𝛼 = (𝛼1 , 𝛼2 , … , 𝛼𝑚) ∈ 𝐼 ⊂ ℝ+. 

Let 𝑌(𝑥), 𝑥 ∈ ℝ𝑛 is a stochastic process, and 

𝐸(𝑌2(𝑥)) < ∞ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℝ𝑛. 

Then for everyone 𝑥 ∈ ℝ𝑛 process 𝑌(𝑥) allows decomposition 

𝑌(𝑥) = ∑ 𝐼𝑛(𝑓𝑛(∙, 𝑥))

∞

𝑛=0

, 



Ilolov at al. 

 11 

where 𝑓𝑛(∙, 𝑥) ∈ 𝐿2((𝜆 × 𝜆)𝑛) with parameter 𝑥. 

Let 

∑(𝑛 + 1)! ‖𝑓𝑛‖
𝐿2((𝜆×𝑛)𝑛+1)

2
∞

𝑛=0

< ∞, 

where 𝑓(𝑥(1), 𝑧1, … , 𝑥(𝑛), 𝑧𝑛, 𝑥, 𝑧) is symmetrization 𝑧𝑓𝑛(𝑥(1), 𝑧1, … , 𝑥(𝑛), 𝑧𝑛, 𝑥) regarding 𝑛 + 1 variables 

𝑦1 = (𝑥(1), 𝑧1), … , 𝑦𝑛 = (𝑥(𝑛), 𝑧𝑛), 𝑦𝑛 +1 = (𝑥(𝑛+1), 𝑧𝑛+1). 

Then the Skorokhod integral from 𝑌 regarding 𝜂 defined as follows 

∫ 𝑌(𝑥)𝛿𝜂(𝑥)

ℝ𝑛

= ∑ 𝐼𝑛+1

∞

𝑛=0

(𝑓). 

4.5 Levy's white noise differential equation 

Consider the fractional stochastic equation 

{
𝐷𝑡

𝛾𝑐 𝑈(𝑡, 𝑥) =
1

2
∆𝑈(𝑡, 𝑥) + 𝑈(𝑡, 𝑥) ⋄ 𝜂̇(𝑡, 𝑥), (𝑡, 𝑥) ∈ [0, 𝑇] × ℝ𝑛

𝑈(0, 𝑥) = 𝑓(𝑥), 𝑥 ∈ ℝ𝑛 , 0 < 𝛾 < 1,                                                    
         (25) 

where 𝑓- deterministic function. 

Take the Hermite transform and get a deterministic fractional equation by 𝑢(𝑥, 𝑡, 𝜁) with parameter 𝜁 ∈ (𝐶ℕ)𝑐 

{
𝐷𝑡

𝛾𝑐 𝑢(𝑡, 𝑥, 𝜁) =
1

2
∆𝑈(𝑡, 𝑥, 𝜁) + 𝑈(𝑡, 𝑥, 𝜁)ℋ𝜂̇(𝑡, 𝑥), (𝑡, 𝑥, 𝜁)

𝑈(0, 𝑥, 𝜁) = 𝑓(𝑥), 0 < 𝛾 < 1,                                                      
         (26) 

Problem (26) can be solved using the Feynman–Katz formula. In fact, let 𝐵̂(𝑡) auxiliary Brownian motion on probabilistic space 

(Ω̂, ℱ̂, {ℱ𝑡}𝑡 ≥ 0, 𝑃) independent of 𝐵(𝑡). 

Then the solution of the problem (26) can be written as 

𝑢(𝑡, 𝑥, 𝜁) = 𝐸 𝑥 [𝑓 (𝐵̂(𝑡)) exp [
1

Γ(1 − α)
∫(𝑡 − 𝑠)−𝛼

𝑡

0

ℋ𝜂̂(𝑠, 𝐵̂(𝑠), 𝜁)𝑑𝑠]] 

where through 𝐸 𝑥 denoted by the mathematical expectation relative to 𝑃, when 𝐵̂(𝑡) = 𝑥. Taking the inverse hermite transformation, we 

come to the following result: 

U(t, x) = Êx [f (B̂(t)) exp ⋄ [
1

Γ(1 − α)
∫(t − s)−α

t

0

× η̂ (s, B̂(s)) ds]], 

where through exp ⋄ [∙] denoted the Vic exponent, usually defined by  

exp ⋄ [F] = ∑
1

n
! F⋄n, F ∈ (S)−s 

and 

F⋄n = F ⋄ F ⋄ … ⋄ F 

F ⋄ F ⋄ … ⋄ F  n time. 

Note that fractional stochastic partial differential equations have been studied by other methods in the works (Ilolov M. at all (2021), 

Ilolov at all (2022)). 
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CONCLUSION 

Modeling porous media (e.g., the Geelondi geothermal system) using stochastic fractals has significant potential. To build adequate 

models and create full-scale "digital twins" of porous media, cores, rocks, a range of methods for assessing the results of modeling and 

checking adequacy is necessary. Such tasks and methods require further development. 

This article presents methods of averaging and perturbation associated with the evaluation of stochastic-fractal structures by the most 

important characteristics. 

The analysis of the process of filtration transport of homogeneous liquid in a heterogeneous composite medium of several phas es 

homogeneous in terms of physical characteristics is given. The task of describing the process is reduced to the definition of globally and 

conditionally averaged fields or equations that connect them, to elucidate the mechanism of mass transfer between phases . 

The conditions for the existence and uniqueness of the solution of the Cauchy problem for a fractional stochastic differential equation 

with the Levy process in the right part are established. This solution can be the implementation of the temperature or pressure of the 

filtration flow in porous fractal media under uncertainty conditions. 

ACKNOWLEDGMENTS 

The authors express their gratitude to the Japanese program SATREPS, Grant No. “JPMJSA2105” and Grant-in-Aid for Scientific 

Research (C) JP20K01519 for financial support. 

REFERENCES 

Valier B., Magnenet V., Schmittbuhe J. at all.: THM modeling of hydrothermal circulation at Rittershotten geothermal site, France, 

Geothermal Energy 6, 22 (2018), http://doi.org/10.1186/s40517-018-0108-1 

Tester J.W., Anderson B.J., Blackwell D.D., at all.: The future of geothermal energy, Impact of Enhanced Geothermal Systems of the 

United States in the 21st century, MIT report. Technical Report; (2016) 

Shvidler M., Baumgartner J., Gandy T. at all.: Successful hydraulic stimulation techniques for electric power production in the Upper 

Rhine Graben, Central Europe, In Proceedings World Geothermal Congress, (2010)  

Gerard A., Genter A., Kohe T. at all.: The deep EGS (enhanced geothermal system) project at Soultz-sous-Forets (Alsace, France), 

Geotermics, (2016); 64l 235-45 

Schill E., Genter A., Cuenot N., Kohe T.: Hydraulic performance history at the xultz EGS reservoir from stimulation and long-term 

circulation tests. Geotermics, (2017); 70; 110-24 

Akimov A.P., Semenov G.S.: Geochemistry of radioactive elements in deep rocks, In kn. Connection of surface structures of the earth's 

crust with deep. Kiev: Nauk. dumka, (1972), 309-317 

Gorbunov A.P.: Cryogenic phenomena of the Pamir-Alay. In: Cryogenic phenomena of highlands. Novosibirsk, Nauka, (1972), 5-25 

Kutas R.N.: Thermal Flows in Europe. – Geophysical Journal, (1979), vol.1 №1, 63-73 

Churshina N.M., Krat V.N.: Hydrothermal resources of the Tajik SSR and their use in the national economy. – In kn. Study and use of 

the deep heat of the Earth.  A. – Subsoil, (1973), 171-176 

Rao R.U.M., Rao G.V., Narain H.: Radioactive heat generation and heat flow in the Indian shield. – Earth and Planet, Sc. Lett., №30, 

(1976), 57-64 

Zuev Yu.N., Polikarpov A.A.: Results of geothermal research in the Pamirs. In kn. Earth's crust and upper mantle of the Himalayas, 

Pamirs, Tien Shan, Moscow, Nauka, (1984), 107-114 

Kireeva T.A. et al.: Chemical composition of waters and conditions for the formation of some thermal springs of Tajikistan, Geochemistry, 

vol. 65, №4, (2020), 379-391 

Egorov A.A., Gavrilenko T.V., Bykovskikh D.A.: Estimation of parameters of fractal porous media, Vestnik KRAUNTS, Phys. -mat. 

Science, vol.30, №1, (2020), 87-89 

Sakhaee-Pour A.: Fractality of the Geysers, Geothermal Energy, 4:1, (2016), 1-10 

Ilolov M., Ilolov A., Karimova S., Kodirov A., Khudonazarov A.: Geothermal Resources of Tajikistan, Proceedings World Geothermal 
Congress 2020+1, Reykjavik (Iceland, April - October 2021) DOI: 

https://pangea.stanford.edu/ERE/db/WGC/papers/WGC/2020/01041.pdf 

Mandelbrot B.: Fractal Geometry of Nature, M., Institute for Computer Research, (2002), 506 

Shvidler M.I.: Statistical hydrodynamics of porous media, Moscow, Nedra, (1985), (1985), 288 

Shvidler M.I.: Conditional averaging of filtration fields in heterogeneous media, Doklady Mathematics,288:5 (1986), 1074–1078 

Di Nunno G., Oksendal B., Froske F.: White noise analysis for Levy processes, J. Functional Anal., 206, (2004), 109-148.  

http://doi.org/10.1186/s40517-018-0108-1
https://pangea.stanford.edu/ERE/db/WGC/papers/WGC/2020/01041.pdf


Ilolov at al. 

 13 

Osin A.V.: Fractal movement of Levy and its application to the modeling of network traffic, Electrical and information complexes and 

systems, No. 1, vol.3., (2007), 38-43. 

Dyshin O.A., Maharramov F.F.: Stochastic interpolation of aquiferous properties of inhomogeneous geological media on the basis of 

fractal processes, Proceedings of UGSU, 2(50), (2018), 72-78. 

Holden H. at all.: Stochastic Partial Differential Equations. A Modelling White Noise Functional Approach. Second Edition, Springer, 

(2010), 311 p. 

Ilolov M., Lashkarbekov S., Rahmatov J.Sh.: Fractional stochastic evolution equations with Balakrishnan’s white noise, Global and 

Stochastic Analysis, v. 9, №. 3, (2022), 53-70 

Ilolov M., Kuchakshoev K., Rahmatov J.Sh.: Lyapunov function and stability of solutions of stochastic differential equations with 

fractional-like derivatives, Global and Stochastic Analysis,v. 8, № 2, (2021), 87-99. 

 


