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ABSTRACT

Enhanced geothermal systems (EGS) are potential sources of low-carbon and continuous clean power. However, optimizing a profitable
EGS powerplant is a non-trivial task because it requires making critical design decisions (e.g., well spacing, well count) when site data
uncertainty remains high (e.g., reservoir and stress characteristics). An optimal design decision maximizes the economic value of a power
plant while site data and its uncertainties provide a mandate that a large number of realizations (sampling space) must be considered to
search for reliably profitable scenarios. This study optimizes the range of well spacing between injection and production wells maximizing
net present value in dollars (NPV). For this task, we used the GeoDT simulations from the PIVOT 2022 Datathon to simulate the whole
geothermal development cycle from the initial well design to the end of production. This dataset is based on the Utah FORGE site and
includes measured uncertainties. In all, the database includes 44,492 unique realizations, each with at least 30 years of p roduction. For
each realization, we computed power outputs from a combined binary and flash power plant and deducted parasitic pumping power to
estimate NPV. Next, we used a binning-based optimization technique to search inputs and NPVs in bins. Bins were formed within the
specified range of well spacing and flow rates. Finally, we estimated the range of well spacing and flow rates that provides the most
profitable NPV with uncertainty.

1. INTRODUCTION

Enhanced geothermal systems (EGS) present a significant and long-term opportunity for widespread power production and direct heat
(Olasolo et al., 2016; Tester, 2007). But high exploration costs combined with uncertainties associated with subsurface characteristics
(such as permeability, reservoir temperature, fault connectivity, geochemistry, and in situ stress distribution) have impeded the geothermal
market growth (Olasolo et al., 2016; Tester, 2007). M oreover, building a profitable EGS is a major challenge. Profitable EGS fields will
depend on many design parameters (Frash, 2022, 2021). We will focus on the parameters of reservoir depth, project lifespan, injection
temperature, well spacing, well length, well azimuth, well depth, well skew (i.e., non-parallel wells), well count, well toe(i.e., decreasing
well spacing from heel to toe), well proportion (i.e., the ratio of injection well length to production well length), well phase (i.e., the
placement of the production well above, beside, or below the injection well), well intervals (i.e., the number of isolated perforation
clusters), production well pressure drawdown, stimulation flow rate, stimulation volume, and circulation flow rate. Finding optimal values
for these design parameters is a computationally expensive task to say theleast.

To tackle this challenge, PIVOT (a conference series supported by the U.S. Department of Energy) organized a first-ever Geo Datathon
event in 2022 (PIVOT, 2022). The primary goal of this Datathon was to identify production well placement. Participants in this event
used different machine-learning methods to solve a geothermal engineering problem on a simulated dataset of the Utah FORGE site
(Figure 1). Data for the Datathon was generated by geothermal design tool (GeoDT) to investigate the power production potential of an
EGS system. In this event, six teams (Team Naturals, Benjamin Cassidy, Pebbles, GeoT360, S-Team, and GeotherML) completed the
competition. Team Naturals of Stanford University, Benjamin Cassidy of Hammer and Tongs Polymer Development, and Pebbles of the
Colorado School of Mine were awarded champion, 1st runner up, and 2nd runner up, respectively.

Despitea short time for the competition and a challenging task, each team made a great contribution to identifying suitable locations for
the production well. Team Naturals included metrics for risk by considering averages and standard deviations in power production. Also,
they clearly demonstrated that net power production was not the best value to optimize. Benjamin Cassidy applied a unique set of
approaches to the ML challenge to optimize well placement from more than one perspective. Crucially, these competitors also revealed
several problems that needed to be solved to get the best answer to optimizingthe well spacing: (1) identifying a suitable objective function
(e.g, net present value), (2) finding a robust optimization method for the complex dataset, and (3) accounting for uncertainty and risk
tolerance.

Here, the primary purpose of our study is to find optimal well spacing (w_spacing) and per-interval circulation flow rate (Qinj) for the
same dataset. First, we define a new objective function, which yields reduced parameters for comparing realizations, e.g., average power
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or net present value (NPV) in dollar amount. We chose NPV because it provides the best estimate of monetary value. Second, we
developed a binning-based optimization approach. Third, we identified optimized w_spacing and Qinj with an assessment of uncertainty.

Figure 1: Utah FORGE site with the injection well 16A(78)-32 and five monitoring wells (taken from (Moore et al., 2019)).

2. GEOTHERMAL DESIGN TOOL(GEODT)

GeoDT is a fast simplified multiphysics solver to evaluate EGS designs in uncertain geologic systems (Frash, 2022, 2021; Frash et al.,
2023). GeoDT is a fast numerical modeling tool to model thousands of realizations in a few hours using a desktop computer. In this
example, the model included 47 site, 15 well, 5 powerplant, and 3 stimulation parameters, to which we now also add cost estimation
parameters (Frash et al., 2023). The underlying assumptions of this model are empirically based on laboratory and field data to partially
account for complex coupled processes obviating direct expensive numerical modeling (Frash, 2021). The intent of this model is to run it
with full uncertainty, as informed by a broad spectrum of relevant prior laboratory and field measurements, and to reduce the uncertainty
only when suitable information is available. When a promising EGS design is identified for a particular site, it can then be comprehensively
investigated using more complex and expensive numerical modeling codes.

The primary features of GeoDT include (Figure 2):

1.  Flow module: Predicts pressure and flow rate for 3D networks ofintersecting wells and fractures that are modeled as pipes and
nodes.

2. Hydraulic stimulation module: Predicts hydraulic stimulation with shear and tensile mechanisms where fracture apertures
depend on effective stress.

3. Heat production module: Predicts transient heat production that depends on fluid enthalpy, rock conductivity, and stored
energy change over time.

4. Power production module: Provides estimation of electrical power generation using the combined single-flash Rankine and
isobutane binary cycle.

5. Economic module: Yields net present value (NPV) based on geothermal cost estimation tools, electricity sales, and a simple
earthquake cost model.
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Figure 2: GeoDT stochastically predicts reservoir parameters, flow networks, hydraulic stimulation, heat production, power
production, injection-inducedseismicity potential, and ultimately net present value by fast and simplified methods. Most
models complete in around 15 seconds using a common desktop computer with a single processor thread.
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3. NET PRESENT VALUE (NPV) ESTIMATION

Our new economic module in GeoDT yields estimated NPV in circa 2019 U.S. dollar amounts for a hot dry rock EGS geothermal project
(Frash et al., 2023). Such a reduced value is critical for optimizing geothermal design parameters. This module considers capital costs,
maintenance costs, pumpingcosts, and power sales. Following the theme of fast-simplified physics, this module uses simplified methods
to estimate costs where the underlying goal is to give a conservative view of the economic potential of a project. The cost terms that we
employ in this study are summarized in Table 1. True costs for an EGS site depend on many factors beyond what our simple model
includes. Ultimately, we use this cost model as an objective function to better contrast increasing power production with increasing capital
costs and other financial risks.

Table 1: Constants used to estimate NPV.

Parameter Unit Value Reference
Electricity sales per kilowatt-hour USD/kWh 0.1372 EIA, 2022
Drilling cost per length USD/m 2763 Lowry et al., 2017
Drill pad cost kUSD 590 Lowry et al., 2017
Power plant cost USD 2026 GETEM
Exploration cost per depth USD/m 2683 GETEM
Operating cost per kilowatt-hour USD/kWh 0.0365 GETEM

Outputs from GeoDT that pair with these cost factors include the net power output (Pout) for each model timestep and timestep p arameters
(TimeSteps and LifeSpan). The net power production term (Pout) for the Datathon only included the flash steam cycle for power
generation. Inthis study, weadd a simplified estimate for isobutane binary -cycle power generation and an improved estimate of injection
well pumpinglosses that accounts for open-loop fluid losses (https:/github.com/GeoDesignTool/GeoDT). Each power term includes the
effect of inefficiencies, with this study using a conservative 85% efficiency (GenEfficiency). Discrete fracture networks with open-flow
boundaries formed the basis of all the GeoDT models.

3. DATA DES CRIPTION

The 16 most critical controllable design parameters (Table 2) can be divided into four categories: reservoir/site, power cycle, well, and
stimulation. Of these, only 10 design parameters were varied toa meaningful degree because the first well at the site, well 16A(78)-32,
has already been drilled at a diameter of0.11 m to a depth 0of 2350 m with a highly -deviated lateral length of 1114 in the direction of 1.833
radians Azimuth at a dip of 0.483 rad below the horizon. This azimuthal direction is near-parallel to the in-situ minimum horizontal stress
direction. Reservoir depth is the only controllable reservoir parameter, but it is not a variable in this study because of the preceding reasons.
Injection temperature was the only power cycle parameter that was varied because this study focuses on subsurface EGS design
optimization, not power systems engineering. While GeoDT is capable of modeling hydraulic stimulation separately from circulation, in
this study the circulation stage is treated as a continuous stimulation stage for the lifespan of the EGS, so we did not parameterize these
two stages independently. In other words, GeoDT predicts hydraulic fracturing and shearing at the same rate of injection as what is used
for long-term circulation and heat mining. Our focus for design optimization will be set on well spacing (w_spacing) and per-interval
circulation rate (Qinj) because these two terms were predicted to be first-order controls for power production.

Table 2: EGS project design parameters and corresponding units, minimum and maximum values, and their statistical
distributions. Parameters in green color cells were optimizedin this study.
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Using statistical distributions for all the known and unknown site, fracture network, and design parameters, 44,492 realizations were
generated for the Datathon (PIVOT, 2022). All the well parameters were generated using uniform distributions. The minimum and
maximum values of the distribution are listed in Table 2, and histograms of six example parameters are shown in Figure 3. The lifespan
of the field was considered only 30 years, and injection temperatures varied from 85-99°C (Figure 4). The injection rates per-interval
(Qinj), which also serve as the stimulation rates, were generated using exponential distribution because this offers improved resolution
for realizations with low flow rates, relative to the maximum simulated flow rate. When the optimal flow rate is not known, the exp onential

distribution helps explore a larger probability spacein order to more clearly identify the optimal flow rates.

Category Variable Parameter Unit Min Nominal value | Max Distribution
Value Value
Site ResDepth Nominal  reservoir [ m 2340 2360
depth
Power cycle | LifeSpan Project lifespan yr 30 -
Power cycle | Tinj Injection temperature | C 85 99 -
Well w_length Well length m 1114 Lognormal
Well w_azimuth Well azimuth deg 1.833 Uniform
Well w_dip Well dip deg 0.438 Uniform
Well w_skew Well skew deg -10 10 Uniform
Well w_count Well count wells 1 4 Uniform
Well w_toe Well toe deg -5 5 Uniform
Well w_proportion | Well proportion deg 0.8 1.1 Uniform
Well w_phase Well phase deg 0, 90, 180, 270 Uniform
Well w_intervals Well intervals zones 1 6 Uniform
Well dPp Production well | MPa -10 2 Uniform
pressurerise
Well perf Perforation count perfs 1 Uniform




Ahmmed and Frash

5000

8000 1
4000 70001
6000
g
£ 3000 A 5000 A
[«}]
& 4000
L 20001
& 3000 A
1000 2000 -
1000 A
0- 1
-0.0872 -0.0523 -0.0174 0.0175 0.0524 0.0873 1 2 3 4 5 6
w_toe [°] w_intervals [-]
5000 12000
4000 10000 -
> 8000 -
g 3000 1
3 6000 -
o
£ 2000+
4000 -
1000 A
2000 -
0- 0- \ : ;
0.88 0.92 .00 0.000 0.942 1.884 2826 3.768  4.710

w_proportlon [°] w_phase [degree]

4000 -
3000 1
1000 -

0_

O B
173.8 317.3 460.9 604.4 748.0 —0.1740 —0.1044 —0.0348 0.0348 0.1044 0.1740
w_spacing [m] w_skew [degree]

Frequency
N
o
o
(=]

Figure 3: Distribution of design parameters for well.
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Figure 4: Distribution of injected flow rate (Qinj), reservoir depth (ResDepth), and temperature of injected fluid (Tinj).
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4. METHODS

In any optimization technique, identifying a suitable objection function is a crucial first step. Here, our goal is to maximize the NPV value
of a geothermal project because NPV provides a common framework to measure the relative benefit and cost of each design decision.
This contrasts with optimizing power production where the most productive scenarios can be unreasonably expensive with respect to
drilling and pumping costs. The traditional parameter estimation study fits a physical model to data, finding optimal parameters. Such a
study finds asingle optimal value for each parameter and then the M arkov chain M onte Carlo (M CM C) method or its variant is p erformed
to generate distributions of parameters to provide uncertainty of the value in its distribution. However, M CM C cannot provide uncertainty
based on the most likely scenarios for peak NPVs, an important attribute to investors.

Investors would like to see what is the most likely chance of a profitable geothermal project based on NPVs; for instance, what are the
10", 50" and 90" percentile of NPVs for a given set of design parameters? Therefore, we chose binning-based optimization in this study
(Figure 5). In this technique, we define a bin volume based on discrete splittingof the design parameter values of injection rate and well
spacing. Then, we compute NPVs of each realization in the corresponding volume. Finally, we computethe 10®, 50", and 90™ percentile
of NPVs and their corresponding design parameters. Here, percentile values of NPV demonstrate the profitability of geothermal fields
while the design parameter ranges provide the range within which the NPV would be profitable. For this study, w_spacing and Qinj were
evenly split into 9 and 4 intervals, giving a total of 36 bins for our realizations. Nine intervals provided the finest discretization that yielded
suitably large populations of data within each bin for achieving statistical significance.

10714
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Figure S: Binning based optimization technique where blue dots represent each realization and red color rectangle shows example
binned areas.

5. RESULTS

Themodel’s NPV values are widely distributed, ranging from negative to hundreds of millions USD (Figure 6). We plotted the frequency
distribution plot of NPVs using 30 bins. The most common outcome was negative NPV due to the relatively cold 200°C temperature at
the current depth of FORGE, when treated as an EGS. Out of 44,492, 42,960 (96.55%) realizations fall into this non-profitable category.
Only 3.45% or 1,532 realizations fall into the profitable category. The profitable NPVs range from 0 to ~1500 million USD. The most
likely profitable range was 25 to 676 million USD.
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Figure 6: Histogram of NPVs where negative and positive values represent non-profitable and profitable geothermal fields,
respectively. The number on top of each bar represents the total count of NPV for the corresponding bar. All drilling costs
and pumping losses are includedin this model.

All NPVs are plotted against Qinj and w_spacing in Figure 7. Here, only positive or profitable NPVs are present, while negative values
are absent. It is clearly shown that geothermal fields are non-profitable or marginally profitable for Qinj < 0.01 m’/s. High and extreme
Qinj at rates above 0.2 m*/s do not make a geothermal project profitable either. Therefore optimization of Qinj is critical for achieving
economic EGS, which confirms our apriori expectation but now better quantifies this trend. A similar optimization trend is less visible for
w_spacing because profitable to non-profitable geothermal fields are present across the full w_spacing range. Therefore, we applied a
binning-based optimization technique to find optimal w_spacing and Qinj.
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Figure 7: Positive (profitable) NPVs against Qinj and w_spacing where color and size represent NPVs. Warm and larger size
circles represent higher NPVs or vice versa. Most of the realizations are not in this plot because of their negative USD
values.

The 10" percentile values show that profitable geothermal fields most likely occur between 110 to 348 m w_spacing and 0.0005 to 0.001
m’/s Qinj (Figure 8(a)). Here, the closer space provides more profit because of the presence of fluid. The highest profit within the 10"
percentile reached up to 0.5 million USD. The 50" percentile values demonstrate that profitable geothermal fields are feasible between
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190 to 747 m w_spacing and 0.001 - 0.01 m*/s Qinj (Figure 8(b)). The highest profit within the 50th percentile reached up to 5.5 million
USD.
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Figure 8: 10 (a), 50" (b), and 90" (¢) percentile values of NPV in USD for different Qinjand w_spacing ranges.

The 90" percentile values show more interesting characteristics across theranges for both Qinj and w_spacing (Figure 8(c)). Although all
Qinj seem profitable, the prominent Qinj is 0.01 to 0.1 m*/s. The next most profitable Qinj range is 0.1 to 0.3 m*/s. The w_spacing range
between 190 to 747 m is profitable. Among these ranges, the most profitable range is between 509 to 588 m. The next most profitable
w_spacing range is between 668 to 747 m. The highest profit within the 90" percentile can reach up to~36 million USD. For both 50®
and 90" percentile cases, low w_spacing provides less profit, and high w_spacing provides higher profits. This phenomenon contradicts
the idea that close spacing will benefit from having a better flow rate. Here, the total fluid volume generated more heat, thereby, more
profits. So, it is clear that atotal hot fluid volume is preferred to the flow rate in estimating NPV. In other words, more w_spacing provides
more volume facilitating more fluid extraction.
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6. CONCLUSIONS

We analyzed GeoDatathon data based on the Utah FORGE site parameters. The dataset has a total of 16 design parameters that control
geothermal energy production, hence, its NPVs in USD. The primary goal of this study is to find the optimal design values for well spacing
(w_spacing) and per-interval injection rate (Qinj) for developing profitable geothermal fields with specified uncertainties. We used a
binning-based optimization technique to compute NPVs. We subdivided the whole realizations into 36 bins based on nine ranges for both
w_spacing and Qinj. Following, NPV was calculated for all realizations in each bin. Next, we computed 10", 50", and 90" percentile
scores of NPV in all bins. Based on the analysis, we came to the following conclusions:

1. The 10" percentile values demonstrate that profitable geothermal fields are feasible between 110to 348 m w_spacingand 0.0005
t00.001 m*/s Qinj. The maximum profit can reach up to 0.5 million USD.

2. The50" percentile values demonstrate that profitable geothermal fields are possible between 190 to 747 m w_spacing and 0.001
-0.01m*s Qinj. Low w_spacing provides less profit, and high w_spacing provides high profits. The maximum profit can reach
up to 5.5 million USD.

3. The 90" percentile values are better to consider than the 10" and 50" percentile values because of (1) higher certainty and wide
ranges of w_spacing and Qinj. The most profitable Qinj is between 0.01 to 0.3 m*/s. The w_spacing range between 190 to 747
m is profitable. Among these ranges, the most profitable range is between 509 to 588 m. The next most profitable w_spacing
range is between 668 to 747 m. The maximum profit can reach up to 35 million USD.
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