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ABSTRACT

Reservoir modeling is a vital tool in the sustainable management of geothermal reservoirs. A key component of the modeling process is
model calibration, in which parameters, including permeabilities and mass up flows, are adjusted until there is an adequate match between
the model outputs and collected data.

The Bayesian approach to model calibration is gaining increasing use in the context of reservoir modeling. A key element of the Bayesian
approach is the use of a prior distribution, which acts as a mathematical representation of expert knowledge on the likely values of the
model parameters prior to data being collected. Once data is collected, it is combined with the prior to form the posterior probability
distribution, which defines the solution to the calibration problem.

Characterizing the prior is a subjective process. Common practice in geothermal modelling is to use a log-normal distribution to represent
the permeabilities associated with each rock type in each formation within the model. This approach, however, disregards geological
principles which dictate what the relative values of the permeabilities of different rock types within a given formation can be. For instance,
the permeability ofa fault rock typein the direction across the fault may not exceed the permeability of the surrounding formation; a prior
constructed in thetraditional, naive manner, however, assigns a non-zero probability to this situation.

In this paper, we demonstrate how a prior that adheres to simple geological principles can be characterized. We then perform several
comparisons, by running a natural-state model with parameters sampled from both a geologically consistent prior and a prior constructed
in a naive manner, to determine whether adhering to geological principles when characterizing the prior improves the quality of the model
outputs. These tests include quantitative analysis of the agreement between reservoir simulation results and geophysical data such as
inferred alteration and downhole temp erature profiles, as well as a qualitative analysis of the shapes of the convective plumes produced.

Our analysis suggests that there are differences in the temperature profiles produced by running the model with parameter sets sampled
from each typeofprior. It is difficult, however, to identify the prior that produces the more realistic set of modeled temperatures based on
these comparisons. By contrast, our analysis of the convective plumes produced suggests that the plumes produced using parameters
sampled from a geologically consistent prior interact with the fault structures of the system in a way that is more aligned with how we
would expect the systemto behave in reality. We conclude by discussing some directions for future investigation of the effectiveness of
geologically consistent priors.

1. INTRODUCTION

Computational modeling is an important and widely used tool in the management of geothermal reservoirs (O’Sullivan, Pruess and
Lippmann, 2001). However, the usefulness of a reservoir model depends on the accuracy with which it represents the real geothermal
system. This is achieved through a calibration process, which typically involves adjusting model parameters, such as subsurface
permeabilities and the strengths and locations of hot mass up flows, until there is an adequate match between the model outputs, such as
temperatures and pressures, and collected data. In this process, expert domain knowledge is imposed on the permeability distribution
which, in theory, should follow geological principles.

The reservoir model we use in this study is a synthetic model which is representative of a typical volcanic hosted geothermal reservoir in
New Zealand. This approach, however, could be applied to a wide range of geothermal fields, such as rifting systems or sedimentary
basins. The geology (grey), faults (orange) and alteration (blue) of the model are shown in Figure 1. In this work we focus on how
structures, such as faults and mineral alteration, alter the permeability of the rock formations, and encode this into the prior distribution
used in the Bayesian approach to calibration.
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Figure 1: Fault structures and alteration of the synthetic geothermal reservoir model used. The lithological structure of the
geological model is shown in gray.

1.1 Calibration in the Bayesian Framework

Geothermal model calibration can be posed as a statistical inference problem within the Bayesian framework (see e.g. Kaipio and
Somersalo, 2005; Aster, Borchers and Thurber, 2018). A key element of the Bayesian approach is that the solution to the calibration
problem is not a single set of model parameters; rather, it is an entire probability distribution, referred to as the posterior. A second
important element of the Bayesian approach is the incorporation of prior knowledge of the model parameters into the problem. This
knowledge is represented mathematically as a prior distribution. The modeler combines the prior with measured datato form the posterior
using Bayes’ theorem:

p(m|d) « p(dlm)p(m) (1)

where m represents the unknown model parameters, d represents the observed data, p (im) represents the prior density, p(d |m) represents
the likelihood (the conditional density of the observed data given the model parameters) and p(m|d) represents the posterior density (the
conditional density of the model parameters given the observed data).

The complex nature of the typical geothermal model makes computation of the posterior a difficult task. A number of methods have been
employed within the geothermal context, which differ in terms of the accuracy with which they characterize the posterior and their
computational efficiency. These include the construction of a Gaussian approximation to the posterior about the set of parameters with
the greatest posterior density (the maximum-a-posteriori estimate) (Omagbon et al., 2021), approximate Bayesian computation (Dekkers
et al., 2022) and variants of M arkov chain Monte Carlo (Cui et al., 2011; Maclaren et al., 2020).

Once characterized, the posterior allows the modeler to describe the systemin a probabilistic sense (Aster, Borchers and Thurber, 2018);
for instance, one can determine the probability that the upflow in a given region of the reservoir exceeds a specified value. Additionally,
the posterior uncertainty in the model parameters can be propagated through to the model forecasts; this allows the modeler to determine,
for instance, the probability of the reservoir temperature decreasing below a given value under a future extraction scenario.

1.2 Characterization of the Prior

One of the difficulties associated with model calibration using the Bayesian approach is the characterization of the prior. This is a
subjective process and typically requires the translation of qualitative information about the sy stem supplied by experts into a quantitative
form that can be represented as a probability density. This act of translation is referred to as prior elicitation (see e.g. Garthwaite, Kadane
and O’Hagan, 2005; O’Hagan, 2019), and is a widely studied area.

An additional technique often employed to evaluate the quality of a prior is prior predictive checking (Gabry et al., 2018; Gelman et al.,
2020). A typical prior predictive check proceeds by running the model using sets of parameters sampled from the prior under consideration
and plotting the distribution of the model outputs, or a suitable set of summary statistics. These outputs are then compared with the prior
beliefs of experts. If this check reveals issues regarding the outputs, the prior can be re-characterized and the process repeated.

We are particularly interested in the characterization ofthe prior distribution of the permeabilities of a reservoir model. Common practice
is to use a multivariate log-normal distribution to represent each permeability (see e.g. Omagbon et al., 2021; Scott et al., 2022; Dekkers
et al., 2022). Priors constructed in this manner typically treat the permeabilities of different rock types as independent, though sometimes
correlations are encoded between the permeabilities of individual rock types. Regardless of the correlation structure imposed, however,
this type of prior does not account for some important domain knowledge as there exist geological principles that constrain what the
permeabilities of different rock types can be. For instance, a fault rock type in a given formation cannot have a higher permeability across
the fault than the permeability of the base rock typein the surrounding formation. That is, the effect of the fault is neutral, or it acts as a
barrier, impeding the movement of fluid across it. However, a prior constructed using the traditional, naive approach assigns a non-zero
probability to enhanced permeability across the fault. There may be many high-density regions in such a prior within which the
permeabilities violate thesetypes of geological principles.
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In this paper, we demonstrate how a prior distribution that adheres to these principles can be characterized. We also use several techniques
to compare the quality of model outputs associated with samples generated from a prior distribution that adheres to these principles with
one constructed using the traditional, naive approach. Some of these are prior predictive checks, while others involve investigating the
match between model outputs and collected data. Our aim is to determine whether constructing the prior in this manner will have an
influence on uncertainty quantification of the geothermal model under consideration.

2. METHODS

To compare the differences between using geologically consistent and naive priors, we sampled sets of parameter values for a synthetic
model using both types of prior. The model that was used is composed of 11,764 blocks and has the characteristics of a typical New
Zealand geothermal system. It includes three faults, six distinct formations and a shallow alteration zone (i.e. a clay cap) (Renaud et al.,
2020). Both subsurface permeabilities and hot mass up flows were included when characterizing each prior.

2.1 Permeability Samples

Each formation within the model is composed of two regions: one inside the reservoir and one outside inside the reservoir. Each region
contains a number of rock types, which fall into four broad categories:

e Baserock types: rock that is not part of the clay cap and is not located on a fault.

e Clay cap rock types: rock that forms part of the clay cap but is not located on a fault.

e Fault rock types: rock that is located on a single fault (inside or outside the clay cap).

e [Intersection rock types: rock that is located at the intersection of multiple faults (inside or outside the clay cap).

The permeabilities of all 82 distinct subsurface rock types within the model were treated as unknown when characterizing each prior.
However, the way in which they were characterized differed.

2.1.1 Geologically Consistent Samples

To generate samples from a geologically consistent prior, we first generated permeability samples for the base rock type of each region
within each formation. Figure 2 shows the joint and marginal densities for the permeabilities of a base rock type within the andesite
formation of the model.
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Figure 2: Joint and marginal densities for the permeabilities of a base rock type within the rhyolite formation of the model (note
that the plot uses a log scale). There is a strong correlation between the horizontal permeabilities, and a moderate
correlation between each horizontal permeability and the vertical permeability.

A log-normal distribution was used for each permeability; the mean varied between 107'® m* and 10""> m? depending on the formation and
permeability direction, while the standard deviation of the underlying normal distribution was set to 0.5. A correlation of 0.8 was imposed
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between the permeabilities in the ki and k> (horizontal) directions, and a correlation of 0.5 was imposed between the permeabilities in the
ki/k> directions and the ks (vertical) direction.

Permeabilities of the remaining rock types were generated using sets of modifiers that altered the permeabilities of the corresponding base
rock type. Allsets of modifiers were sampled from (potentially truncated) log-normal distributions; the mean of each distribution varied
depending on the formation, permeability direction and rock type under consideration, while the standard deviation of the underlying
normal distribution was set to 0.5.

For each region of each formation, sets of multipliers were sampled and multiplied by the permeabilities of the corresponding base rock
typeto produce the permeabilities of the associated clay cap rock type (in instances where there was no intersection between the region
of the formation and the clay cap, this step was skipped). Subsequently, additional set of multipliers were sampled, and multiplied by the
permeabilities of the base rock typeorclay cap rock typeas appropriate, to produce the permeabilities of the fault and intersection rock
types insideand outside theclay cap. Figure 3 illustrates the sampling algorithm. All permeabilities were bounded between 1077 m? and
10" m?; if a sampled base permeability violated these constraints, or a sampled modifier produced a permeability outside this range, it
was re-sampled. This necessitated the sampling of the base permeabilities and modifiers in a sequential manner, as indicated by the
numbers in Figure 3.

Sample clay cap
rock type multipliers

Calculate clay cap
rock type
permeabilities

Sample base rock

type permeabilities

Calculate Calculate clay cap Calculate clay cap
intersection rock fault rock type intersection rock
type permeabilities permeabilities type permeabilities

Calculate fault rock
type permeabilities

Sample clay cap Sample clay cap
fault rock type intersection
multipliers rock type multipliers

Sample fault
rock type multipliers

Sample intersection
rock type multipliers

3

Figure 3: The algorithm used to sample permeabilities from the geologically consistent prior, starting with each base rock type
within each formation. Steps at which quantities were sampled are indicated in blue. Steps at which permeabilities were
calculated using sets of modifiers are indicated in orange.

The distributions of some multipliers were truncated to enforce geological principles. Multipliers used when generating permeabilities of
clay cap rock types were constrained to be less than or equal to 1, to prevent the permeability of a formation increasing within the clay
cap. Multipliers used when generating permeabilities of fault rock types in the direction along or up the associated fault were constrained
tobe greater than or equal to 1, to prevent the permeability of a formation decreasing along or up a fault, while modifiers across the fault
were constrained to be less than or equal to 1, to prevent the permeability of a formation increasing across a fault. Similarly, multipliers
used when generating permeabilities of intersection rock types in the upwards direction were constrained to be greater than or equal to 1.

Figure 4 shows a set of multiplier samples for a fault rock type from the diorite formation of the model, as well as the associated
permeability samples of the base rock type, and the permeability samples of the fault rock type (which were generated by taking the
product of the multipliers and thebase rock type permeability samples).
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Figure 4: Samples of the permeabilities of a base rock type (top row) and fault rock type (bottom row) from the diorite formation
of the model, and samples of the multipliers (middle row) that were used with the base permeability samples to produce
the fault permeability samples.

2.1.2 Naive Samples

To generate samples from a naive prior, we retained the permeability samples of each base rock type generated during the geologically
consistent sampling process. However, to generate permeability samples of the remaining rock types, were-sampled the parameters with
replacement from the samples generated using the multipliers. Therefore, while the marginal distributions of each permeability remained
approximately log-normally distributed, the permeabilities of different rock types were now independent, meaning that these samples had
very similar characteristics to those from a prior constructed in the typical, naive way. The only substantive difference between the two
sets of samples was their correlation structure; this allowed for a fair analysis of the effect of introducing a geologically consistent

correlation structure into the prior.
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Figure 5: Permeability samples from geologically consistent (blue, left) and naive (orange, right) priors, for a base rock type and
a corresponding fault rock type from the diorite formation of the model, in the direction across the fault.
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Figure 5 shows an example of the joint and marginal densities of a set of geologically consistent samples, and a set of naive samples, of a
base rock typeand a fault rock type of the diorite formation of the model, for the permeability in the direction across the fault. While the
marginal distributions are very similar between thetwo plots, the joint distributions are markedly different. In the geologically consistent
samples, the permeabilities of thetwo rock types arehighly correlated, and there are no instances where the permeability of the fault rock
typeexceeds that of the base rock type. By contrast, there are a large number of naive samples in which the permeability of the base rock
typeis lower than that of the fault rock type, violating this geological principle.

2.2 Upflow Samples

In addition to the permeabilities, the mass upflows at the base of the model were also treated as unknown. Each of the 24 blocks at the
base of the model underneath the clay cap corresponding to a fault or fault intersection rock type was considered as a potential up flow
location.

To generate sets of samples, the upflows for each block were sampled from a multivariate Gaussian distribution, truncated at 0. The mean
up flows were specified such that they were proportional to the surface area of the top of the corresponding block, and summed to 50 kg/s.
An exponential squared covariance matrix of the form described by Nicholson et al. (2021) was used to induce correlations between the
upflows of blocks in close proximity along a fault.

Theuse of a multivariate Gaussian distribution for each potential up flow meant that the distribution of the total up flow wit hin each model
was also approximately Gaussian. However, the desired prior distribution for the total up flow was a uniform distribution, with bounds of
30 kg/s and 70 kg/s. We used a probability integral transform to scale the samples such that the totals were uniformly distributed between
these bounds.
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Figure 6: Sets of sampled upflows in the blocks on the bottom layer of the model.

The same sets of up flow samples were used with both the geologically consistent and naive permeability samples. This ensured that any
differences in the associated sets of models were the result of the techniques used to sample the permeabilities. Figure 6 shows two

examples of sampled up flow sets.

2.3 Computation

We sampled 2000 sets of parameters from both the geologically consistent and naive priors. The model was run to a steady state with each
of these sets of parameters using the Waiwera geothermal simulator (Croucher et al., 2019). The New Zealand eScience Infrastructure
(NeSI) was used to carry out all required computation. We observed minimal difference in the convergence rates when the model was run
with parameters from each type of prior; the model converged to a steady-state solution when using 1784 (89.2%) of the geologically
consistent sets of parameters, and 1773 (88.7%) of the naive sets of parameters.

2.4 Analysis of Results

Ideally, parameters sampled from an effective prior distribution should produce plausible geothermal systems. To determine the
effectiveness of each type of prior, we carried out several comparisons using summary statistics designed to evaluate the degree to which
a set of model outputs resembles a typical geothermal system. Here, we give a high-level overview of each statistic; for a detailed
discussion, the reader is referred to Power et al. (2023). The statistics used were:

e The sum of squared differences between the modeled temperatures outside the reservoir, and temperatures predicted using a
temperature gradient of 30°C/km, under the assumption that the modeled surface temperatures were accurate (ignoring any
instances where the modeled temperature is less than the predicted temperature). One would expect to observe a temperature
gradient similar to this if the geothermal system were not present (Fridleifsson et al., 2008; Earle, 2019).

e Thesum of absolute differences between the modeled temp eratures immediately beneath the bottom of the clay cap, and 190°C.
190°C is the approximate temperature at which the clay cap of a geothermal system begins to form (Gunderson et al., 2000;
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Mazaet al., 2018); one would therefore expect the modeled temperatures immediately beneath the bottom of the clay cap to be
close to this temperature.

A lower value of each summary statistic is indicative of a more realistic geothermal system. The quality of both sets of samples were
evaluated using each statistic separately, then the effect of using both statistics to identify the highest-quality samples of each set was
investigated.

Subsequently, we considered the match between modeled temperatures produced when running the model using parameters sampled from
each typeofprior, and downhole temperature profiles.

Finally, we investigated the shapes of the convective plumes produced when running the model using the highest-quality sets of parameters
sampled from each type of prior, to determine whether there were any qualitative differences.

3. RESULTS AND DISCUSSION

The following sections assess the differences observed in each of the aforementioned comparisons.

3.1 Modeled Temperatures Qutside Reservoir

Figure 7 shows the distribution of the sum of squared differences between the modeled temperatures outside the reservoir, and those
predicted using a temperature gradient of 30°C/km, for the sets of parameters sampled from each prior. It appears that the distribution
associated with the geologically consistent prior has a slightly higher variance than that associated with the naive prior. The best sets of
parameters from each typeof prior appear to produce similarly realistic temperature profiles outside the reservoir; however, the worst sets
of parameters sampled from the naive prior appearto produce, in general, slightly more realistic temperature profiles than those sampled
from the geologically consistent prior.
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Figure 7: The sum of squared differences between the modeled temperatures outside the reservoir, and those predicted using a
temperature gradient of 30°C/km, associated with sets of parameters sampled from the geologically consistent (blue) and
naive (orange) priors. The left-hand plot shows the distributions of these differences. The right-hand plot shows each set
of parameters ranked from best to worst.

3.2 Modeled Temperatures Inmediately Beneath Clay Cap

Figure 8 shows the distribution of the mean modeled temperature immediately beneath the clay cap produced by running the model with
parameter sets sampled from both types of prior. It appears that, for both types of prior, the mean temperature is slightly below the ideal
value of 190°C; however, in both cases there exists a relatively high concentration of model outputs in which the mean temp erature ranges
between 180°C and 200°C.

Figure 9 shows the distribution of the sums of absolute differences between the modeled temperatures immediately beneath the clay cap
and 190°C, for parameter sets sampled from both priors. These distributions have similar characteristics to those presented in Figure 7.
The distribution associated with parameters sampled from the geologically consistent prior has a slightly greater variance than the
distribution associated with parameters sampled from the naive prior. The best parameter sets sampled from each type of prior appear to
produce similarly realistic temperature profiles directly beneath the bottom of the clay cap. However, the worst parameter sets sampled
from the naive prior appear to produce, in general, slightly more realistic temperature profiles.
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Figure 8: Distributions of the mean temperature immediately beneath the clay cap, associated with sets of parameters sampled
from the geologically consistent (blue) and naive (orange) priors.
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Figure 9: The sum of the absolute differences between the modeled temperatures inside the clay cap and 190°C, associated with
sets of parameters sampled from the geologically consistent (blue) and naive (orange) priors. The left-hand plot shows the
distributions of these differences. The right-hand plot shows each set of parameters ranked from best to worst.

3.3 Combined Evaluation

In some instances, the modeler is only interested in the degree to which the best-fitting model outputs fit the data. For instance, in its
simplest form, approximate Bayesian computation (ABC) (see e.g. Beaumont, 2019) proceeds by sampling sets of parameters from the
prior, then running the model with these sets of parameters and evaluating the fit of the outputs to the data using a suitable distance metric.
If'the distance between a particular sets of model outputs and the data is less than a specified tolerance, the corresponding set of parameters
is accepted; otherwise, it is rejected. After the model has been run with an appropriate number of sets of parameters, the accepted sets are
used to characterize the posterior. Often, the tolerance is selected such that it corresponds to a desired quantile of the empirical distribution
of the distances between the model outputs and observed data, to ensure that a desired proportion of models are accepted. In this scenario,
it is clear that while the degree to which the outputs of the accepted sets of parameters fit the data will impact the accuracy with which the
posterior is characterized, the degree to which those of the rejected sets of parameters fit the data will not.

To evaluate the characteristics of the best sets of parameters sampled from each prior, we used both statistics in a sequential manner to
reject the sets of lowest quality, resulting in those that produced the most realistic temperatures at the bottom of the clay cap and outside
the reservoir being accepted. For both sets of parameter samples, the best 25% were selected, based on the modeled temperatures outside
the reservoir. Of these, the best 25% were selected, based on the modeled temperatures immediately beneath the clay cap.

Figure 10 shows the distributions of both statistics for both groups of accepted parameter sets. In both cases, these are fairly similar. On
average, the modeled temperatures outside the reservoir corresponding to parameter sets sampled from the geologically consistent prior
appear to be slightly more realistic, while the modeled temperatures at the bottom of the clay cap in the corresponding parameter sets
sampled from the naive prior appearto be slightly more realistic. However, neither of these differences appearto be very large.
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Figure 10: The sum of squared temperature differences between the temperatures outside of the reservoir and those predicted
using a temperature gradient of 30°C/km (top), and the sum of absolute differences between the temperature immediately
beneath the clay cap and 190°C (bottom), for sets of parameters from the geologically consistent (blue) and naive (orange)
priors, filtered using these statistics. Distributions of each statistic are shown in the left-hand plots. The right-hand plots
show each set of parameters ranked from best to worst.

3.4 Natural State Downhole Temperature Profiles

Next, we investigated the match between the modeled temperatures associated with each prior, and natural state downhole temperature
data. The location of the wells within the system are shown in Figure 11. Each was associated with a set of synthetic downhole data. The
10% of samples that matched this data the best, based on the sum of squared distances between the modeled temperatures and measured
data, were filtered for both the naive and geologically consistent priors.

[ Fault Structures I Alteration Model

Figure 11: Locations of wells used for conditioning on natural state downhole temperatures.
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Figure 12 shows the modeled downhole temperatures associated with all samples from each prior, the filtered samples, and the data used.
These are shown for WELL-3, WELL-5 and WELL-8, which are representative of a well in a fault, a well in the formation and a well on
the outer edge of the reservoir respectively. We see that the fit between the data and the modeled temperature profiles is comparable
between the two sets of priors. This is consistent with the discussion in Sections 3.1-3. It appears possible that samples from the
geologically consistent prior tend to produce temperature profiles that respect the data in zones where there is high up flow (WELL-3) or
no upflow (WELL-8) and hence show a slightly better fit to the data. However, more investigation is required as to the underlying cause
of this result.
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Figure 12: Modeled temperatures produced by naive (top) and geologically consistent (bottom) prior samples conditioned on
natural state downhole temperature data. Three wells are shown (the locations of each are indicatedin Figure 11). Rejected
temperature profiles are shown in gray, filtered profiles are shown in red, and field data is marked with crosses.

3.5 Plume Comparisons

Finally, we investigated the convective plumes produced by the best samples from each type of system, to determine whether there were
any qualitative differences.

Figure 13 shows the plumes produced by the three best sets of parameters based on the clay cap condition, after the filtering process
described in Section 3.3, from both the geologically consistent prior and the naive prior. There are some obvious differences between each
set of plumes; those from the geologically consistent prior appear to be well-contained within the clay cap and follow the fault structures
well. By contrast, the plumes from the naive prior shift laterally as they move upwards, moving across one of the faults and extending
beyond the edges of the clay cap. It appears that when the parameter sets sampled from the naive prior are used, the fault acts as less of a
barrier to impede the movement of fluid across it. The plumes associated with the samples from the geologically consistent prior follow
the fault structures better, showing greater alignment with how we would expect the systemto behave in reality.
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Figure 13: Comparisons of the plumes produced using parameters sampled from geologically consistent (left) and naive (right)
priors. The gray lines indicate the boundary of the model domain, and each purple slice denotes a fault. 190°C isotherms
are shown in orange and the clay cap is shown in gray.

4. CONCLUSIONS

We have developed a method to characterize a prior distribution for the parameters of a reservoir model that adheres to simple geological
principles. We have also investigated several methods of comparing a geologically consistent prior with a naive prior which treats different
rock types within the same formation as independent. We have drawn several conclusions from this work.

Based on the summary statistics we have used to quantify whether each prior produces model outputs that are representative of a typical
geothermal system, it appears difficult to determine whether the model outputs generated by running the model with parameter sets
sampled from a geologically consistent prior are better than those generated using a naive prior. The same is true for the agreement
between the modeled temperatures associated with samples from each prior, and downhole temperature data. On one hand, this suggests
that perhaps the outputs generated using a naive prior are not as poor as one might intuitively expect. On the other hand, there are certainly
some differences in the distributions of each summary statistic, as well as the filtered downhole temperature profiles, when the model is
run using parameters sampled from each type of prior. This suggests that adhering to geological principles has at least some degree of
influence on the characteristics of the resulting model outputs. The summary statistics we have used condense large amounts of
information contained within the model outputs into a single dimension; therefore, while useful, they have limitations in the amount of
information they are able to convey. It is of interest to investigate alternative ways of quantifying the characteristics of reservoir model
outputs, with the aim of being able to more effectively explain some of the differences we have observed between the outputs associated
with each type of prior.

The convective plumes associated with the best sets of parameters sampled from the geologically consistent prior appear more realistic
than those associated with sets of parameters sampled from the naive prior, as they follow the fault structures of the model in a way that
is more consistent with how we would expect this type of systemto operate in reality . However, this conclusion has been drawn based on
a small sample size, and there is no guarantee that the trends we have observed here will hold outside the best sets of parameters. It is of
interest to compare a greater number of plumes produced by parameters generated from each type of prior, including models that the
statistics we have used as part of this study suggest are poorly representative of a typical geothermal system.

In addition to the aforementioned improvements to the methods used in this study, wehave identified some further areas in which work
could be conducted to help in determining the effectiveness of a geologically consistent prior relative to a naive prior.

This paper has only considered natural-state simulations. There may, however, be differences in how parameters sampled from a
geologically consistent prior result in transient phenomena being modeled. It is of interest to simulate the production history of the model
using sets of parameters sampled from each type of prior; this will allow for a comparison of how phenomena such as pressure drops
within thereservoir as a result of fluid extraction are modeled when each typeof prioris used.

Also of interest is to use this sampling technique for the parameters of a more complex model. The model we used in this study is small
and fairly robust to changes in its parameters; the non-convergence rate during uncertainty quantification studies is often a lot higher than
what was observed here. It is conceivable that when using a larger reservoir model, we would observe a higher failure rate or longer run
times for models generated using parameters sampled from a naive prior, as a result of inconsistent parameter choices causing complex
reservoir dynamics.

Overall, we believe that geologically consistent priors are likely to be an effective way to represent one’s initial beliefs during reservoir
model calibration within the Bayesian framework, and should be investigated further.
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