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ABSTRACT

Discovery, exploration, and development of hidden geothermal resources have many risks and challenges because of the complex and
uncertain subsurface conditions. To mitigate these risks, we have developed a tool called GeoThermalCloud, which utilizes
unsupervised machine learning (ML) and physics-informed machine learning (PIM L) methods to process the data and guide geothermal
exploration and development efficiently. The unsupervised ML automates the data analyses and interpretations by extracting hidden
signatures (features) characterizing geothermal resources/exploration/development. It also enables practitioners to identify observations
that are important to represent the discovered hidden signatures. In addition to data, PIML adds physical constraints such as mass
balance, constitutive relationships, and models, in the ML processes to characterize hidden geothermal resources better.
GeoThermalCloud capabilities include (1) analyzing large field datasets, (2) assimilating model simulations (large inputs and outputs),
(3) processing sparse datasets, (4) performing transfer learning (between sites with different exploratory levels), (5) extracting hidden
geothermal signatures in the field and simulation data, (6) labeling geothermal resources and processes, (7) identifying high-value data
acquisition targets, and (8) gwdmg geothermal exploration and production by selecting optimal exploration, production, and drilling
strategies. The GeoThermalCloud is an open-source tool available at https:/qithub.com/SmartTensors/GeoThermalCloud.jl (a part of
our SmartTensors framework; http://tensors.lanl.gov, hitps:/aithub.com/SmartTensors) We have used GeoThermalCloud on ten
geothermal datasets, including a large and sparse dataset of the Great Basin, and all of them show promising results. M ost of the data
and analyses are available on GitHub as well. Obtained results can be reproduced and further expanded by adding additional data.
Practitioners and researchers are welcome to utilize GeoThermalCloud to solve other geothermal problems.

1. INTRODUCTION

Geothermal community often utilizes a diverse set of atributes/parameters for geothermal resource exploration, geothermal field
development, and geothermal power production rather than using only a set of attributes. For geothermal resource exploration, they may
use surface exposures (e.g., springs) in combination with shallow water chemistry (e.g., anions, cations, tracer elements), geophysics
attributes (e.g., gravity, magnetic, seismic), geologic attributes (e.g., fault, fault density, dike/dyke), geothermal attributes (e.g., thermal
gradient, heat flow). There are not a set of attributes for geothermal exploration like in oil/gas field for various reasons. Often each
geothermal field has unique geological characteristics that make the discovery of geothermal resources is challenging. Furthermore,
processes and parameters impacting geothermal conditions are poorly understood. It is even more challenging to develop a geothermal
field because it often requires too many well drillings, and the cost of well installation is very high. Diverse datasets are available to
help characterize subsurface geothermal conditions (public and proprietary; satellite, airborne surveys, vegetation/water sampling,
geological, geophysical, etc.). Yet, it is not clear how to properly leverage these datasets for geothermal exploration due to an
incomplete understanding of how physical processes impacting subsurface geothermal conditions are represented in these observ ations.
Recent advancements in machine learning (ML) provide great promise to resolve these issues.

The tremendous challenges and risks of geothermal exploration and production bring the demand for novel ML methods and tools that
can (1) analyze large field datasets, (2) assimilate model simulations (large inputs and outputs), (3) process sparse datasets, (4) perform
transfer learning (between sites with different exploratory levels), (5) extract hidden geothermal signatures in the field and simulation
data, (6) label geothermal resources and processes, (7) identify high-value data acquisition targets, and (8) guide geothermal exploration
and production by selecting optimal exploration, production, and drilling strategies.

To facilitate geothermal exploration and production, we developed and applied our novel Los Alamos National Laboratory (LANL)-
developed ML methodology to discover and extract new (unknown/hidden) geothermal signatures present in existing site, synthetic, and
regional datasets. Our ML analyses also identified high-value data acquisition strategies that can reduce geothermal
exp loration/production costs and risks. Our M L methods also categorized geothermal data, which is applied to generate geothermal data
labels (e.g., geothermal resource types). The end product of our effort is the development of a flexible, open-source, cloud-based ML
framework for geothermal exploration, called GeoThermalCloud. It is an open-source cloud-based ML framework for geothermal
exploration, geothermal play development, and geothermal power production. It can fuse geothermal datasets and multi-physics codes.
Datasets can range from small to big datasets; however, to our best knowledge, this is the best tool available in the market to deal with
small datasets and data with missing values. Moreover, it can simultaneously handle both public and proprietary datasets keep ing the
sensitivities of private data hidden. This increases the quality and applicability of the obtained ML results. Additionally,
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GeoThermalCloud has in-build preprocessing, postprocessing, and state-of-the-art visualization tools for non-experts. Therefore, both
experts and non-experts can equally utilize this tool without going through steep learning curve.

GeoThermalCloud has been used to analyze 10 datasets including eight real/field and two synthetic datasets. Here, because of space
constraints, we provide a glimpse of each dataset we analyzed and explain three datasets in brief. Also, we provide the capability of
GeoThermalCloudand

2. GEOTHERMALCLouD CAPABILITY

GeoThermalCloud utilizes SmartTensors, which is an open-source, LANL-developed framework of patented ML methods and
computational tools (http:/tensors.lanl.gov, https:/github.com/SmartTensors). SmartTensors is a toolbox for unsupervised and physics-
informed ML based on matrix/tensor factorization constrained by penalties enforcing robustness and interpretability (e.g,
nonnegativity; physics and mathematical constraints; etc.). It can also utilize hardware accelerators such as graphical and tensor
processing (GPU and TPU) units to make computing faster. SmartTensors has already been successfully applied to analyze diverse
datasets related to a wide range of problems, from COVID-19 (Vesselinov, Middleton, and Talsma 2021) to wildfires and text mining.
The two most commonly used ML algorithms in SmartTensors are NMFk (hitps://aithub.com/SmartTensors/NMFEK.jl) and NTFk
(https://github.com/SmartTensors/NTFk.jl). They perform nonnegative matrix/tensor factorization coupled with customized k-means
clustering (Alexandrov and Vesselinov 2014; Vesselinov et al. 2019; lliev et al. 2018). NMFk and NTFk are capable of identifying (i)
the optimal number of hidden signatures in data, (ii) the dominant set of attributes in data that correspond to identified hidden
signatures, and (iii) locations associated with each hidden signature. Hidden signatures (or features/signals) can be either impossible to
measure directly or are simply unknown. For example, let us assume that a series of microphones are placed in a noisy ballroom(Haykin
and Chen 2005) where many people are talking. The collected data records the mixtures of voices, sounds, and noises. The latent
signatures are the individual voices that cannot be recorded separately but can be extracted from the collected data. Extracting latent
signatures reduces the dimensionality of the data and defines low-dimensional subspaces(Parsons, Haque, and Liu 2004; Constantine
2015) that represent the entire dataset. After the extraction, the obtained information is post-processed by subject-matter experts to
identify the physical meaning (e.g., broken glass) or the origin (e.g., recognize voices of individuals) of the extracted signatures. Detail
descriptions of NMFk and NTFk are available at (Alexandrov and Vesselinov 2014; Vesselinov et al. 2019; lliev et al. 2018). Another
important tool, PIML, is also available in GeoThermalCloud (hitps:/github.com/SmartTensors/GeoThermalCloud.jl). Through PIML,

users can utilize any physics code during thetraining phase of M L models.
3. ExampLE DATASETS

ML methods embedded in the GeoThermalCloud have been extensively tested and validated against various kinds of datasets (cite
GTCloud report). Outputs of these applications have been published in a series of presentations, conference papers and peer-reviewed
papers. Theanalyzed M L applications are:

1. Southwest New Mexico (SWNM): Here, we analyzed 18 attributes at 44 locations and identified low- and medium-temperature
hydrothermal systems; found dominant attributes and spatial distribution of extracted hidden hydrothermal signatures;
demonstrated blind predictions of the regional physiographic provinces (Vesselinov, Ahmmed, et al. 2021; Vesselinov et al. 2020;
in review).

2. Great Basin: In this dataset, we analyzed 18 shallow water chemistry attributes a 14,342 locations. This work extracted hidden
geothermal signatures associated with low-, medium-, high-temperature hydrothermal systems, their dominant characterization
attributes, and spatial distribution within the study area (Ahmmed 2020; Ahmmed et al. 2021). The analyses are based on the
public data available at the Nevada Bureau of Mines and Geology website.

3. Brady site, Nevada: We identified key geologic factors controlling geothermal production in the Brady geothermal field. Please
see (Siler et al. 2021) for more details.

4. Tularosa Basin, New Mexico: Analyzed 21 Play Fairway Analysis (PFA) attributes at 120 locations (Vesselinov 2020); data
comes from past PFA work in this region (Bennett and Nash 2017). ML analyses identified geothermal signatures associated with
low-, medium-, and high-temperature hydrothermal systems. Dominant attributes and spatial distribution of the geothermal
signatures were also defined.

5. Tohatchi Springs, New Mexico: Explored 19 geothermal attributes a 43 locations in Tohatchi Springs, New Mexico (Ahmmed,
Vesselinov, and Middleton 2020). Successfully defined geothermal signatures associated with low- and medium-temperature
hydrothermal systems. Also, we found their dominant attributes, and spatial distribution.

6. Hawaii: Analyzed four islands’ data separately and jointly; ML identified low-, medium-, and high-temperature hydrothermal
systems and their dominant characterization attributes (Ahmmed et al. 2020).

7. Utah FORGE: Performed prospectivity analysis to identify future drilling locations using geological, geochemical, and
geophysical attributes (Ahmmed and Vesselinov 2021). Maps of temperature at depth, and heat flow are constructed based on the
available data. Processed data includes satellite (INSAR), geophysical (gravity, seismic), geochemical, and geothermal attributes.
Prospectivity maps generated and drilling locations proposed for future geothermal field exploration.

8. EGS Collab: Field experiment data processed to extract dominant temporal patterns observed in 49 data streams; erroneous
measurement attributes and periods automatically identified; interrelated data streams automatically identified. This work has not
been published yet.
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9. GeoDT synthetic dataset: GeoDT, a novel LANL-developed [
multi-physics code for predicting the performance of geothermal |
energy systems. GeoDT evaluates how geothermal site data
conditions impact design decisions related to the construction of |
enhanced geothermal systems (EGS). GeoDT is applied to §
evaluate the combined effect of >90 input parameters on thermal
power and electrical power output based on >2000 random
realizations; the analyses are representative of the Utah FORGE
site conditions. The model inputs and outputs are analyzed using
our GeoThermalCloud ML tools. They were able to identify key |
controlling attributes, separate the relative impact of different |
physical processes on production, and associate these impacts to |
GeoDT model inputs (Vesselinov, Frash, et al. 2021). Our study |
focused on stress states and natural fractures on geothermal well
drilling and well production. ML analyses identified well spacing
and well orientation as critical parameters impacting energy

production and induced seismicity .
10.

Thermo-hydro-chemical synthetic dataset: Also, this tool was
used to predict synthetic thermo-hydro-chemical states. The
LANL simulator PFLOTRAN (Lichtner et al. 2015) was used to
simulate a 3-D thermo-hydro-chemical (THC) model. The model
simulates heat and mass transport and predicts the spatiotemporal
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Figure 4.1.1: Geothermal data locations in the Great Basin,

distribution of temperature, B+, and Li+ concentrations in the
subsurface. GeoThermal Cloudwas used to predict THC data faster than the PLFOTRAN simulation.

4. RESULTS

This section provides a brief description of three analyses that we performed using GeoThermalCloud. The datasets are Great Basin,
State of the stress of Brady geothermal site, and GeoDT synthetic dataset.

4.1 Great Basin

This case study showcases four important capabilities of Geothermal Cloud that are (1) handling missing/sparse data, (2) characterizing
geothermal resource types, (3) identifying critical attributes for different types of geothermal resources, and (4) reconstructing

continuous data from sparse with quantified uncertainty.

The Great Basin covers Nevada, and much of its neighboring states:
Oregon, Utah, California, Idaho, and Wyoming. It has multiple
geothermal reservoirs ranging from low- to high-temperature
resources, and a vast area is yet to be explored to discover hidden
geothermal resources (Figure 4.1.1). Plenty of data have been
collected over several decades to characterize the regional
geothermal resources. Here, we process public data available at the
Nevada Bureau of Mines and  Geology  website
http: bma.u 1y ! atabase.html].

The size of the data for this study is 14341 x 18; at 14341 locations,
17 shallow water geochemical attributes (water cations/anions) and
groundwater temperature are observed (Goff, Bergfeld, and Janik
2002; Zehner, Coolbaugh, and Shevenell 2006). The 18 attributes
are pH, total dissolved solids (TDS), AI**, B*, Ba?*, Be?*, Br-, Ca*",
CI, HCO;, K*, Li*, Mg, Na*, 80, groundwater temperature,
quartz geothermometer, and chalcedony geothermometer. pH
represents alkalinity of water, TDS is the total amount of major and
tracer cations/anions, Ca?*, K**, Mg?*, Na" are major cations, HCO,~
and CI- are major anions, AI**, B*, Ba?*, Be?*, Br-, are Li* trace
elements, and 80 is an oxygen isotope. Major anions/cations
define the ionic type of water. The 'O describes the origin (e.g.,
meteoric, magmatic, connate) of the water. Groundwater
temperature indicates the water temperature at a shallow depth
rather than at the actual geothermal reservoir depth. Quartz and

Table 1: Great Basin dataset attributes | summary statistics.

Missing
Attribute Minimum Mean Maximum (%)
Giroundwaler Iemlmralun: [t] i1 217 275 Xh
Quaritz gesthermometer (7C) -50.8 1.0 273 301
Chalcedony geathermometer (T) A6 50.3 271 30.1
pH I 7.5 1.7 350
TDS (PPM) ] ETT0 | 320000 KB
AP (PPM) ] 73 G400 .5
B (PPA) ] il 54} 6.7
Ba (PPN ] ol 274 R4
Be'' (FPM) 0 1] 0.7 e
Br (FPM) ] 20 54 6.4
Cu't (PPN ] 97,0 25T 3
CI{PPM) ] IET0 | 240000 02
HCO, (FEM) ] 278 37000 To.1
K™ (PPM) n 1141 1 F(HI 4.8
Li* {FPM) ] 495 4T B3
Mg* (PPM) ] 868 BE00 348
Na® (FPM) 0 1960 | 1600 362
B0 (%) 2192 | <146 T8 .7

chalcedony geothermometers indicate potential reservoir temperature. Table 4.1.1 lists the minimum, maximum, mean, and missing
values/sparsity in the data. The minimum and maximum values demonstrate that the dataset attributes vary over a wide range. The
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missing data column in the table

Temperalure C
indicates that the dataset is heavily
sparsed. Here, we applied the s
GeoThermalCloud ML methods to Chaloedony B
analyze these sparse pHE
geothermal/geochemical data and T0S A
better understandfpredict the spatial
distribution ~ of  the available e
geothermal resources. BA
1.0 al
The dataset described above was ' B C

used to perform NMFk analyses. 05
Before the ML ran, the dataset was '
log-transformed  and  normalized 0.0 CaC

BrA

between 0 to 1. ML analysis was ' ClA
performed for k=2, 3, ..., 15 number r-cosc.
of signatures. The ML algorithm ;
selected the k=3 solution to represent A

the optimal number of hidden WA
geothermal signatures for the Great MgC

Basin dataset. The k > 3 solutions
overfitted the problem. Figure
4.1.2(a) demonstrates the attribute (a)
matrix of the optimal NMFk
solution; the attribute matrix depicts Figure 4.1.2: Optimal hidden geothermal signatures (a) and their spatial distribution
the importance of attributes to (b); ellipses mark areas with high-density of signature locations of similar type.
represent extracted signatures. Next,

we defined types of hydrothermal systems based on the contribution of groundwater temperature in the extracted 3 signatures. Based on
this assumption, Signatures A, B, and C define low-, high-, and medium-temperature hydrothermal systems, respectively. Signature A
represents low-temperature hydrothermal systems because of the low contribution of groundwater temperature in this signature. The
dominant attributes of this signature are TDS, Br*, B*, and 8*°0. Signature B represents high-temperature hydrothermal systems due to
the high contribution of temperature in this signature. The dominant attributes of the signature are pH, AI®*, Be?*, as well as quartz and
chalcedony geothermometers. Signature C defines medium-temperature hydrothermal systems because of the medium contribution of
temperature. The dominant attributes of the signature are Mg?* and Ca?".

Na A
3018 A

The spatial distribution of each signature is shown in Figure 4.1.2(b), where blue, red, and orange colors represent low-, high-, and
medium-temperature hydrothermal systems. The distribution of Signatures B and C suggests that the significant portions of the Great
Basin region have prospective geothermal resources. Areas with a high density of B and C locations are labeled with ellipses in the
figure. Some of these locations also align with existing geothermal resources and sites such as Dixie Valley and Brady geothermal areas
in Nevada. Maps ontheupper row of Figure 4.1.3 further demonstrate the spatial distribution of the extracted geothermal signatures.

Using our ML tool, we can perform analyses on sparse datasets and make predictions for missing values. For example, B*, 6*%0, Br*,
and TDS are dominant attributes of Signature A, and all of them are sparse. Yet, our ML methodology estimates a continuous spatial

Flgure 4.1.3: Maps of the spatial distribution of actual data (top) and corresponding ML reconstruction
(bottom) of AF*, B*, Ba**, Be**, and Br .
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distribution for Signature A. Similarly, the dominant attributes of Signature B and C are also sparse. Still, the ML algorithm
reconstructs a continuous signature distribution over the study domain. This is possible because NMFk and NTFk can learn from only a
partially represented object. This capability is generally absent in many traditional machine learning techniques, such as PCA, deep
neural networks (convolutional or recurrent), etc.

As discussed above, all attributes in the Great Basin dataset have some level of sparsity (Table 3.2.1). For example, 6'%0 has 90%
sparsity (Table 3.2.1). After learning the mapping function among all attributes and generating the signature mappings (Figure 4.1.3),
our ML algorithm can estimate a continuous distribution of all the attributes, including 880 (Figure 4.1.3). In this process, our ML
method is superior to alternative statistical approaches such as kriging and co-kriging (i.e., Gaussian process modeling) for
interpolation. The kriging-based methods require additional information to account for interrelationships among analyzed attributes
(e.g., variograms and co-variograms). Our M L approach identifies the interrelationships among the attributes automatically based on the

provided data. Both NMFk and NTFk can be applied to
Table 4.1.2: Aceuracy of the blind temperature predictions evaluated by 1P fmd_ mapping fun_ctlons among all attributes, both in the
between true and estimated values for a series of test problems with (1) different attribute and spatial domain. As a result, we constructed a

percent of measurements applied for training, (2) different levels of continuous distribution of all attributes in the dataset. This
measurement ervor added to the training dataset. continuous distribution of data can be further utilized for
Trainin Measurement Error [%] iden_tifying geothermal resources either in the whole Grea
8 Basin or part of the Great Basin.

dataset 100% S0%% 20M%% 10%%
In addition to making predictions about the attribute
0% 0.675 0.939 0.976 values at the locations where data are missing, our ML
80, 0.616 0.769 0.919 0.951 methodology estimates uncertainties in these predictions.
- For example, the developed ML model is also applied to
50%0 0.574 0.749 0.917 predict the temperature based on all other attributes. The
data are split into training and prediction sets (Table

LU

20% 0.565 0.714 3.2.2). Furthermore, different levels of artificial noise were
10%, 0.441 0.623 0.755 added to the training dataset (Table 3.2.2) to evaluate the
ML sensitivity to measurement errors. The accuracy of the

blind temperature predictions was assessed using a
coefficient of determination (R?) between actual and estimated values for a series of test problems (Table 3.2.2). The results listed in
Table 3.2.2 demonstrate that accurate prediction (R* > 0.9) can be obtained even if we use only 50% of the data with <10%
measurement errors. The above results also validate the applicability of our ML methods to predict geothermal conditions based on
limited data.

In conclusion, the ML analyses identified hidden geothermal signatures associated with low-, medium-, high-temperature hy drothermal
systems, their dominant characterization attributes, and spatial distribution within the study area. Also, we generated continuous maps of
low-, medium-, and high-temperature hydrothermal systems that will assist in developing geothermal resources in the Great Basin.
Furthermore, we constructed continuous distribution from the sparse attributes that will help analyze other
geological/geophysical/geothermal attributes with geochemical attributes. All the data and codes, including Jupyter and Pluto
notebooks, required to reproduce these results are available at the GeoThermalCloud GitHub and GDR repositories
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4.2 State of the Stress of Brady Geothermal Site

This case study shows the capability of g — &= B
analyzing complex and big datasets; yet, aspect ratio 1:1
finding a good mapping function in the
dataset.

as'g)"-ec'/t/ 'ralié}zz ;
{actual Bradys'ca
— 2

T
aspect ratio 3:1

State of stress: State of stress in the Brady
geothermal site is a critical factor determining
geothermal production (Siler et al. 2021). To
better estimate the capability of our ML
algorithms to evaluate the impact of the state
of stress for geothermal production at the
Brady site, we performed additional ML
analyses. To account for the uncertainties
associated with the state of stress at the site, in
a set of additional ML analyses, the dilation,
normal stress, and coulomb shear stress are
computed for a series of stress ratios: 1:1, 1:2,
1:3, 1:4, 2:1, 3:1, and 4:1. The impact of the
alternative ratios is visualized in Figure 4.2.1.
All these seven stress cases are used together
with other geologic attributes to create seven
alternative  datasets. Each dataset is

oo s st aeaINCTEasING step-over width (across-strike)
1 - - W nerw ¥ m

ted 3D data t ith Figure 4.2.1: Coulomb shear traction estimated at 1000 m depth. Dark colors show high
represented - by ata - tensors - Wit ¢ 1omb shear traction on optimally oriented normal faults caused by slip. An aspect

dimensions  equ 'Val_ent to the analyzed ratio of 2:1 most probably represents the state of stress at the Brady case (after Siler et
datasets. The only differences between the al., 2018)

11 1:2 1:3 1:4 21 341 41 seven tensors are in the three stress attributes: dilation, normal

46-1 Prd stress, and coulomb shear. The goal of the ML analyses is to
R select which of these seven stress ratios are the most
g;g 1 ;’} J representative for the site. This is evaluated based on the

3% 1 b quality of the reconstruction of the original tensors, which is
58A-1 Prd achieved by the ML algorithm. The better the reconstruction,
T88.31 by the higher the ML estimated consistency between the three
A stress attributes (dilation, normal stress, and coulomb shear)
;},&g;] ;r:f and the remaining 11 geothermal attributes. Estimates of the
M:?‘?ZOTV' location matrix under the seven different stress ratios are
17-31 Dry shown in Figure 4.2.2. The production wells, injection, and
1;'3'.35,‘ %? non-productive wells have similar associations with the
8y extracted signatures for the seven different stress scenarios.
26-12 Dry However, the overall reconstruction error is the lowest for the

27-1 Dry | - -

g;; ] 3ﬁ 2:1 ratio case (the seven reconstruction errors are: 1:1 - 12772,
68A-1 Dry 1:2 - 12773, 1:3 - 12691, 1:4 - 12685, 2:1 - 12666, 3:1 -
“8—31 El}; 12928, and 4:1 - 12788; the lowest estimate is for 2:1). In fact,
8311 Oy this is the most probable stress ratio at the site (2:1) based on

8‘833‘13; zn:)y previous studies.
§§ 8.7,’,' The ML analyses conducted on a 3D geological dataset from
Be Dry Brady geothermal field elucidate the geologic characteristics
ng D‘}jf that control hydrothermal circulation in the shallow (~300-600
Ba E:\y m depth) geothermal reservoir (Siler et al. 2021). The ML
BCH-1 Dry results show that known, macro-scale faults, i.e., those tha
Bttg 81‘5 have been mapped in 3D based on geological and geophysical
e O3 evidence, are strongly associated with the production wells at
MG-2 Dry the Brady site. Geologic attributes that occur most prominently

OO0 <000 <000 <000 <000 <000 <000

Figure 4.2.2: Estimates for the location matrix under 7 different stress ratios. . . .
Wi thod Vesll (BIEL S Foiei), Riectiun (Rt covisl, ind noa-prodisctiva faults, and dilatation brought on by modeled fault slip, are also

(dry: remaining rows) wells have similar associations with the extracted critical _geo logic attr_lbUtes associated predominantly with
signatures for the 7 different stress scenarios. production wells relative to other wells. These results suggest

that the shallow hydrothermal reservoir at Brady is hosted by
relatively prominent faults. Locations where such faults lie within the subsurface projection of the step over (i.e., the volume of rock
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with relatively high fault and fracture density and where fractures tend to dilate due to periodic fault slip) are exceptionally well suited
for geothermal production. In concert and not either independently, these two attributes control the presence of the Brady hydrothermal
system that has been developed for electricity production and direct uses. The NMFk methodology successfully differentiates
production wells amongst a large number of non-productive wells using just these geologic data. This suggests that these geologic
attributes may be effective as training data for using ML techniques to identify areas within unexplored subsurface volumes that have
the geologic characteristics that constitute productive geothermal wells. All the data and codes, including Jupyter and Pluto notebooks,
required to reproduce these results are available at the GeoThermalCloud GitHub and GDR repositories

(https:/github.com/SmartTensors/GeoThermalCloud jl/tree/master/Brady ).
4.3 GeoDT synthetic dataset

This case study shows the capability of finding relationships among numerous attributes in a big dataset. Also, it finds critical attributes
defining geothermal power productionin an enhanced geothermal system.

Our rapid multi-physics GeoDT model (Frash 2021) was
used to generate a library of over 2000 geothermal e
production scenarios based on the UtahFORGE site’s l 04
parameters. This GeoDT modeling approach enables 3
valuation that considers the interplay between general

site parameters (e.g., depth and thermal gradient), in-situ oo B

stress attributes (e.g., stress anisotropy), rock mechanical l

attributes (e.g., elastic moduli), natural fracture strength,

and permeability characteristics (e.g., hydraulic aperture
and friction angle), natural fracture intensity (e.g.,
number, orientation, and spacing for fractures), fracture
complexity (e.g.,, roughness), and site design decisions
(e.g., well spacing and well orientation). GeoDT also
predicts maximum induced seismic magnitudes using a
built-in length, displacement, aperture, and stress scaling
relationship that is based on existing power-law scaling
relationships (Frash et al., 2021). The site-specific
parameters from the UtahFORGE site used for the model
are given in (Vesselinov, Frash, et al. 2021). Each v
modeled scenario included stochastically generated , l '
natural fractures. An example system is visualized in '
Figure 4.3.1. To solve this system, GeoDT completes the
following computational sequence:

Figure 4.3.1: Example stochastically generated fracture and well scenario with

injection into one well across seven isolated intervals and production from two

bounding wells. The parallel hydraulic fractures propagated from each injection

1. Natural fracture placement, well placement, interval are shown in red, the color indicating that these fractures require relatively
and calculation of fracture activation pressure low pressure for activation (Pc). Note that most, but not all, of the scattered natural
(Pc) based on the far-field stress state, fractures require significantly higher pressures to activate,
mechanical properties, and orientations.

2. Hydraulic stimulation by simultaneous injection into all of the intervals. This ignores sequencing and staging but accelerates
the solver.

3. Long-term flow calculation with consideration of continued stimulation, far-field leakoff, and 3D connectivity issues through

the well and fracture network.

Long-term transient heat-extraction and production simulation where heat from the rock transfers to the injected fluid.

5. Electrical power output calculation via the Single-flash Rankine steam cycle. More advanced and higher efficiency cycles are
not evaluated at this time, so the estimates will be lower than what is achievable by the best available technologies.

&>

Combining these mechanisms, this tool models the whole geothermal development cycle from initial well design to the end of
production. Since GeoDT includes geomechanical coupling between fracture properties and stress, results allow us to probe the
influence of stress data on geothermal production potential at a given site. GeoDT also enables us to investigate links to seismicity and
the benefits or consequences of key design attributes such as well spacing, orientation, and diameter.

Results from GeoDT (Figure 4.3.2) predict the time series of geothermal power production for each of over 2000 subsurface scenarios.
For each scenario, GeoDT estimates when thermal breakthrough (i.e., produced fluid cooling) begins, and the thermal and electrical
power outputs over time. Initial inspection of the results from our GeoDT analysis shows an apparent link between the well spacing and
the electrical power output of the system after 20 years of production. There also appears to be a strong link between the number of
injection intervals and power output. However, these links are only a small portion of what can be identified using ML methods
developed by our team.
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Applying GeoThermalCloud ML methods reveals four constitutive multi-attribute input signatures that control the time series of the
produced fluid enthalpy (i.e., geothermal fluid energy) and the related electrical power potential. The structure of these signatures is
shown in Figure 4.3.3. The roles of all four signatures are stronger and more varied for enthalpy output (i.e., thermal power output) than
for electrical power output, where two of the signatures are almost flat. Each signature is constructed from multiple input attributes and
captures the impact of model inputs onto the model outputs. The complete composition of each controlling signature is shown in Figure
4.3.4. Based on this result, the dominant attribute in each signature is identified by the largest numbers (marked with red boxes in Figure
4.3.4) in each signature. We can use these dominant attributes to categorize the signatures into combining (1) well spacing and other
attributes, (2) stress and other attributes, (3) system (i.e., site conditions) and other attributes, and (4) well dip (i.e., orientation) and
other attributes. The signature that includes well spacing is the only input that links to strongly increased power production over time.
Increased in situ stress causes decreased production over time. Here it is important to note that increased stress will cause fracture
closure after stimulation, which will likely reduce production, but this stress increase will also provide for more shear stress. Shear
stress is a prerequisite for shear stimulation of fractures to increase reservoir performance, but it is also a driver for induced seismicity.
Additional work is needed to parse out the meaning of these signatures and implications for site-specific geothermal energy production.
GeoThermalCloud coupled with GeoDT provides a good platform for this future work, owing to its ability to rapidly model the effect
of complex interactions and design decisions on production for an extensive range of site conditions.

GeoThermalCloud ML methods also allow investigation of the effects of the input attributes (Figure 4.3.4) on other outputs such as
maximum induced seismic magnitude, far-field leakoff, and the number of fractures that interlink the injection and production wells
(Figure 4.3.5). Interestingly, there appears to be a link between the well-spacing dominated signature and the maximum induced seismic
event magnitude. It is not yet clear what underlying mechanism drives this connection. Less surprisingly, the system attributes (e.g.,
natural fractures, well length, well diameter, and rock properties) have a strong influence on the amount of fluid loss (i.e., boundary
outflow rate) from the system. Stress effects on the GeoDT results are clearly evident, but a clear causal pattern is not immediately
apparent. Instead, stress appears to associate with mixed effects, some positive and others negative. Another sumprising result is the
importance of well dip and azimuth (i.e., well orientation). The cause of this importance is suspected to be linked to the natural fracture
orientations, especially Joint Set 3, which is northeast striking and southeast dipping, making it a prime target for shear slip. At the
UtahFORGE site, the nearby Opal Mound Fault is also northeast striking and southeast dipping. The planned well orientation at
UtahFORGE is nearly pempendicular (i.e., face on) to this fault. Note that the presented results are preliminary, and the GeoDT model
was only just completed in 2021. More validation of GeoDT is needed to gain confidence in these model predictions and their
importance to guide field exploration and drilling decision-making. Further investigation of the identified signatures is required to more
clearly understand the links and imp lications.

In conclusion, our ML analyses of GeoDT simulations focused on the influence of stress states and natural fractures on geothermal well
drilling and well production. ML analyses identified well spacing and well orientation as critical parameters impacting energy
production and induced seismicity. Our results also support the idea that “fracture caging” and “well caging” can limit induc ed seismic
event magnitudes. “Caging” aims to optimize the drilling of injection and production wells so that they can contain the circulated fluids
within a portion of the reservoir where fracture-dominated flow occurs.
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Figure 4.3.2: Compiled results from more than 2000 geothermal power production simulations based on the parameters described in
Table 3.8.1. In the time series plot, ahigh-performing case is highlightedin red, and a poor performer is highlightedin green. There
isalsoa clear link between the well spacing and power output in addition to the number of injection intervals (i.e., isolated zones)
and power output (plots on the right).
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Figure 4.3.3: ML identifies the signature structure of the enthalpy and power production time series predicted by GeoDT. The
primary physical components of each mixed signature are provided to aid interpretation. Only one of the signatures (red) shows
inputs that are associatedwith increased production over time.

System design interplays with
reservoir properties (elastic, heat
capacity, gradient, etc.) in optimizing
production

Well spacing and well orientation are
both crucial attributes for increasing
energy production

Well diameter is more important for
production than originally anticipated

As to be expected, rock temperature
has a crucial role for production

Parameters are automatically
identified to be correlated

All three components of the stress
tensor strongly impact production

Fig. 4.3.4: Combined inputs of the four ML identified signatures that control geothermal power production. Callouts are
included to highlight the primary physical components of each signature. We categorize each signature by its most dominant
component. Red colors indicate parameters with high importance with that particular signature, green colors show that a
parameter has a low weight with that specificsignature.
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Stress is interlinked in a

complex way to system
performance

Fig. 4.3.5: ML predicted effects of the identified multi-attribute signatures on various outputs from GeoDT. Callouts are
included to highlight significant links that aid understanding of subsurface geothermal processes coupled with system design.
Red colors indicate outputs with high importance with that particular signature, green colors show that a specific output has a
low weightwith that specificsignature.

5. CONCLUSIONS

GeoThermalCloud is a flexible open-source cloud-based ML framework for geothermal exploration. GeoThermalCloud can
simultaneously handle both public and proprietary datasets. Also, GeoThermalCloud framework consists of a series of advanced pre-
processing, postprocessing, and visualization tools that tremendously simplify its application for real-world problems. These tools
make the ML results understandable and visible even for non-experts; therefore, ML and subject-matter expertise are not critical
requirements to use our ML framework.

GeoThermalCloud utilizes a series of novel LANL-developed patented ML tools called SmartTensors
(hitps:/github.com/SmartTensors). SmartTensors has already been applied to solve a wide range of real-world problems, from COVID-
19(Vesselinov, Middleton, and Talsma 2021) to wildfires (htip./tenosrs.lanl.oov), and it has won two 2021 R&D 100 awards, including
a bronze award for market disruptor tools. SmartTensors is written in Julia programming language, a novel, fast (two orders of
magnitude faster than Python, R, and M AT LAB; hitps:/iulialang.org) language specifically designed for technical, scientific, statistical,
and machine learning computing.

GeoThermalCloud is designed to process and analyze diverse datasets including both small and large datasets. Also, it can handle
sparse datasets with missing values. It does not only analyze but also finds actionable information for enabling decision mak ers to make
sound decisions for geothermal exploration, development, and production. It finds such actionable information by finding mapping
functions between all input parameters. We analyzed 10 diverse datasets and found critical information out of them that would not be
possible by visual inspection or any other statistical tools. Overall, GeoThermalCloud can (1) analyze large field datasets, (2)
assimilate model simulations (large inputs and outputs), (3) process sparse datasets, (4) perform transfer learning (between sites with
different exploratory levels), (5) extract hidden geothermal signatures in the field and simulation data, (6) label geothermal resources
and processes, (7) identify high-value data acquisition targets, and (8) guide geothermal exploration and production by selecting optimal
exploration, production, and drilling strategies.
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