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ABSTRACT

Extending geothermal wells beneath basalt at the Soda Lake geothermal field would increase geothermal production because of higher
temperatures. Delineating faults beneath the basaltic unit is crucial for optimizing drilling into faults to maximize geothermal production.
Because of the large velocity/impedance contrast between basalt and its surrounding formations and complex geologic structures, seismic
signals reflected to the surface from geologic formations beneath basalt are very weak and the signal-to-noise ratios are extremely low,
resulting in a poor and noisy seismic image. We apply a machine learning method based on nested residual U-Net to reverse-time migration
images of a 3D surface seismic data acquired at the Soda Lake geothermal field to reduce image noises and migration artifacts and improve
the image resolution, particularly beneath the basaltic unit. We then employ a nested-residual-U-Net fault-detection method to delineate
faults on the enhanced migration images. Our procedure improves the reliability of fault detection on seismic migration images. The
detected faults could provide valuable information for situating the best drilling locations beneath basalt at the Soda Lake geothermal field
toincrease geothermal energy production.

1. INTRODUCTION

The Soda Lake geothermal field in the Carson Desert, Nevada has been in production since 1972 (Benoit, 2016). The geothermal field
contains a basaltic unit beneath a depth of approximately 500 m (Benoit, 2016; Gao et al., 2021a). M ost geothermal productionis from
geologic formations above the basalt unit. The temperature in the deep region is near 400°F as shown in Figure 1 (Benoit, 2016). Because
of higher temperatures in the sub-basalt regions, extending geothermal production wells beneath the basaltic unit would increase
geothermal energy production. Therefore, delineating faults beneath the basaltic unit is crucial for optimizing drilling into faults to
maximize geothermal production at the Soda Lake geothermal field.
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Figure 1: Static temperature profiles at the Soda Lake geothermal fieldshowing the temperature at deeper region is higher than
350°F and near 400°F. (From Benoit,2016)

A 3D surface seismic dataset was acquired at the Soda Lake geothermal field in 2019. Gao et al. (2021a) performed full-waveform
inversion and reverse-time migration and obtained a 3D migration image. Their study showed that obtaining a high-quality, high-
resolution subsurface structural image of the Soda Lake geothermal field is a great challenge. The source and receiver distributions ofthe
3D surface seismic survey depicted in Figure 2 contain many data acquisition gaps in both source and receiver lines. Such data acquisition
gaps result in migration artifacts. In addition, the seismic data contain significant noise because of loose ground conditions and complex
geologic structures. Because of the large velocity/impedance contrast between basalt and its surrounding formations and complex geologic
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structures, seismic reflection signals from geologic formations beneath basalt are very weak, resulting in low signal-to-noise ratios and a
poor-quality migration image.

A high-quality, high-resolution migration image is crucial for reliable fault detection. Gao et al. (2021) improved the 3D migration image
of the Soda Lake geothermal field using a windowed 2D root-mean-square balancing scheme and a mild nonlinear anisotropic diffusion
filter to detect faults using a multiscale connection-fusion U-shaped convolutional neural network (M CFU) (Gao et al., 2022a). However,
the nonlinear anisotropic diffusion filter may not be able to remove migration artifacts.
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Figure 2: Source andreceiver distributions of the 3D surface seismic survey at the Soda Lake geothermal field. The survey contains
8,321 common-shot gathers. Each common-shot gather has a coverage area of up to approximately 3 x 3 km?. (From Gao
etal., 2021a)

Machine learning is a promising approach to not only denoising migration images, but also removing migration artifacts and improving
image resolution (e.g,, Wang and Nealon, 2019; Kaur et al., 2020; Li et al., 2021, Wu et al., 2022). Wang and Nealson (2019) trained a
3D supervised deep convolutional neural network (DCNN) on marine seismic images to enhance seismic images and attenuate image
noises. Kauret al. (2020) developed a deep learning method based on generative adversarial network (GAN) to improve image resolution,
attenuate image noise, reduce migration artifacts, and enhance reflection image amplitudes. Li et al. (2021) used DCNN to obtain super-
resolution migration images and denoise migration images simultaneously. Wu et al. (2022) developed a self-supervised CNN-based
approach to attenuating both image noise and migration artifacts simultaneously.

Gao et al. (2022b) developed anested residual U-Net (NRU) method for automatic fault detection on seismic migration images. We extend
the NRU method for reducing noises and migration artifacts and improving image resolution on seismic migration images. We apply the
NRU image enhancement method to several 2D slices of the 3D reverse-time migration image from the Soda Lake geothermal field to
enhance the image quality and resolution. We then employ the NRU fault detection method to delineate faults on the enhanced migration
images. Theresulting fault maps could provide useful information to reduce drilling risks and increase geothermal production at the Soda
Lake geothermal field.

2. METHODOLOTY

We use a machine learning method to reduce image noise and migration artifacts and improve the spatial resolution of seismic migration
images. We then employ a machine learning method to detect faults on the enhanced migration images. Both machine learning methods
are based on nested residual U-Net (NRU).

2.1 Improving image quality and resolution using machine learning

Seismic migration images of field surface seismic data often contain significant image noises and migration artifacts because of the
uncertainty of subsurface velocity models and imperfect source/receiver distributions. The image resolution of seismic migration images
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decreases with depth, and that in the region beneath a basaltic unit of the Soda Lake geothermal field is particularly low. We use the nested
residual U-Net (NRU) architecture (Gao et al., 2022b) to reduce noises and migration artifacts and improve image resolution of migration
images.

Asshownin Figure 3, the NRU at its overall scale consists of a total of five encoders and decoders at three spatial resolution levels: high,
medium, and low levels. The high-resolution level consists of encoder 1 and decoder 1, the medium level consists of encoder 2 and
decoder 2, and thelow level consists of encoder 3. Therefore, in the overall architecture, our NRU is not different from the conventional
U-Net. The major difference between NRU and conventional U-Net is that each encoder or decoder in our NRU is an intra-stage subnet,
or more precisely, a small-scale residual U-net, with their respective architectures thesame as thosein NRU fault detection method (Gao
etal., 2022b). Theseresidual U-Nets facilitate the entire architecture to effectively exploit intra-encoder/decoder features, a characteristic
that is missing in the conventional U-Net. The overall architecture of our NRU contains another notable difference compared with
conventional U-Net. In NRU, after computing a high-resolution image at each of the three spatial resolution levels, the three high-
resolution images of different resolutions are then linearly upsampled, concatenated, and convolved through an intermediate convolutional
layer to form the final high-quality, high-resolution migration image.
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Figure 3: Architecture of NRU image denoising and resolution enhancement. S tructures of the encoders and decoders are the
same as those in Gao et al. (2022b).
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Figure 4: Architecture of NRU fault detection. Each encoder/decoder is an independent residual U-Net. The downsampling or
upsampling (denoted by the downward or upward green arrows) use a ratio of 2 x 2 in 2D and 2 x 2 x 2 in 3D. The
upsampling operation that generates an output-size layer (denoted by the red horizontal solid-line arrows) is based on
bilinear interpolation in 2D and trilinear interpolation in 3D. (From Gao etal., 2022b)
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We use an Lr-norm loss function to train the neural network (NN):

N

1 ; 2

L= ﬁ E (in’TEdlCt _yitruth) i
i

where N is the number of pixels in an input image or label image.

We use the following procedure to generate a 2D seismic image with or without faults: (1) generate a 1D random reflectivity model; (2)
smooth arandom-valued array using a Gaussian filter with arandom variance to mimic the fluctuation of seismic reflector in the horizontal
direction, and assign the generated reflectivity to these deformed seismic reflectors; (3) map these reflectors to a regularly sampled mesh;
(4) convolve the reflectivity model with a Ricker or time-integrated Ricker wavelet with a randomly -chosen center frequency; and (5) add
arandom number of faults (with random dip angles and spatial locations in the 2D image, and shift one of the two blocks with respect to
the fault with positive or negative displacement. Using this procedure, we obtain a clean random reflectivity image. To generate the noisy
image, we adopt the same procedure but using a Ricker wavelet of lower peak frequency, and at the end of the image generation step, we
add random noise to the image with a random level of maximum amplitude. In this manner, we generate a data-label pair. We repeat the
process to generate the training and the validation datasets. The training and validation datasets do not overlap to ensure an unbiased
assessment of the trained neural network. We then train the NN using an Adam optimizer with an initial learning rate of 0.0001.

2.2 Delineating faults on migration images using machine learning

We use our recently developed nested residual U-Net (NRU) method (Gao et al.,, 2022b) to delineate faults on the NRU-enhanced
migration images and provide useful information to drill beneath the basaltic unit at the Soda Lake geothermal field. This NRU fault
detection method employs a nested residual U-shaped convolutional neural network in which each of the encoders and decoders is a
residual U-Net, leading to a nested architecture. The input is a seismic migration image, and the output is a fault map resulting from the
fusion of three fault maps with low, medium, and high fault resolution. As shown in Figure 4, the NRU fault detection method consists of
a total of five encoders and decoders at three spatial resolution levels: high, medium, and low. The high-resolution level consists of encoder
1 and decoder 1, the medium level consists of encoder 2 and decoder 2, and the low level consists of encoder 3. The overall architecture
of the NRU fault detection in Figure 4 is the same as that for NRU image enhancement in Figure 3, except that the output is either a fault
map in NRU fault detection or an enhanced migration image in NRU image enhancement.
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Figure 5: Slices and a 3D view of the acousticimpedance model obtained using full-waveform inversion of the 3D surface seismic
data acquired at the Soda Lake geothermal field where the red region beneath the depth of approximately 500 m is a
basaltic unit. (Gao et al.,2021a)
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3. RESULTS

The Soda Lake geothermal field contains a basaltic unit beneath the depth of approximately 500 m, as shown in Figure 5 ofthe 3D acoustic
impedance model obtained using full-waveform inversion of the 3D surface seismic data (Gao et al., 2021a). Because of the large
velocity/impedance contrast between basalt and its surrounding formations, seismic signals reflected to the surface from geologic
formations beneath the basaltic unit are very weak and the signal-to-noise ratios are extremely low, resulting in a poor and noisy seismic
image. Gao et al. (2021a) employed a windowed 2D root-mean-square balancing scheme to balance the image amplitudes from the shallow
region to the deep region.
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Figure 6: The red lines are the locations of six 2D vertical (depth) slices of migration images extracted from the 3D reverse-time
migration image of the S oda Lake geothermal field for this study. Well 41-33 is a geothermal production well from a steam
zone at depth of approximately 242-303 m (800-1000 ft). The background image is a horizontal slice at the depth of 300 m
around the steam zone.
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Figure 7: The velocity models of the 3D full-waveform inversion result along (a) Line 350 and (b) Line 218 as shown in Figure 6.
The red region at depth beneath approximately 500 m in each panel is a basaltic unit. The green vertical line in (b) is Well
41-33, a geothermal production well from a steam zone at depth of approximately 242-303 m (800-1000 ft).
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Figure 8: Reverse-time migration image along Line 350 in (a) contains significantimage noise and migration artifacts, which are
mostly eliminated in the NRU-enhanced migration image in (b). Comparison between (c) faults detected on the original
reverse-time migration image and (d) those detected on the NRU-enhanced image using the NRU fault detection method.

We extract six 2D vertical (depth) slices from the 3D reverse-time migration image of the Soda Lake geothermal field (Gao et al., 2021a)
for this study. Figure 6 shows the locations of these six 2D slices where the background image is a horizontal slice of the 3D image at a
depth of 300 m around a steam zone located at depth of approximately 242-303 m (800-1000 ft). Figure 7 shows that the 2D vertical
sections along Line 350 and 218 contain basalt in the red regions. Line 218 passes through Well 41-33, a geothermal production well
producing energy from a steam zone. The geothermal company is exploring to increase energy production from steam zones.

We first apply our NRU image enhancement method to each 2D slice of the reverse-time migration image to obtain a migration image
with considerably reduced image noise and migration artifacts and substantially enhanced image resolution. As an example, we only show
our results for Lines 350 and 218. The original reverse-time migration images in Figure 8(a) and Figure 9(a) contain balanced image
amp litudes from the shallow region to the deep region after applyinga windowed 2D root-mean-square balancing. Nevertheless, NRU
fault detection on these images is still challenging as depicted in Figure 8(c) and Figure 9(c). The image quality and resolution of NRU-
enhanced images in Figure 8(b) and Figure 9(b) are much better than thosein Figure 8(a) and Figure 9(a). The NRU image enhancement
removes most image noises and migration artifacts, and substantially increases the image resolution. NRU fault detection on these images
produces much more reliable fault maps as shown in Figure 8(d) and Figure 9(d). Asdepicted in Figure 9(d), the steam production well
interests with a fault. Our NRU-detected faults on NRU-enhanced migration images could provide valuable information for situating the
best drilling locations beneath basalt at the Soda Lake geothermal field.
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(a) Migration image along Line 218
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Figure 9: Reverse-time migration image along Line 218 in (a) contains significantimage noise and migration artifacts, which are
mostly eliminated in the NRU-enhanced migration image in (b). Comparison between (c) faults detected on the original
reverse-time migration image and (d) those detected on the NRU-enhanced image using the NRU fault detection method.
The green line isa geothermal production well from a steam zone at depth of approximately 242-303 m (800-1000 ft) above
the basaltic unit.

4. CONCLUSIONS

We have enhanced the quality and resolution of seismic migration images from the Soda Lake geothermal field using a nested residual
U-Net. The high-quality, high-resolution migration images enable reliable fault detection using machine learning. We have employed a
nested residual U-Net fault detection to delineate faults on the enhanced migration images and produced reliable fault maps above and
beneath basalt at the Soda Lake geothermal field. These fault maps could provide valuable information for situating the best drilling
locations beneath basalt to increase geothermal production at the Soda Lake geothermal plant.
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