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ABSTRACT

The high-altitude geothermal reservoir of Jilondi is located 125 km east of Khorog (South-Western Pamir, Tajikistan) at an altitude of
3500 m above sea level and includes 10 wells for the use of geothermal resources. These wells were installed between 1980 and 1990 and
used to measure higher temperatures than at the Icarus hydrogeological site (Western Pamirs). Detailed stratigraphic, lithographic, and
geochemical data were made. However, a model containing important geophysical changes has not yet been drawn up for this reservoir.
Here we consider the permeability function in the form of a random three-dimensional field and, using perturbation and averaging
methods, establish the effective conductivity of filtration processes in the field. In the simplest case, it is possible to conduct a correlation
analysis of the main components of the stochastic system. This takes into account the fractal nature of geothermal systems. T he ultimate
goal of our study is thermohydromechanical modeling of the hydrothermal circulation of the Jilondi object.

1. INTRODUCTION

The Jilondi thermal spring is located on the left bank of the Tokuzbulak River, 300 meters west of the village of the same name, at an
absolute altitude of 3500 meters above sea level. Ten manifestations, located in one line, knock out small notches on the river bank, taking
nitrogen and other gases with them. The temperature of the water in the manifestations varies from 35°C to 67°C. The water with the
highest temperatureis used by the locals for medical purposes. Another source Tokuzbulak consists of 6 manifestations overlooking the
right bank of'this river, 17 km from the village, at an altitude of 3360 m above sealevel. The largest outlets are two with a water temp erature
of 36°C. The water from the springs forms a stream connected to the river. This water is inhabited by freshwater mollusks (M ellanoides
tuberculatus pamiricus sub-Lindholm), currently living only in Africa and tropical Asia. This species of mollusk in the Pamirs was
considered extinct. But it turns out that it survived the harsh climate of the ice age and was discovered in the source.

In the last decade, researchers in European countries have implemented geothermal projects based on advanced geothermal system (EGS)
technologies. This concept consists in increasing the permeability of the reservoir through hydraulic, thermal, and chemical influences,
and then the forced circulation ofnatural brines in deep wells using the thermal anomaly associated with alarge-scale hydrothermal sy stem
in porous and fractured rocks (Valier B. at all (2018), Tester at all (2016), Shvidler at all (2010), Gerard at all (2016), Schill at all (2017)).
Unfortunately, in our conditions, there is a lack of completeness of data, which is available in the location of European scientists. In this
regard, the compilation of a detailed and adequate model of the Geothermal Reservoir of Jilondi is a matter of the future. In this paper,
we present an analy sis of this geothermal system by mathematical methods of perturbation and averaging. The structure of the work is as
follows. The second section presents theresults of geothermal research in the Pamirs, carried out mainly by the efforts of Dushanbe and
Tashkent geologists and their students (Akimov A.P., Semenov G.S. (1972), Gorbunov A.P. (1972), Kutas R.I. (1979), Churshina N.M.,
Krat V.N. (1979), Rao A. U. M., Rao G. V., Nazain H. (1976), Zuev Yu.N., Ponomarev A.A. (1984)). In the article by Kireeva T.A. et
al. (2020) new data on the chemical composition of the M ineral Springs of the Pamirs (Firuza - M oscow State University, Garm-Chashma)
are presented and the geological conditions of their distribution are considered. A number of works are devoted to the evaluation of the
parameters of fractal porous media under conditions of uncertainty in filtration processes (Egorov A.A. at all (2020), Sakhaee-Pour A.
(2016), Ilolov at all (2022), M andelbrot B. (2002)).

The third section of the work is devoted to non-stationary filtration in a porous-fractured environment with random permeability. Note
that the asymptotics of the Green function in the correlation ap proximation of the perturbation method was studied in the work of Shvidler
M.I (1985). In the work of Shvidler M.I. (1986), the process of filtration transport of a homogeneous liquid in an inhomogeneous
composite medium composed of m phases homogeneous in physical characteristics is considered. In section 3, for a detailed description
of the process in such environments, conditional functionals are practically important - the average fields for individual phases of the
composite medium. The task of describing the process is reduced to the definition of globally and conditionally averaged fields or
fractional order equations that bind them, to elucidate the thermohydrodynamic mechanism of mass transfer between phases in a porous
medium.

The fourth section is devoted to the analysis of the stochastic differential equation with the Levy discontinuous process. Boundary and
initial problems for such equations more adequately reflect the real processes occurring during hydrothermal circulation in fields. For the
first time, such problems are studied in a monograph Holden H. at all (2010).
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2. GEOTHERMAL RESEARCH IN THE PAMIR

The first geothermal scientific and thermal research work in the Pamirs was carried out under the program of the Pamir-Himalayan
International Project in 1977 by joint efforts of geologists from Dushanbe and Tashkent. They carried out comprehensive geological and
geophysical studies of the lithosphere on the profile of Kalai-Khumb - Khorog - Ishkashim (see e.g. Gorbunov A.P.(1979)). In the course
of geothermal works, the thermal carrotating was carried out with thermistor sensors in the well Ne7 in the Icarus site and well Ne32 in the
Kuhilal site (Fig. 1).
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Figure 1: Thermograms from wells a) Ne32 (Kuhilal site), b) Ne7 (Icarus site), 1 - forsterite, jadeite, ecstatic rocks; 2 —marble; 3 -
diluvit quaternary; 4 quartz diorites).

The depth of penetration of sensors in wells No7 and Ne32 is small. The obtained thermograms make it possible to record the temperature
and depth of the "neutral" layer, but do not make it possible to characterize the normal hydrothermal gradients.

Well, Ne7 was drilled from an underground chamber. Its mouth is 300 m horizontally and 230 m vertically removed from the daytime
surface, so the thermogram is free of gradient variations associated with annual fluctuations in the Earth's surface temperature. Before
thermometry, the well was dormant for more than nine months, which is enough for the thermal regime in it, disturbed during drilling, to
balance.

The nonlinearity of the thermogram (Fig. 2) is due to various regional and local distorting factors. This is primarily the influence of
topography, the daytime surface, neotectonics movements, later glaciation cycles, and groundwater dynamics.

Gradient £, 107%°C/m

Height a.s.1. m.

Figure 2: Thermograms from wells Ne7 (Icarus site), 1 - andesits; 2 — crushing zones; 3 quartz diorites.

Let's consider each of them in more detail.

2.1 Neotectonics andrelief

The average rate of elevation of the Rushan Range area in the Holocene (t=10%years)is 2.5 - 10™* m/ year. 3. The same figure shows the
relief correction calculated from a topographic map of a scale of 1:100,000 by the Jeffreys—Bullard method. For such elevation speed, the
curve ¥/yg = f(h) shown in Figure 3 is calculated. The same figure shows the relief correction calculated from the topographic map at
a scale of 1:1000000 by the method of Jeffreys Bullard. Curve 3 in Figure 3 shows the combined effect of a change in the normal
geothermal gradient under the influence of relief and neotectonics.
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Figure 3: Reduction to geothermal gradientin Icarus site. 1-3 curves: 1 — correction for neotectonics motion; 2 —relief correction;
3 is the resulting curve correction for relief and neotectonics.

2.2 Climate correction

In the Pamirs, the most recent glaciation is the Arzyngglaciation, which took place at the end of Og, lasted together with the late phase of
the onset time of 2.5 - 10* years and ended 0.5 - 10* years ago (Gorbunov A.P. (1972)). The influence of this glaciation is expressed in
the increase in the geothermal gradient to a depth of at least one and a half kilometers from the surface. Below is a climatic correction for
the Icarus site (Table 4).

Table 4: Climate correction in Icarus Site.

Depth from day surface, m 10 50 100 200 500 1000 2000

8,= Vmeas — Ynorm) - 1072°C/M 0470 | 0466 |0465 | 0460 |0426 |0426 |o0.116

Thus, accounting for relief corrections, neotectonics motions, and glaciations somewhat evens out the measured geothermal gradient, but
the shape of the thermogram remains concave to the depth axis, indicating hy drodynamics as the main temp erature-distorting factor.

Generalized results on thermal conductivity are shown in Table 5.

Table 5: Thermal conductivity of rocks from the regions of the South-Western and Central Pamirs.

Square Rock Age Thermal conductivity
W/(mXK.)

Icarus Diorites Ps 2.99
Quartz diorite . 3.34
Corneas . 3.24
Corneas with sulfide minerals 4.73
Andesites Ks 2.50

Kuhilal M agnesia marble AH-PH 5.74
Jadeite-ecstatit rock . 5.38
Ecstatit-tremolite rock e 295
Marble . 3.82
M arble with forstreet 4.81
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2.3 Radiochemical and seismic studies

On the profile of Kalai-Khumb - Khorog - Ishkashim, radiochemical and seismic studies were carried out that made it possible to determine
theaverage capacities of various layers of the lithosphere and specific heat generation of rocks. Based on these data, it is possible to build
aradio thermal model of the lithosphere and trace the release of radiogenic heat flux in layers in it (Table 6).

With a layer-by -lay er model, the total radiogenic flux created within the lithosphereis 67.6 mW/m?>. Assume that radioactive heat sources
are distributed in the mantle up to the upper limit of the nucleus, then the heat flux on the surface created by them is equal to the value of
the following integral (Kutas R.N. (1979)):

R-d
f A(x)x?dx,
H

>UN| -

qo =

where is g, — heat flux on the surface of the Earth, R — radius of the Earth, d — depth to theupper limit of the kernel, A(x) — heat source
distribution function, x — depth coordinates, x = R — h where h - the depth of r the point at which is defined q.

Table 6: Radiothermal model of the lithosphere of the Central Pamirs.

Lithosphere layer Average power, | Specific heat | Radiogenic heat
layer, km generation A, | fluxq, mW/m2
pW/m?

"Sedimentary" layers

Structural and formational floors

a) Orogenic volcano plutonic K3-M 3.5 0.235 8.25
b) geosynclinals (terrigen-carbonate) T3-K3 3.0 0.188 5.65
¢) Sub-platform Cr, — T3 7.0 0.134 9.34

Consolidated crust

a) Granit metamorphic A; — Py 24 0.137 32.96
b) granulite-basalt layer 20 11.39
including

in the roof 0.83

in the sole 0.03

Total on the earth's crust 57.5 - 67.60

Integral solution for A(x) = Aye™™ equals g = %{Aoekh.

The heat flux ata point h = 0 (i.e., on the surface of the Earth) is calculated in this way 71.0 mW/m?. This value can be considered close
to theregional background ofthe Central Pamirs. Thus, the boundaries of the change in the conductive density of the heat flux determined
in the Icarus site will become closer, namely

71.0 < q < 128.7 mW/m?

2.4 Convective heat flow

On the territory of the Pamirs, modern geothermal activity is widely and intensively manifested. The geothermal activity of this region is
subject to tectonic zonation. About 73% of the discovered sources operate in the zone of the South-Western Pamirs (Fig 7). They are
grouped mainly in the zones of deep faults, fracture, and to a lesser extent in the areas of Neogene magmatism. All the rising sources of
the Pamirs carry thermal energy from the depths of the earth's crust, the concentrated power of which at various points ranges from 100
to 1000 watts. The sources of the South-Western Pamir zone have the greatest power. Along individual segments of deep fault zones, for
example, Gunt-Alichursky, the specific power of heat loss reaches 8 mW/m>.
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In addition to hydrothermal, heat-intensive gases such as He and H> also carry heat from the interior. These gases carry a certain amount
of heat, the capacity of which for the Pamirs has not yet been established, but may be close to the amount of heat carried by hydrothermal.

Gases He and H» have a unique high permeability, lightness, and heat capacity and probably play therole of a "seed" in the formation of
porous channels in the thickness of rocks.

Figure 7: I - deep faults (interzonal); 2 - faults and fracture zones with the highest convective heatloss; 3 - zone of the greatest
convective heatloss in the earth's crust (South-Western Pamir); 4 - zone of average convective heatloss in the earth's crust
(South-Eastern and Central Pamirs); 5 - zone of the least convective heatloss in the earth's crust (Northern Pamir); 6 — an area
of distribution of predominantly nitrogen therms; 7— sources; 8 - travertines

2.5 Some models of porous media reflecting the stochastic-fractal nature of the Jilondi geothermal reservoir

In the analysis of porous media, an average description of the ratio of matrix segments and porous space is often used. For example, the
ratio of the volume of fluid filling the pore spaceto the total volume. The very concept of the density of the medium is an average indicator
that gives only a rough estimate of the ratio of mass to volume. One of thekey issues is the actual value of the volume of the liquid to the
porous medium, and the area of interaction of the liquid to the porous medium. In turn, the estimation of the interaction area is comp licated
by the fractal nature of the matrix of the porous medium. The calculation and estimation of the volume and area directly depends on the
accuracy of the measurement (Ilolov M. at all (2021)). We used as digital models fractal porestructures created based on the stochastic
fractal "Perlin noise".

Figure 8 shows 3D matrices derived from stochastic fractals.

Thematrices shown in Fig. 8, are 3-dimensional cubes in size 257 X 257 X 257. The models were built with the specified binary filtering
parameter f = 500. As a result, based on Perlin noise, the porosity value was 49.84%, and density 50.16%.

Figure 8: Matrix of Perlin noise
The porosity of the model was calculated as the ratio of the volume of pores to the volume of the body:
_ Vpore
Veun

The density of the ratio of the volume of frame elements to the dense volume of the body:

1 _e= Vcarcass

Veun
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By changing the parameters of noise generation and binary filtering parameters, it is possible to change the structural characteristics of
the model and achieve the required porosity and permeability. The dimension of the matrix is determined by the size of the generated
fractals and the dimension of the grid that forms the frame of the internal structure.

2.6 Determination of the fractal dimension of porous media

Regardless of the method of construction, all fractals have a fractal dimension, this is a certain number D, called the Hausdorff fractal
dimension (Egorov A.A. at all (2020)). For size models 257 x 257 X 257, D — Hausdorff fractal dimension is defined as follows.

Let's take in three-dimensional space a set of points N. To cover this set, it is necessary N (&) — cubes with a characteristic size €, and
N(e) = -p ate = 0 is defined by the law of similarity . For the value D have a limiting expression

b 10BN
= SblogN(1/9)

Calculations have shown that fractal dimensionality has an inverse relationship with the number of open pores. An increase in filtration
leads to a decrease in the dimensionality of the fractal (Fig. 9).

Fig. 9 shows a graph of the dependence of the dispersion of fractal dimension on the filtering parameter.
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Figure 9: Graph of the dependence of the variance on the binary filtering parameter (see Egorov A.A., 2020)

Table 10 shows the fractal dimensions of the model witha fixed filtering parameter f = 500.

Table 10: Fractal dimensions.

Grid dimension

Octave 2 3 4 5 6 7 8
2.552 | 2.546 | 2.552 | 2.547 | 2.544 | 2.555 | 2.559
2.589 | 2.54 | 2.547 | 2.546 | 2.551 | 2.563 | 2.551
2575 | 2.53 | 2.526 | 2.543 | 2.558 | 2.548 | 2.569
2584 | 2.527 | 2.515 | 2.552 | 2.554 | 2.556 | 2.569
2.578 | 2.537 | 2.521 | 2.55 | 2.553 | 2.551 | 2.566
2579 | 2.538 | 2.52 255 | 2.556 | 2.555 | 2.566
2.578 | 2.537 | 2.521 | 2.551 | 2.556 | 2.556 | 2.566
2.577 | 2.536 | 2.52 | 2.551 | 2.555 | 2.556 | 2.565

Q0 | O | W[ W| NI =

3. FILTRATION FIELDS IN FRACTAL INHOMOGENEOUS MEDIA

Non-stationary filtration in a fractal medium with random permeability is considered. The corresponding process is described by the
methods of the theory of stochastic differential equations with fractional derivatives both in time and in coordinates. A significant role in
this is played by the asymptotic analysis of the Green function in the correlation approximation of the perturbation method.

For macroscopically significantly heterogeneous porous media, the corresponding tasks were studied in the works of Shvidler (1985),
Shvidler (1986).

More specifically, we will study the process of filtration transport of a homogeneous liquid in a heterogeneous composite medium
composed of m phases homogeneous in physical characteristics. The physical parameters of the phases are considered to depend only on
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spatial coordinates and are random fields. For detailed analysis, conditional functional-average fields for individual phases of the
composite medium will be needed.

The task of describing the process is reduced to the definition of globally and conditionally averaged fields or equations that connect them,
to elucidate the mechanism of mass transfer between phases.

Let & € R™ — domain in n — dimensional Euclidean space R™. Consider in the field of Q initial problem

a °Dfu — div (eVu) = f(x,t), €Y)]
ule,0) =uy(x),  upg = @(x,t), 2
where is u(x, t) — pressure, v = —gVu — filtration rate vector, o(x) — positively defined and symmetrical conduction tensor, a(x) —

positive random function of elastic-capacitance system of liquid-porous medium, f (x, t) — density of non-random sources, 1 (x) - initial
and ¢ (x, t) —boundary functions. Because in a composite environment o(x) and a(x) are discontinuous, then the solution of the problem
(1), (2) is understood as a generalized solution satisfyingthe corresponding integral equations.

Let's introduce into consideration the average for theensemble of implementations of random fields o and a of field u(x,t) u v(x, t)
U=<u>V=<v> 3)

and let us assume that § — characteristic scale of heterogeneity of stochastically homogeneous fields o(x) and a(x) satisfy inequality
6 K lg, where g — scope of the domain ). Then the probabilistic averaging in (3) can be replaced by averaging by the volume of the
domain w,, scale of which A satisfies inequality § < AK [,

For a detailed description, let's move on to conditional averaging of fields u and v phases and introduce random indicator functions

1,lf X € Qi

zi(x) Z{O,ifxEQ\Qi, )

where Q; —part of the domain (, occupied by the i-th phase. Obviously, Y,;z; (x) = 1,< z; >= y;, 4; — volume fraction of the i -th phase
in the composite.

Conditional averaging refers to the operator

<>=<>,x €, )
and for any random field y(x, z)

<y >i=<ziy>/u (6)
i.e. for conditional averaging y , it is sufficient to unconditionally average z;y and the result is renormalized.

Now taking into account (4) — (6), we introduce the average pressure and filtration rate in phases
Ui =<u >i'Vi =<v >i (7)

and let's move on to conditional averaging of differential operators, given that the conditional averaging operator, unlike unconditional
averaging, generally speaking, does not commute with differentiation by spatial variables. It is easy to see that

<divv>;=divV;+ Qi/ﬂi, (8
where Q; = —< vVz; >,X;Q; = 0.
Similarly
<Vu>;=Vu; +v¢;/u;, )]
where ¢; = —< uVz; >,%;9; = 0.
Using (8) and (9) and the conditionally averaging system (1), we get
div V;+a; DIV + u;*Q; = 1, (10)
Vi = 0y (Vu; + pi ;). an

In addition, from (8) and (9) follow equalities
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D= v wVy =,y wol = -, (12)
i i

Multiplyingequation (10) by u; and summing for all i, we get taking into account (12) and will find
divV+Zaiui ‘DiU; =f. (13)
i

The system (10), (11), although it is not closed, since correlations are not calculated @Q; and 1;, can be interpreted as exact transfer
equations in the phase-continuum. In this case, since the generalized function Az; is different from zero only at the boundaries of different
phases 0€);, the correlation Q; is the specific average flow from the i-th continuum-phase to therest, and the correlation ;is the average
specific force of pressure flowed from other phases to the surface limiting the i-th phase.

Toclose the conditionally averaged system (10), (11) it is natural to take advantage of the results of the unconditional (global) averaging
of the system (1). As is known, the averaged system is a consequence of the decomposition of the averaged op erator into a series by
powers of the parameter € = §/ly. When small enough ¢ for fields U and V there is an averaged system that does not contain &:

divV+a*DIU = f,V = —¢"AU; 14)
Ulx,0) =ugx) U/0Q= (1), (15)

where a* =< a > const, and ¢ = const — an effective conductivity tensor, which can be determined from an experiment or from the
solution of some auxiliary stationary problem|[1].

Thus, in terms of average fields U and V at known fields a*, the ¢* in system (14) gives in the considered approximation a closed
description of the process of non-stationary filtration in an inhomogeneous medium. The main difficulty of its implementation lies in the
definition of the tensor ¢ *, and the efficiency is determined by the degree of heterogeneity and fine scale of the medium, and also depends
on the type of process under consideration, i.e. the smoothness of the functions uy(x) and ¢ (x, t).

Comparing (13) with the globally averaged equation (14), write down the equation for U;

m m
> a; DF =" DEU, Y ay (16)
i=1 i=1
to which we add an obvious relation
m
Ui CD?U1=CD?U. (17)
i=1
Ifm = 2 and a; # a5, then the system(16), (17) has a single solution
‘DFU, = °DIU, = °DfU. (18)

Under m > 2 condition (18) is also the solution of the system, since it is natural to accept U;(x, 0) = uy(x), then from (18) follows
Ui(x, t) =U(x t).

It should be noted that an approximate scheme of closing system of equations for filtering immiscible liquids in crack-porous media, in
which the equality of pressures in cracks and blocks is assumed, and the total flow of liquids is determined, is given in (Svidler M.L
(1985)).

Let m = 2. Putin (11) and (12) U; = U, = U, find that the vectors i; have the form

Y, = (0, —0)) <o >-0)VU
1!)21 = (012— a:)‘1(< g> —o")VU, 19)

where is the tensor < 0 >= 0y + U,0,.

From (19) it follows that ¥; = 0 only in a layered system, provided that VU it is directed along the layers. Using the calculated 1, and
Y, in (9) we will find the average values of the pressure gradient in the phases

<Vu >,= u7(o, — 0,) Yo, — VU,
<Vu >,= u; oy — 6,) oy — aH)Vu

Substituting (19) into (10), (11) we get the system
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div Vi + a; CDZLXU +ﬂL_1Q1 = fll Vi = _a-ifi*VU'

fi= #Il(az - 01)_1(02 —0).f; = ﬂ51(01 - ‘72)_1(‘71 - o).

(20)

Tensors f;, which are naturally called relative phase conductions, satisfy the obvious relation

Zﬂyfi* =1 Zﬂiaifi* =0
Z Z

Since thesystem (20) is joint with the globally averaged system(14), it is possibleto determine the flows between the phases from these
systems,

Q; = w;ldiv [(0;f;" — a")VU] — (¢;—< a >) °DZU]. 21

Suppose in the real component i-i phase s distributed as a set of inclusions. By isolating a ) characteristic volume in spacew, we calculate
the specific flux through the surface of the inclusions of the i-th phase

qizla)Al_l .fvdsij, (22)
Sij

where s;;-surface - boundary - separating j-e inclusion of the i-th phase. In this case, a certain part of the inclusions will be dissected by

the boundary dw, and, therefore, in addition to the flow from the inclusions of i-th phase of the volume to other phases, in (22) there will
also be a phase flow through the surface dw,. Movingto (22) to the integration by volume using (1) and taking into account for the scale
A, we get the complete flow from i-th phase

q; = py <div v >=p(f — a; D). (23)
Comparing (8) and (23), we find therelationship between the flows q; and Q;:
Qi = q; + Hlle(O'lfl*VU)

where Q; , q; have different physical meanings. If g; is a complete flow on the i-th phase, then it Q; is a characteristic of the mass transfer
between different phases. Suppose, for example, stationary filtration in a medium without sources is considered. Obviously, then g; = 0.
On the other hand, if ¢™ it is anisotropic, and Au # Q z, then when o; # 0 the flow between phases Q; # 0.

Consider a two-phase composite with isotropic phases at o; > ¢,. Then (20) will take the form
divVi+a; “DEV + ' =f,aDEU =" 01 =f 5,
V, = —u7%e*vU,V, = 0.

In this case, Q; = g;, and the exclusion from the system (24) of the flow @Q,, as it should be, leads to the system (14).

Thus, the conditional averaging of the equations of the filtration process in inhomogeneous systems shows that the description in terms U
and V is sufficient to determine the macroscopic phase characteristics of <u >;, < Au >;,y;, < v >, Q;, q; flow slow, the more accurate
the globally averaged equations used in the closure of phase systems.

4. FRACTIONAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH THE LEVY PROCESS

This section is devoted to the study of one class of fractional differential equations of the diffusion type with the Levy process. An attempt
is made to construct an analysis of the theory of the white noise for the Levy process.

4.1 Levy's processes

The Lewy process h(t) denoted through the stationary and independent increments similar to Brownian motion B(t), but unlike B(t)
carried from 7n(t) allows discontinuous trajectories. This process allows us to explore more realistic models. For example, (Di-Ninno G.
(2004)) found that classes of models based on Levy discontinuous processes more accurately describe data on stock prices compared to
the classic Samuelson-Black-Scholes model derived from Brownian motion. The work (Osin A.V. (2007)) introduces the fractal Levy
motion in the form of a fractional Riemann-Liouville integral

Lo y(@®) = (t - 24L, (1),

t
1

here is the usual symmetry L, (t)-stable Levy motion, 0 < a < 2,0 < H < 1. Such movements occur in the analysis of complex
geophysical objects, for example, in the analysis of geothermal or oil-bearing reservoirs (Dyshin O.A. and M aharramov F.F. (2018)).
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4.2 Levi-Hida-Kondratev spaces

This subsection defines the Levi analogs of the Hida-Kondratev basic functions space and the dual Hida-Kondratev distribution space.
The space of the main stochastic functions of Levi-Hida-Kondratev denoted by (5), = (S)][; consists of functions
0= Z Ko@) € (1), c, e RJ ER,
a€g]

such that

lpll2,e = > cHa PN < oo
a€]
The space of stochastic Levi-Hida-Kondratev distributions denoted by means (S) p— ©) Z; consists of formal decompositions
F= Z b Kq(w)

such that

IFll _pg = ) B2(a)P2N)1% < c0,q €N,

a€j

Space ($)y — (8 gL) is called the Space of Basic Stochastic Levi-Hida Functions, and (S)* — (S)(_Lg the space of stochastic Levi-Hida
distributions.

Everywhere here K, (w) =1 | (6 ®‘Z)(w), u(L) - Levy's random measure. The Levy White Noise Process 77 (t) defined as a decomposition
n(t) = M*2 Z §i(OK o) (@).
i=1

4.3 Vic's multiplication, the Levi-Hermite transform, and the S korokhodintegral
Let
F= Z gk, € ()Y, 6 = Z beKy € ().
a€j BeJ

Then Vic's multiplication F ¢ G is specified by decomposition

FoG = Z aabﬁKa+ﬁ=z Z aabﬁ K.y.

a,pe] Y€j \a+p=y
In (Holde H. at all (2010)) proves that space (S) p U _ p 0 < p <1 areclosed relationships with respect to Vic's multiplication.

Let F =Y ¢ 1K, € (©))] (_Ll) The Levi-Hermite Transformation H'F is a function from space (CV) c of all finite sequences of complex
numbers in C defined by equality

HF(EEp ) = Z ag%eC,

a€l

whereis &€ = (§,&,,...) € Cand % = E[LES%, . EXmif a = (ay,ay, ..., ty) €1 € R,

Let Y (x), x € R™ is a stochastic process, and

E(Yz(x)) < o forall x e R™

Then for everyone x € R™ process Y(x) allows decomposition

(oo}

Y@ = ) 1(ful0),

n=0

10
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where f,,(,x) € L2((A x )™) with parameter x.

Let

~ 2
Z (n+1) ||fn||L2((1xn)"+1) <%
n=0

(n) (n)

where f(x(l),zl, v, X0, Zy, X, Z) IS symmetrization an(x(l),zl, v, X0,z x) regarding n+ 1 variables

(n)

n= (x(l)’z1)' o Vn = (™, 2) Y41 = (x(n+1)‘zn+1).

Then the Skorokhod integral from Y regarding 7 defined as follows

[ om0 = tuea ()
n=0

Rn
4.5 Levy's white noise differential equation

Consider the fractional stochastic equation

{CDZ’U(t, x) = %AU(t, x) + U(t, x) o1(t,x),(t, x) € [0,T] x R" 25)

UQW,x) =f),xeR"0<y <1,

where f- deterministic function.

Take the Hermite transform and get a deterministic fractional equation by u(x,t, {) with parameter { € (C N)C

1
{ “Dfu(t,x,Q) = SAU(6,x,0) + Ut x O3t ), (6,x,) 26)

U,x,0) =f(),0<y <1,

Problem (26) can be solved using the Feynman—Katz formula. In fact, let B(t) auxiliary Brownian motion on probabilistic space
(Q,%,{F.}; = 0,P) independent of B(t).

Then the solution of the problem (26) can be written as

1

¢
u(t,x,0) = E* f(ﬁ(t)) exp mf(t —s)"HAi(s, B(s),{)ds
0

where through E* denoted by the mathematical expectation relative to P, when B (t) = x. Taking the inverse hermite transformation, we
come to the following result:

t

f(t— s)T%x ﬁ(s,ﬁ(s)) ds||,

U(t,x) = E* f(ﬁ(t)) exp ¢ ﬁ
0

where through exp ¢ [-] denoted the Vic exponent, usually defined by

1
exp o [F] = ZH' F™MF € (S)_g
and
F"=FoFo..0F
FoFo..0F ntime.

Note that fractional stochastic partial differential equations have been studied by other methods in the works (Ilolov M. at all (2021),
Tlolov at all (2022)).
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CONCLUSION

Modeling porous media (e.g.,, the Geelondi geothermal system) using stochastic fractals has significant potential. To build adequate
models and create full-scale "digital twins" of porous media, cores, rocks, a range of methods for assessing the results of modeling and
checking adequacy is necessary. Such tasks and methods require further development.

This article presents methods of averaging and perturbation associated with the evaluation of stochastic-fractal structures by the most
important characteristics.

The analysis of the process of filtration transport of homogeneous liquid in a heterogeneous composite medium of several phases
homogeneous in terms of physical characteristics is given. The task of describing the process is reduced to the definition of globally and
conditionally averaged fields or equations that connect them, to elucidate the mechanism of mass transfer between phases.

The conditions for the existence and uniqueness of the solution of the Cauchy problem for a fractional stochastic differential equation
with the Levy process in the right part are established. This solution can be the implementation of the temperature or pressure of the
filtration flow in porous fractal media under uncertainty conditions.
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