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ABSTRACT  

Enhanced geothermal systems (EGS) are potential sources of low-carbon and continuous clean power. However, optimizing a profitable 

EGS power plant is a non-trivial task because it requires making critical design decisions (e.g., well spacing, well count) when site data 

uncertainty remains high (e.g., reservoir and stress characteristics). An optimal design decision maximizes the economic value of a power 

plant while site data and its uncertainties provide a mandate that a large number of realizations (sampling space) must be considered to 

search for reliably profitable scenarios. This study optimizes the range of well spacing between injection and production wells maximizing 
net present value in dollars (NPV). For this task, we used the GeoDT simulations from the PIVOT 2022 Datathon to simulate the whole 

geothermal development cycle from the initial well design to the end of production. This dataset is based on the Utah FORGE s ite and 

includes measured uncertainties. In all, the database includes 44,492 unique realizations, each with at least 30 years of p roduction. For 

each realization, we computed power outputs from a combined binary and flash power plant and deducted parasitic pumping power to 

estimate NPV. Next, we used a binning-based optimization technique to search inputs and NPVs in bins. Bins were formed within the 
specified range of well spacing and flow rates. Finally, we estimated the range of well spacing and flow rates that provides the most 

profitable NPV with uncertainty. 

1. INTRODUCTION  

Enhanced geothermal systems (EGS) present a significant and long-term opportunity for widespread power production and direct heat 

(Olasolo et al., 2016; Tester, 2007). But high exploration costs combined with uncertainties associated with subsurface characteristics  

(such as permeability, reservoir temperature, fault connectivity, geochemistry, and in situ stress distribution) have impeded  the geothermal 

market growth (Olasolo et al., 2016; Tester, 2007). Moreover, building a profitable EGS is a major challenge. Profitable EGS fields will 

depend on many design parameters (Frash, 2022, 2021). We will focus on the parameters of reservoir depth, project lifespan, injection 

temperature, well spacing, well length, well azimuth, well depth, well skew (i.e., non-parallel wells), well count, well toe (i.e., decreasing 

well spacing from heel to toe), well proportion (i.e., the ratio of injection well length to production well length), well phase (i.e., the 

placement of the production well above, beside, or below the injection well), well intervals (i.e., the number of isolated perforation 

clusters), production well pressure drawdown, stimulation flow rate, stimulation volume, and circulation flow rate. Finding optimal values 

for these design parameters is a computationally expensive task to say the least. 

To tackle this challenge, PIVOT (a conference series supported by the U.S. Department of Energy) organized a first-ever Geo Datathon 

event in 2022 (PIVOT, 2022). The primary goal of this Datathon was to identify production well placement. Participants in this event 

used different machine-learning methods to solve a geothermal engineering problem on a simulated dataset of the Utah FORGE site 

(Figure 1). Data for the Datathon was generated by geothermal design tool (GeoDT) to investigate the power production potential of an 

EGS system. In this event, six teams (Team Naturals, Benjamin Cassidy, Pebbles, GeoT360, S-Team, and GeotherML) completed the 

competition. Team Naturals of Stanford University, Benjamin Cassidy of Hammer and Tongs Polymer Development, and Pebbles of the 

Colorado School of Mine were awarded champion, 1st runner up, and 2nd runner up, respectively.  

Despite a short time for the competition and a challenging task, each team made a great contribution to identifying  suitable locations for 

the production well. Team Naturals included metrics for risk by considering averages and standard deviations in power production. Also, 

they clearly demonstrated that net power production was not the best value to optimize. Benjamin Cassidy applied a unique set of 

approaches to the ML challenge to optimize well placement from more than one perspective. Crucially, these competitors also revealed 

several problems that needed to be solved to get the best answer to optimizing the well spacing: (1) identifying a suitable objective function 

(e.g., net present value), (2) finding a robust optimization method for the complex dataset, and (3) accounting for uncertaint y and risk 

tolerance.  

Here, the primary purpose of our study is to find optimal well spacing (w_spacing) and per-interval circulation flow rate (Qinj) for the 

same dataset. First, we define a new objective function, which yields reduced parameters for comparing realizations, e.g., average power 
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or net present value (NPV) in dollar amount. We chose NPV because it provides the best est imate of monetary value. Second, we 

developed a binning-based optimization approach. Third, we identified optimized w_spacing and Qinj with an assessment of uncertainty. 

 

Figure 1: Utah FORGE site with the injection well 16A(78)-32 and five monitoring wells (taken from (Moore et al., 2019)). 

2. GEOTHERMAL DESIGN TOOL (GEODT) 

GeoDT is a fast simplified multiphysics solver to evaluate EGS designs in uncertain geologic systems (Frash, 2022, 2021; Frash et al., 

2023). GeoDT is a fast numerical modeling tool to model thousands of realizations in a few hours using a desktop computer. In this  

example, the model included 47 site, 15 well, 5 powerplant, and 3 stimulation parameters, to which we now also add cost estimation 

parameters (Frash et al., 2023). The underlying assumptions of this model are empirically based on laboratory and field data to partially 

account for complex coupled processes obviating direct expensive numerical modeling (Frash, 2021). The intent of this model is to run it 

with full uncertainty, as informed by a broad spectrum of relevant prior laboratory and field measurements, and to reduce the uncertainty 

only when suitable information is available. When a promising EGS design is identified for a particular site, it can then be comprehensively 

investigated using more complex and expensive numerical modeling codes.  

The primary features of GeoDT include (Figure 2): 

1. Flow module: Predicts pressure and flow rate for 3D networks of intersecting wells and fractures that are modeled as pipes and 

nodes. 

2. Hydraulic stimulation module : Predicts hydraulic stimulation with shear and tensile mechanisms where fracture apertures 

depend on effective stress. 

3. Heat production module: Predicts transient heat production that depends on fluid enthalpy, rock conductivity, and stored 

energy change over time. 

4. Power production module: Provides estimation of electrical power generation using the combined single-flash Rankine and 

isobutane binary cycle. 

5. Economic module: Yields net present value (NPV) based on geothermal cost estimation tools, electricity sales, and a simple 

earthquake cost model. 

 

Figure 2: GeoDT stochastically predicts reservoir parameters, flow networks, hydraulic stimulation, heat production, power 

production, injection-induced seismicity potential, and ultimately net present value by fast and simplified methods. Most 

models complete in around 15 seconds using a common desktop computer with a single processor thread.  

https://www.zotero.org/google-docs/?hvWlvD
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3. NET PRESENT VALUE (NPV) ESTIMATION 

Our new economic module in GeoDT yields estimated NPV in circa 2019 U.S. dollar amounts for a hot dry rock EGS geothermal project 

(Frash et al., 2023). Such a reduced value is critical for optimizing geothermal design parameters. This module considers capital costs, 

maintenance costs, pumping costs, and power sales. Following the theme of fast -simplified physics, this module uses simplified methods 

to estimate costs where the underlying goal is to give a conservative view of the economic potential of a project. The cost terms that we 

employ in this study are summarized in Table 1. True costs for an EGS site depend on many factors beyond what our simple model 

includes. Ultimately, we use this cost model as an objective function to better contrast increasing power production with increasing capital 

costs and other financial risks.    

Table 1: Constants used to estimate NPV. 

Parameter Unit  Value Reference 

Electricity sales per kilowatt-hour USD/kWh 0.1372 EIA, 2022 

Drilling cost per length USD/m 2763 Lowry et al., 2017 

Drill pad cost kUSD 590 Lowry et al., 2017 

Power plant cost USD 2026 GETEM 

Exploration cost per depth USD/m 2683 GETEM 

Operating cost per kilowatt-hour USD/kWh 0.0365 GETEM 

Outputs from GeoDT that pair with these cost factors include the net power output (Pout) for each model timestep and timestep parameters 

(TimeSteps and LifeSpan). The net power production term (Pout) for the Datathon only included  the flash steam cycle for power 

generation. In this study, we add a simplified estimate for isobutane binary -cycle power generation and an improved estimate of injection 

well pumping losses that accounts for open-loop fluid losses (https://github.com/GeoDesignTool/GeoDT). Each power term includes the 

effect of inefficiencies, with this study using a conservative 85% efficiency (GenEfficiency). Discrete fracture networks wit h open-flow 

boundaries formed the basis of all the GeoDT models.  

3. DATA DESCRIPTION 

The 16 most critical controllable design parameters (Table 2) can be divided into four categories: reservoir/site, power cycle, well, and 

stimulation. Of these, only 10 design parameters were varied to a meaningful degree because the first  well at the site, well 16A(78)-32, 

has already been drilled at a diameter of 0.11 m to a depth of 2350 m with a highly -deviated lateral length of 1114 in the direction of 1.833 

radians Azimuth at a dip of 0.483 rad below the horizon. This azimuthal direct ion is near-parallel to the in-situ minimum horizontal stress 

direction. Reservoir depth is the only controllable reservoir parameter, but it is not a variable in this study because of the preceding reasons. 

Injection temperature was the only power cycle p arameter that was varied because this study focuses on subsurface EGS design 

optimization, not power systems engineering.  While GeoDT is capable of modeling hydraulic stimulation separately from circulation, in 

this study the circulation stage is treated as a continuous stimulation stage for the lifespan of the EGS, so we did not parameterize these 

two stages independently. In other words, GeoDT predicts hydraulic fracturing and shearing at the same rate of injection as what is used 

for long-term circulation and heat mining. Our focus for design optimization will be set on well spacing (w_spacing) and per-interval 

circulation rate (Qinj) because these two terms were predicted to be first -order controls for power production. 

 

 

Table 2: EGS project design parameters and corresponding units, minimum and maximum values, and their statistical 

distributions. Parameters in green color cells were optimized in this study. 

https://www.zotero.org/google-docs/?KLNnXh
https://github.com/GeoDesignTool/GeoDT


Ahmmed and Frash 

 4 

Category Variable Parameter Unit Min 

Value 

Nominal value Max 

Value 

Distribution 

Site ResDepth Nominal reservoir 

depth 

m 2340   2360   

Power cycle LifeSpan Project lifespan yr   30   - 

Power cycle Tinj Injection temperature C 85   99 - 

Well w_spacing Well spacing m 50   1000 Uniform 

Well w_length Well length m   1114   Lognormal 

Well w_azimuth Well azimuth deg   1.833   Uniform 

Well w_dip Well dip deg   0.438   Uniform 

Well w_skew Well skew deg -10   10 Uniform 

Well w_count Well count wells 1   4 Uniform 

Well w_toe Well toe deg -5   5 Uniform 

Well w_proportion Well proportion deg 0.8   1.1 Uniform 

Well w_phase Well phase deg   0, 90, 180, 270   Uniform 

Well w_intervals Well intervals zones 1   6 Uniform 

Well dPp Production well 

pressure rise 

MPa -10   2 Uniform 

Well perf Perforation count perfs   1   Uniform 

Stimulation Qinj Circulation flow rate m3/s 0.001   0.1 Exponential 

Using statistical distributions for all the known and unknown site, fracture network, and design parameters, 44,492 realizations were 

generated for the Datathon (PIVOT, 2022). All the well parameters were generated using uniform distributions. The minimum and 

maximum values of the distribution are listed in Table 2, and histograms of six example parameters are shown in Figure 3. The lifespan 

of the field was considered only 30 years, and injection temperatures varied from 85-99℃ (Figure 4). The injection rates per-interval 

(Qinj), which also serve as the stimulation rates, were generated using exponential distribution because this offers improved resolution 

for realizations with low flow rates, relative to the maximum simulated flow rate. When the optimal flow rate is not known, the exp onential 

distribution helps explore a larger probability space in order to more clearly identify the optimal flow rates.  
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Figure 3: Distribution of design parameters for well. 

 

Figure 4: Distribution of injected flow rate (Qinj), reservoir depth (ResDepth), and temperature of injected fluid (Tinj).  
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4. METHODS 

In any optimization technique, identifying a suitable objection function is a crucial first step. Here, our goal is to maximize the NPV value 

of a geothermal project because NPV provides a common framework to measure the relative benefit and cost of each design decision. 

This contrasts with optimizing power production where the most productive scenarios can be unreasonably expensive with respect to 

drilling and pumping costs. The traditional parameter estimation study fits a physical model to data, finding optimal parameters. Such a 

study finds a single optimal value for each parameter and then the Markov chain Monte Carlo (MCMC) method or its variant is p erformed 
to generate distributions of parameters to provide uncertainty of the value in its distribution. However, MCMC cannot provide uncertainty 

based on the most likely scenarios for peak NPVs, an important attribute to investors.  

Investors would like to see what is the most likely chance of a profitable geothermal project based on NPVs; for instance, what are the 

10th, 50th, and 90th percentile of NPVs for a given set of design parameters? Therefore, we chose binning-based optimization in this study 

(Figure 5). In this technique, we define a bin volume based on discrete splitting of the design parameter values of injection rate and well 

spacing. Then, we compute NPVs of each realization in the corresponding volume. Finally, we compute the 10 th, 50th, and 90th percentile 

of NPVs and their corresponding design parameters. Here, percentile values of NPV demonstrate the profitability of geothermal fields 
while the design parameter ranges provide the range within which the NPV would be profitable. For this study, w_spacing and Qinj were 

evenly split into 9 and 4 intervals, giving a total of 36 bins for our realizations. Nine intervals provided the finest discretization that yielded 

suitably large populations of data within each bin for achieving statistical significance. 

 

Figure 5: Binning based optimization technique where blue dots represent each realization and red color rectangle shows example 

binned areas. 

5. RESULTS 

The model’s NPV values are widely distributed, ranging from negative to hundreds of  millions  USD (Figure 6). We plotted the frequency 

distribution plot of NPVs using 30 bins. The most common outcome was negative NPV due to the relatively cold 200℃ temperature at 

the current depth of FORGE, when treated as an EGS. Out of 44,492, 42,960 (96.55%) realizations fall into this non-profitable category. 
Only 3.45% or 1,532 realizations fall into the profitable category. The profitable NPVs range from 0 to ~1500 million USD. The most 

likely profitable range was 25 to 676 million USD.     
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Figure 6: Histogram of NPVs where negative and positive values represent non-profitable and profitable geothermal fields, 

respectively. The number on top of each bar represents the total count of NPV for the corresponding bar. All drilling costs 

and pumping losses are included in this model. 

All NPVs are plotted against Qinj and w_spacing in Figure 7. Here, only positive or profitable NPVs are present, while negative values  

are absent. It is clearly shown that geothermal fields are non-profitable or marginally profitable for Qinj < 0.01 m3/s. High and extreme 
Qinj at rates above 0.2 m3/s do not make a geothermal project profitable either. Therefore optimization of Qinj is critical for achieving 

economic EGS, which confirms our apriori expectation but now better quantifies this trend. A similar optimization trend is less visible for 

w_spacing because profitable to non-profitable geothermal fields are present across the full w_spacing range. Therefore, we applied a 

binning-based optimization technique to find optimal w_spacing and Qinj.  

 

Figure 7: Positive (profitable) NPVs against Qinj and w_spacing where color and size represent NPVs. Warm and larger size 

circles represent higher NPVs or vice versa. Most of the realizations are not in this plot because of their negative USD 

values.  

The 10th percentile values show that profitable geothermal fields most likely occur between 110 to 348 m w_spacing and 0.0005 to 0.001 

m3/s Qinj (Figure 8(a)). Here, the closer space provides more profit because of the presence of fluid. The highest profit within the 10th 

percentile reached up to 0.5 million USD. The 50th percentile values demonstrate that profitable geothermal fields are feasible between 
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190 to 747 m w_spacing and 0.001 - 0.01 m3/s Qinj (Figure 8(b)). The highest profit within the 50th percentile reached up to 5.5 million 

USD.  

 

Figure 8: 10th (a), 50th (b), and 90th (c) percentile values of NPV in USD for different Qinj and w_spacing ranges.  

The 90th percentile values show more interesting characteristics across the ranges for both Qinj and w_spacing (Figure 8(c)). Although all 
Qinj seem profitable, the prominent Qinj is 0.01 to 0.1 m3/s. The next most profitable Qinj range is 0.1 to 0.3 m3/s. The w_spacing range 

between 190 to 747 m is profitable. Among these ranges, the most profitable range is between 509 to 588 m. The next most prof itable 

w_spacing range is between 668 to 747 m. The highest profit within the 90 th percentile can reach up to ~36 million USD. For both 50th 

and 90th percentile cases, low w_spacing provides less profit, and high w_spacing provides higher profits. This phenomenon contradicts 

the idea that close spacing will benefit from having a better flow rate. Here, the total fluid volume generated more heat, thereby, more 
profits. So, it is clear that a total hot fluid volume is preferred to the flow rate in estimating NPV. In other words, more w_spacing provides 

more volume facilitating more fluid extraction.       

  

(b) 

(a) 

(c) 
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6. CONCLUSIONS  

We analyzed GeoDatathon data based on the Utah FORGE site parameters. The dataset has a total of 16 design parameters that control 

geothermal energy production, hence, its NPVs in USD. The primary goal of this study is to find the optimal design values for well spacing 

(w_spacing) and per-interval injection rate (Qinj) for developing profitable geothermal fields with specified uncertainties. We used a 

binning-based optimization technique to compute NPVs. We subdivided the whole realizations into 36 bins based on nine ranges for both 

w_spacing and Qinj. Following, NPV was calculated for all realizations in each bin. Next, we computed 10 th, 50th, and 90th percentile 

scores of NPV in all bins. Based on the analysis, we came to the following conclusions: 

1. The 10th percentile values demonstrate that profitable geothermal fields are feasible between 110 to 348 m w_spacing and 0.0005 

to 0.001 m3/s Qinj. The maximum profit can reach up to 0.5 million USD.  

2. The 50th percentile values demonstrate that profitable geothermal fields are possible between 190 to 747 m w_spacing and 0.001 

- 0.01 m3/s Qinj. Low w_spacing provides less profit, and high w_spacing provides high profits. The maximum profit can reach 

up to 5.5 million USD.   

3. The 90th percentile values are better to consider than the 10th and 50th percentile values because of (1) higher certainty and wide 

ranges of w_spacing and Qinj. The most profitable Qinj is between 0.01 to 0.3 m3/s. The w_spacing range between 190 to 747 

m is profitable. Among these ranges, the most profitable range is between 509 to 588 m. The next most profitable w_spacing 

range is between 668 to 747 m. The maximum profit can reach up to 35 million USD. 
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