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ABSTRACT 

 

Discovery, exploration, and development of hidden geothermal resources have many risks and challenges because of the complex and 

uncertain subsurface conditions. To mitigate these risks, we have developed a tool called GeoThermalCloud, which utilizes 

unsupervised machine learning (ML) and physics-informed machine learning (PIML) methods to process the data and guide geothermal 

exploration and development efficiently. The unsupervised ML automates the data analyses and interpretations by extracting hidden 

signatures (features) characterizing geothermal resources/exploration/development. It also enables practitioners to identify observations 

that are important to represent the discovered hidden signatures. In addition to data, PIML adds physical constraints such as  mass 
balance, constitutive relationships, and models, in the ML processes to characterize hidden geothermal resources better. 

GeoThermalCloud capabilities include (1) analyzing large field datasets, (2) assimilating model simulations (large inputs and outputs), 

(3) processing sparse datasets, (4) performing transfer learning (between sites with different exploratory levels), (5) extracting hidden 

geothermal signatures in the field and simulation data, (6) labeling geothermal resources and processes, (7) identifying high-value data 

acquisition targets, and (8) guiding geothermal exploration and production by selecting optimal exploration, production, and drilling 
strategies. The GeoThermalCloud is an open-source tool available at https://github.com/SmartTensors/GeoThermalCloud.jl (a part of 

our SmartTensors framework; http://tensors.lanl.gov, https://github.com/SmartTensors) We have used GeoThermalCloud on ten 

geothermal datasets, including a large and sparse dataset of the Great Basin, and all of them show promising results. Most of the data 

and analyses are available on GitHub as well. Obtained results can be reproduced and further expanded by adding additional data. 

Practitioners and researchers are welcome to utilize GeoThermalCloud to solve other geothermal problems. 

 
1. INTRODUCTION 

 

Geothermal community often utilizes a diverse set of attributes/parameters for geothermal resource exploration, geothermal field 
development, and geothermal power production rather than using only a set of attributes. For geothermal resource exploration, they may 

use surface exposures (e.g., springs) in combination with shallow water chemistry (e.g., anions, cations, tracer elements), geophysics 

attributes (e.g., gravity, magnetic, seismic), geologic attributes (e.g., fault, fault density, dike/dyke), geothermal attributes (e.g., thermal 

gradient, heat flow).  There are not a set of attributes for geothermal exploration like in oil/gas field for various reasons. Often each 

geothermal field has unique geological characteristics that make the discovery of geothermal resources is challenging. Furthermore, 

processes and parameters impacting geothermal conditions are poorly understood. It is even more challenging to develop a geothermal 

field because it often requires too many well drillings, and the cost of well installation is very high. Diverse datasets are available to 

help characterize subsurface geothermal conditions (public and proprietary; satellite, airborne surveys, vegetation/water sampling, 

geological, geophysical, etc.). Yet, it is not clear how to properly leverage these datasets for geothermal exploration due to an 

incomplete understanding of how physical processes impacting subsurface geothermal conditions are represented in these observ ations. 

Recent advancements in machine learning (ML) provide great promise to resolve these issues. 

 
The tremendous challenges and risks of geothermal exploration and production bring the demand for novel ML methods and tools that 

can (1) analyze large field datasets, (2) assimilate model simulations (large inputs and outputs), (3) process sparse dataset s, (4) perform 

transfer learning (between sites with different exploratory levels), (5) extract hidden geothermal signatures in the field and simulation 

data, (6) label geothermal resources and processes, (7) identify high-value data acquisition targets, and (8) gu ide geothermal exploration 

and production by selecting optimal exploration, production, and drilling strategies. 

 

To facilitate geothermal exploration and production, we developed and applied our novel Los Alamos National Laboratory (LANL)-

developed ML methodology to discover and extract new (unknown/hidden) geothermal signatures present in existing site, synthetic, and 

regional datasets. Our ML analyses also identified high-value data acquisition strategies that can reduce geothermal 

exploration/production costs and risks. Our ML methods also categorized geothermal data, which is applied to generate geothermal data 

labels (e.g., geothermal resource types). The end product of our effort is the development of a flexible, open-source, cloud-based ML 

framework for geothermal exploration, called GeoThermalCloud. It is an open-source cloud-based ML framework for geothermal 

exploration, geothermal play development, and geothermal power production. It can fuse geothermal datasets and multi-physics codes. 

Datasets can range from small to big datasets; however, to our best knowledge, this is the best tool available in the market to deal wit h 

small datasets and data with missing values. Moreover, it can simultaneously handle both public and proprietary datasets keep ing the 
sensitivities of private data hidden. This increases the quality and applicability of the obtained ML results. Additionally, 
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GeoThermalCloud has in-build preprocessing, postprocessing, and state-of-the-art visualization tools for non-experts. Therefore, both 

experts and non-experts can equally utilize this tool without going through steep learning curve. 

 

GeoThermalCloud has been used to analyze 10 datasets including eight real/field and two synthetic datasets. Here, because of space 

constraints, we provide a glimpse of each dataset we analyzed and explain three datasets in brief. Also, we provide the capability of 

GeoThermalCloud and 

 

2. GEOTHERMALCLOUD CAPABILITY 

 

GeoThermalCloud utilizes SmartTensors, which is an open-source, LANL-developed framework of patented ML methods and 

computational tools (http://tensors.lanl.gov, https://github.com/SmartTensors). SmartTensors is a toolbox for unsupervised and physics-

informed ML based on matrix/tensor factorization constrained by penalties enforcing robustness and interpretability (e.g., 

nonnegativity; physics and mathematical constraints; etc.). It can also utilize hardware accelerators such as graphical and tensor 

processing (GPU and TPU) units to make computing faster. SmartTensors has already been successfully applied to analyze diverse 

datasets related to a wide range of problems, from COVID-19 (Vesselinov, Middleton, and Talsma 2021) to wildfires and text mining. 

The two most commonly used ML algorithms in SmartTensors are NMFk (https://github.com/SmartTensors/NMFk.jl) and NTFk 

(https://github.com/SmartTensors/NTFk.jl). They perform nonnegative matrix/tensor factorization coupled with customized k-means 

clustering (Alexandrov and Vesselinov 2014; Vesselinov et al. 2019; Iliev et al. 2018). NMFk and NTFk are capable of identifying (i) 
the optimal number of hidden signatures in data, (ii) the dominant set of attributes in data that correspond to identified hidden 

signatures, and (iii) locations associated with each hidden signature. Hidden signatures (or features/signals) can be either impossible to 

measure directly or are simply unknown. For example, let  us assume that a series of microphones are placed in a noisy ballroom(Haykin 

and Chen 2005) where many people are talking. The collected data records the mixtures of voices, sounds, and noises. The latent 

signatures are the individual voices that cannot be recorded separately but can be extracted from the collected data. Extract ing latent 

signatures reduces the dimensionality of the data and defines low-dimensional subspaces(Parsons, Haque, and Liu 2004; Constantine 

2015) that represent the entire dataset. After the extraction, the obtained information is post -processed by subject-matter experts to 

identify the physical meaning (e.g., broken glass) or the origin (e.g.,  recognize voices of individuals) of the extracted signatures. Detail 

descriptions of NMFk and NTFk are available at (Alexandrov and Vesselinov 2014; Vesselinov et al. 2019; Iliev et al. 2018). Another 

important tool, PIML, is also available in GeoThermalCloud (https://github.com/SmartTensors/GeoThermalCloud.jl). Through PIML, 

users can utilize any physics code during the training phase of ML models. 

 
3. EXAMPLE DATASETS 

 

ML methods embedded in the GeoThermalCloud have been extensively tested and validated against various kinds of datasets (cite 

GTCloud report). Outputs of these applications have been published in a series of presentations, conference papers and peer-reviewed 

papers. The analyzed ML applications are: 

 

1. Southwest New Mexico (SWNM): Here, we analyzed 18 attributes at 44 locations and identified low- and medium-temperature 

hydrothermal systems; found dominant attributes and spatial distribution of extracted hidden hydrothermal signatures; 
demonstrated blind predictions of the regional physiographic provinces (Vesselinov, Ahmmed, et al.  2021; Vesselinov et al.  2020; 

in review). 

2. Great Basin: In this dataset, we analyzed 18 shallow water chemistry attributes at 14,342 locations. This work extracted hidden 

geothermal signatures associated with low-, medium-, high-temperature hydrothermal systems, their dominant characterization 

attributes, and spatial distribution within the study area (Ahmmed 2020; Ahmmed et al. 2021). The analyses are based on the 

public data available at the Nevada Bureau of Mines and Geology website. 

3. Brady site, Nevada: We identified key geologic factors controlling geothermal production in the Brady geothermal field. Please  

see (Siler et al. 2021) for more details. 

4. Tularosa Basin, New Mexico: Analyzed 21 Play Fairway Analysis (PFA) attributes at 120 locations (Vesselinov 2020); data 

comes from past PFA work in this region (Bennett and Nash 2017). ML analyses identified geothermal signatures associated with 

low-, medium-, and high-temperature hydrothermal systems. Dominant attributes and spatial distribution of the geothermal 

signatures were also defined. 

5. Tohatchi Springs, New Mexico: Explored 19 geothermal attributes at 43 locations in Tohatchi Springs, New Mexico (Ahmmed, 

Vesselinov, and Middleton 2020). Successfully defined geothermal signatures associated with low- and medium-temperature 

hydrothermal systems. Also, we found their dominant attributes, and spatial distribution. 

6. Hawaii: Analyzed four islands’ data separately and jointly; ML identified low-, medium-, and high-temperature hydrothermal 

systems and their dominant characterization attributes (Ahmmed et al. 2020). 

7. Utah FORGE: Performed prospectivity analysis to identify future drilling locations using geological,  geochemical,  and 

geophysical attributes (Ahmmed and Vesselinov 2021). Maps of temperature at depth, and heat flow are constructed based on the 

available data. Processed data includes satellite (InSAR), geophysical (gravity, seismic), geochemical, and geothermal attributes. 

Prospectivity maps generated and drilling locations proposed for future geothermal field exploration. 

8. EGS Collab: Field experiment data processed to extract dominant temporal patterns observed in 49 data streams; erron eous 

measurement attributes and periods automatically identified; interrelated data streams automatically identified. This work has not 

been published yet. 

http://tensors.lanl.gov/
https://github.com/SmartTensors
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https://github.com/SmartTensors/GeoThermalCloud.jl
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9. GeoDT synthetic dataset: GeoDT, a novel LANL-developed 

multi-physics code for predicting the performance of geothermal  

energy systems. GeoDT evaluates how geothermal site data 

conditions impact design decisions related to the construction of 

enhanced geothermal systems (EGS). GeoDT is applied to 

evaluate the combined effect of >90 input parameters on thermal 

power and electrical power output based on >2000 random 

realizations; the analyses are representative of the Utah FORGE 

site conditions. The model inputs and outputs are analyzed using 

our GeoThermalCloud ML tools. They were able to identify key 
controlling attributes, separate the relative impact of different 

physical processes on production, and associate these impacts to 

GeoDT model inputs (Vesselinov, Frash, et al. 2021). Our study 

focused on stress states and natural fractures on geothermal well  

drilling and well production. ML analyses identified well spacing 

and well orientation as critical parameters impacting energy 

production and induced seismicity. 

10. Thermo-hydro-chemical synthetic dataset: Also, this tool was 

used to predict synthetic thermo-hydro-chemical states. The 

LANL simulator PFLOTRAN (Lichtner et al. 2015) was used to 

simulate a 3-D thermo-hydro-chemical (THC) model. The model 

simulates heat and mass transport and predicts the spatiotemporal 
distribution of temperature, B+, and Li+ concentrations in the 

subsurface. GeoThermalCloud was used to predict THC data faster than the PLFOTRAN simulation. 

 
4. RESULTS 

 

This section provides a brief description of three analyses that we performed using GeoThermalCloud. The datasets are Great Basin, 

State of the stress of Brady geothermal site, and GeoDT synthetic dataset. 

 

4.1 Great Basin 

 

This case study showcases four important capabilities of GeothermalCloud that are (1) handling missing/sparse data, (2) characterizing 

geothermal resource types, (3) identifying critical attributes for different types of geothermal resources, and (4) reconstructing 

continuous data from sparse with quantified uncertainty. 

 

The Great Basin covers Nevada, and much of its neighboring states: 

Oregon, Utah, California, Idaho, and Wyoming. It has multiple 

geothermal reservoirs ranging from low- to high-temperature 
resources, and a vast area is yet to be explored to discover hidden  

geothermal resources (Figure 4.1.1). Plenty of data have been 

collected over several decades to characterize the regional 

geothermal resources. Here, we process public data available at the 

Nevada Bureau of Mines and Geology website 

[http://www.nbmg.unr.edu/Geothermal/GeochemDatabase.html]. 

The size of the data for this study is 14341 x 18; at 14341 locations, 

17 shallow water geochemical attributes (water cations/anions) and 

groundwater temperature are observed (Goff, Bergfeld, and Janik 

2002; Zehner, Coolbaugh, and Shevenell 2006). The 18 attributes 

are pH, total dissolved solids (TDS), Al3+, B+, Ba2+, Be2+, Br–, Ca2+, 

Cl–, HCO –, K+, Li+, Mg2+, Na+, ∂18O, groundwater temperature, 

quartz geothermometer, and chalcedony geothermometer. pH 

represents alkalinity of water, TDS is the total amount of major and  

tracer cations/anions, Ca2+, K2+, Mg2+, Na+ are major cations, HCO – 

and Cl– are major anions, Al3+, B+, Ba2+, Be2+, Br–, are Li+ trace 

elements, and ∂18O is an oxygen isotope. Major anions/cations 

define the ionic type of water. The ∂18O describes the origin (e.g.,  
meteoric, magmatic, connate) of the water. Groundwater 

temperature indicates the water temperature at a shallow depth 

rather than at the actual geothermal reservoir depth. Quartz and 

chalcedony geothermometers indicate potential reservoir temperature. Table 4.1.1 lists the minimum, maximum, mean, and missin g 

values/sparsity in the data. The minimum and maximum values demonstrate that the dataset attributes vary over a wide range. The 

https://www.zotero.org/google-docs/?ZDrgr0
https://www.zotero.org/google-docs/?ii2EBZ
http://www.nbmg.unr.edu/Geothermal/GeochemDatabase.html
https://www.zotero.org/google-docs/?9RTp7h
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missing data column in the table 

indicates that the dataset is heavily 

sparsed. Here, we applied the 

GeoThermalCloud ML methods to 

analyze these sparse 

geothermal/geochemical data and 

better understand/predict the spatial 

distribution of the available 

geothermal resources. 
 

The dataset described above was 

used to perform NMFk analyses. 

Before the ML ran, the dataset was 

log-transformed and normalized 

between 0 to 1. ML analysis was 

performed for k= 2, 3, …, 15 number 

of signatures. The ML algorithm 
selected the k=3 solution to represent 

the optimal number of hidden 

geothermal signatures for the Great 

Basin dataset. The k > 3 solutions 

overfitted the problem. Figure 

4.1.2(a) demonstrates the attribute 

matrix of the optimal NMFk 

solution; the attribute matrix depicts 

the importance of attributes to 

represent extracted signatures. Next, 

we defined types of hydrothermal systems based on the contribution of groundwater temperature in the extracted 3 signatures. Based on 

this assumption, Signatures A, B, and C define low-, high-, and medium-temperature hydrothermal systems, respectively. Signature A 
represents low-temperature hydrothermal systems because of the low contribution of groundwater temperature in this signature. The 

dominant attributes of this signature are TDS, Br+, B+, and ∂18O. Signature B represents high-temperature hydrothermal systems due to 

the high contribution of temperature in this signature. The dominant attributes of the signature are pH, Al3+, Be2+, as well as quartz and 

chalcedony geothermometers. Signature C defines medium-temperature hydrothermal systems because of the medium contribution of 

temperature. The dominant attributes of the signature are Mg2+ and Ca2+. 

 

The spatial distribution of each signature is  shown in Figure 4.1.2(b), where blue, red, and orange colors represent low -, high-, and 
medium-temperature hydrothermal systems. The distribution of Signatures B and C suggests that the significant portions of the Great 

Basin region have prospective geothermal resources. Areas with a high density of B and C locations are labeled with ellipses in the 

figure. Some of these locations also align with existing geothermal resources and sites such as Dixie Valley and Brady geothermal areas 

in Nevada. Maps on the upper row of Figure 4.1.3 further demonstrate the spatial distribution of the extracted geothermal signatures. 

 

Using our ML tool, we can perform analyses on sparse datasets and make predictions for missing values. For example, B+, ∂18O, Br+, 

and TDS are dominant attributes of Signature A, and all of them are sparse. Yet, our ML methodology estimates a continuous spatial 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Vesselinov et al. 

5 

 

 

 

distribution for Signature A. Similarly, the dominant attributes of Signature B and C are also sparse. Still, the ML algorithm 

reconstructs a continuous signature distribution over the study domain. This is possible because NMFk and NTFk can learn from only a 

partially represented object. This capability is generally absent in many traditional machine learning techniques, such as PCA, deep 

neural networks (convolutional or recurrent), etc. 

 

As discussed above, all attributes in the Great Basin dataset have some level of sparsity (Table 3.2.1). For example, ∂18O has 90% 

sparsity (Table 3.2.1). After learning the mapping function among all attributes and generating the signature mappings (Figure 4.1.3), 

our ML algorithm can estimate a continuous distribution of all the attributes, including ∂18O (Figure 4.1.3). In this process, our ML 

method is superior to alternative statistical approaches such as kriging and co-kriging (i.e., Gaussian process modeling) for 

interpolation. The kriging-based methods require additional information to account for interrelationships among analyzed attributes 

(e.g., variograms and co-variograms). Our ML approach identifies the interrelationships among the attributes automatically based on the 

provided data. Both NMFk and NTFk can be applied to 

find mapping functions among all attributes, both in the 

attribute and spatial domain. As a result, we constructed a 

continuous distribution of all attributes in the dataset. This 

continuous distribution of data can be further utilized for 

identifying geothermal resources either in the whole Great 

Basin or part of the Great Basin. 

 

In addition to making predictions about the attribute 

values at the locations where data are missing, our ML 

methodology estimates uncertainties in these predictions. 

For example, the developed ML model is also applied to 

predict the temperature based on all other attributes. The 
data are split into training and prediction sets (Table 

3.2.2). Furthermore, different levels of artificial noise were 

added to the training dataset (Table 3.2.2) to evaluate the 

ML sensitivity to measurement errors. The accuracy of the 

blind temperature predictions was assessed using a 

coefficient of determination (R2) between actual and estimated values for a series of test problems (Table 3.2.2). The results listed in 

Table 3.2.2 demonstrate that accurate prediction (R2 > 0.9) can be obtained even if we use only 50% of the data with <10% 
measurement errors. The above results also validate the applicability of our ML methods to predict geothermal conditions based on 

limited data. 

 

In conclusion, the ML analyses identified hidden geothermal signatures associated with low-, medium-, high-temperature hydrothermal 
systems, their dominant characterization attributes, and spatial distribution within the study area. Also, we generated cont inuous maps of 

low-, medium-, and high-temperature hydrothermal systems that will assist in developing geothermal resources in the Great Basin. 

Furthermore, we constructed continuous distribution from the sparse attributes that will help analyze other 

geological/geophysical/geothermal attributes with geochemical attributes. All the data and codes, including Jupyter and Pluto 

notebooks, required to reproduce these results are available at the GeoThermalCloud GitHub and GDR repositories 

(https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/GreatBasin). 

https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/GreatBasin
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4.2 State of the Stress of Brady Geothermal S ite 

 

This case study shows the capability of 

analyzing complex and big datasets; yet, 

finding a good mapping function in the 

dataset. 

 

State of stress: State of stress in the Brady 

geothermal site is a critical factor determining 

geothermal production (Siler et al. 2021). To 

better estimate the capability of our ML 

algorithms to evaluate the impact of the state 

of stress for geothermal production at the 

Brady site, we performed additional ML 

analyses. To account for the uncertainties 

associated with the state of stress at the site, in 
a set of additional ML analyses, the dilation, 

normal stress, and coulomb shear stress are 

computed for a series of stress ratios: 1:1, 1:2, 

1:3, 1:4, 2:1, 3:1, and 4:1. The impact of the 

alternative ratios is visualized in Figure 4.2.1. 

All these seven stress cases are used together 

with other geologic attributes to create seven 

alternative datasets. Each dataset is 

represented by 3D data tensors with 

dimensions equivalent to the analyzed 

datasets. The only differences between the 
 

seven tensors are in the three stress attributes: dilation,  normal 

stress, and coulomb shear. The goal of the ML analyses is to 

select which of these seven stress ratios are the most 

representative for the site. This is evaluated based on the 

quality of the reconstruction of the original tensors, which is 

achieved by the ML algorithm. The better the reconstruction, 

the higher the ML estimated consistency between the three 

stress attributes (dilation, normal stress, and coulomb shear) 

and the remaining 11 geothermal attributes. Estimates of the 

location matrix under the seven different stress ratios are 

shown in Figure 4.2.2. The production wells, injection, and  

non-productive wells have similar associations with the 

extracted signatures for the seven different stress scenarios. 

However, the overall reconstruction error is the lowest for the 

2:1 ratio case (the seven reconstruction errors are: 1:1 - 12772, 

1:2 - 12773, 1:3 - 12691, 1:4 - 12685, 2:1 - 12666, 3:1 - 

12928, and 4:1 - 12788; the lowest estimate is for 2:1). In fact, 

this is the most probable stress ratio at the site (2:1) based on 
previous studies. 

 

The ML analyses conducted on a 3D geological dataset from 

Brady geothermal field elucidate the geologic characteristics 

that control hydrothermal circulation in the shallow (~300-600 

m depth) geothermal reservoir (Siler et al. 2021). The ML 

results show that known, macro-scale faults, i.e., those that 

have been mapped in 3D based on geological and geophysical 
evidence, are strongly associated with the production wells at 

the Brady site. Geologic attributes that occur most prominently 

within the Brady step-over, such as high spatial densities of 

faults, and dilatation brought on by modeled fault slip, are also 

critical geologic attributes associated predominantly with 

production wells relative to other wells. These results suggest  

that the shallow hydrothermal reservoir at Brady is hosted by 

relatively prominent faults. Locations where such faults lie within the subsurface projection of the step over (i.e., the volume of rock 

https://www.zotero.org/google-docs/?3Eslrf
https://www.zotero.org/google-docs/?Fc1r43
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with relatively high fault and fracture density and where fractures tend to dilate due to periodic fault slip) are exceptionally well suited 

for geothermal production. In concert and not either independently, these two att ributes control the presence of the Brady hydrothermal 

system that has been developed for electricity production and direct uses. The NMFk methodology successfully differentiates 

production wells amongst a large number of non-productive wells using just these geologic data. This suggests that these geologic 

attributes may be effective as training data for using ML techniques to identify areas within unexplored subsurface volumes that have 

the geologic characteristics that constitute productive geothermal wells. All the data and codes, including Jupyter and Pluto  notebooks, 

required to reproduce these results are available at the GeoThermalCloud GitHub and GDR repositories 

(https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/Brady ). 

 

4.3 GeoDT synthetic dataset 

 

This case study shows the capability of finding relationships among numerous attributes in a big dataset. Also, it finds critical attributes 

defining geothermal power production in an enhanced geothermal system. 

 

Our rapid multi-physics GeoDT model (Frash 2021) was 

used to generate a library of over 2000 geothermal 

production scenarios based on the UtahFORGE site’s 

parameters. This GeoDT modeling approach enables 

valuation that considers the interplay between general 

site parameters (e.g., depth and thermal gradient), in-situ 

stress attributes (e.g., stress anisotropy), rock mechanical  
attributes (e.g., elastic moduli), natural fracture strength, 

and permeability characteristics (e.g., hydraulic aperture 

and friction angle), natural fracture intensity (e.g., 

number, orientation, and spacing for fractures), fracture 

complexity (e.g., roughness), and site design decisions 

(e.g.,  well spacing and well orientation). GeoDT also 

predicts maximum induced seismic magnitudes using a  

built-in length, displacement, aperture, and stress scaling 

relationship that is based on existing power-law scaling 

relationships (Frash et al., 2021). The site-specific 

parameters from the UtahFORGE site used for the model 
are given in (Vesselinov, Frash, et al. 2021). Each 

modeled scenario included stochastically generated 

natural fractures. An example system is visualized in 

Figure 4.3.1. To solve this system, GeoDT completes the 

following computational sequence: 

 

1. Natural fracture placement, well placement, 
and calculation of fracture activation pressure 

(Pc) based on the far-field stress state, 

mechanical properties, and orientations. 

2. Hydraulic stimulation by simultaneous injection into all of the intervals. This ignores sequencing and staging but accelerates 

the solver. 

3. Long-term flow calculation with consideration of continued stimulation, far-field leakoff, and 3D connectivity issues through 

the well and fracture network. 

4. Long-term transient heat-extraction and production simulation where heat from the rock transfers to the injected fluid. 

5. Electrical power output calculation via the Single-flash Rankine steam cycle. More advanced and higher efficiency cycles are 

not evaluated at this time, so the estimates will be lower than what is achievable by the best available technologies. 

 

Combining these mechanisms, this tool models the whole geothermal development cycle from initial well design to the end of 

production. Since GeoDT includes geomechanical coupling between fracture properties and stress, results allow us to probe the 

influence of stress data on geothermal production potential at a given site. GeoDT also enables us  to investigate links to seismicity and 

the benefits or consequences of key design attributes such as well spacing, orientation, and diameter. 

 

Results from GeoDT (Figure 4.3.2) predict the time series of geothermal power production for each of over 2000 subsurface scenarios. 

For each scenario, GeoDT estimates when thermal breakthrough (i.e., produced fluid cooling) begins, and the thermal and elect rical 

power outputs over time. Initial inspection of the results from our GeoDT analysis shows an apparent link between the well spacing and 

the electrical power output of the system after 20 years of production. There also appears to be a strong link between the number of 

injection intervals and power output. However, these links are only a small portion of what can be identified using ML methods 

developed by our team. 

https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/Brady
https://www.zotero.org/google-docs/?WfbHMp
https://www.zotero.org/google-docs/?MiCvtD
https://www.zotero.org/google-docs/?E5JDL7
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Applying GeoThermalCloud ML methods reveals four constitutive multi-attribute input signatures that control the time series of the 

produced fluid enthalpy (i.e., geothermal fluid energy) and the related electrical power potential. The structure of these signatures is 

shown in Figure 4.3.3. The roles of all four signatures are stronger and more varied for enthalpy output (i.e., thermal power output) than 

for electrical power output, where two of the signatures are almost flat. Each signature is constructed from multiple input attributes and 

captures the impact of model inputs onto the model outputs. The complete composition of each controlling signature is shown in Figure 

4.3.4. Based on this result, the dominant attribute in each signature is identified by the largest numbers (marked with red boxes in Figure 

4.3.4) in each signature. We can use these dominant attributes to categorize the signatures into combining (1) well spacing and other 

attributes, (2) stress and other attributes, (3) system (i.e., site conditions) and other attributes, and (4) well dip (i.e.,  orientation) and 

other attributes. The signature that includes well spacing is the only input that links to strongly increased power production over time. 

Increased in situ stress causes decreased production over time. Here it is important to note that  increased stress will cause fracture 

closure after stimulation, which will likely reduce production, but this stress increase will also provide for more shear stress. Shear 

stress is a prerequisite for shear stimulation of fractures to increase reservoir performance, but it is also a driver for induced seismicity. 

Additional work is needed to parse out the meaning of these signatures and implications for site-specific geothermal energy production. 
GeoThermalCloud coupled with GeoDT provides a good platform for this future work, owing to its ability to rapidly model the effect 

of complex interactions and design decisions on production for an extensive range of site conditions. 

 
GeoThermalCloud ML methods also allow investigation of the effects of the input attributes (Figure 4.3.4) on other outputs such as 

maximum induced seismic magnitude, far-field leakoff, and the number of fractures that interlink the injection and production wells  

(Figure 4.3.5). Interestingly, there appears to be a link between the well-spacing dominated signature and the maximum induced seismic 

event magnitude. It is not yet clear what underlying mechanism drives this connection. Less surprisingly, the system attribut es (e.g., 

natural fractures, well length, well diameter, and rock properties) have a strong influence on the amount of fluid loss (i.e. , boundary 
outflow rate) from the system. Stress effects on the GeoDT results are clearly evident, but a clear causal pattern is not immediately 

apparent. Instead, stress appears to associate with mixed effects, some positive and others negative. Another surprising result is the 

importance of well dip and azimuth (i.e., well orientation). The cause of this importance is suspected to be linked to the natural fracture 

orientations, especially Joint Set 3, which is northeast striking and southeast dipping, making it a prime target for shear slip. At the 

UtahFORGE site, the nearby Opal Mound Fault is also northeast striking and southeast dipping. The planned well orientation at  

UtahFORGE is nearly perpendicular (i.e., face on) to this fault. Note that the presented results are preliminary, and the GeoDT model 

was only just completed in 2021. More validation of GeoDT is needed to gain confidence in these model predictions and their 

importance to guide field exploration and drilling decision-making. Further investigation of the identified signatures is required to more 

clearly understand the links and implications. 

 
In conclusion, our ML analyses of GeoDT simulations focused on the influence of stress states and natural fractures on geothermal well 

drilling and well production. ML analyses identified well spacing and well orientation as critical parameters impacting energy 
production and induced seismicity. Our results also support the idea that “fracture caging” and “well caging” can limit induc ed seismic 

event magnitudes. “Caging“ aims to optimize the drilling of injection and production wells so that they can contain the circulated fluids 

within a portion of the reservoir where fracture-dominated flow occurs. 

 

 
Figure 4.3.2: Compiled results from more than 2000 geothermal power production simulations based on the parameters described in 

Table 3.8.1. In the time series plot, a high-performing case is highlighted in red, and a poor performer is highlighted in green. There  

is also a clear link between the well spacing and power output in addition to the number of injection intervals (i.e., isolated zones) 

and power output (plots on the right). 
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Figure 4.3.3: ML identifies the signature structure of the enthalpy and power production time series predicted by GeoDT. The 

primary physical components of each mixed signature are provided to aid interpretation. Only one of the signatures (red) shows 

inputs that are associated with increased production over time. 

 

 
Fig. 4.3.4: Combined inputs of the four ML identified signatures that control geothermal power production. Callouts are 

included to highlight the primary physical components of each signature. We categorize each signature by its most dominant 

component. Red colors indicate parameters with high importance with that particular signature, green colors show that a 

parameter has a low weight with that specific signature. 
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Fig. 4.3.5: ML predicted effects of the identified multi-attribute signatures on various outputs from GeoDT. Callouts are 

included to highlight significant links that aid understanding of subsurface geothermal processes coupled with system design. 

Red colors indicate outputs with high importance with that particular signature, green colors show that a specific output has a 

low weight with that specific signature. 

 

5. CONCLUSIONS 

 

GeoThermalCloud is a flexible open-source cloud-based ML framework for geothermal exploration. GeoThermalCloud can 

simultaneously handle both public and proprietary datasets. Also, GeoThermalCloud framework consists of a series of advanced pre-

processing, post-processing, and visualization tools that tremendously simplify its application for real-world problems. These tools 

make the ML results understandable and visible even for non-experts; therefore, ML and subject-matter expertise are not critical 

requirements to use our ML framework. 

 

GeoThermalCloud utilizes a series of novel LANL-developed patented ML tools called SmartTensors 

(https://github.com/SmartTensors). SmartTensors has already been applied to solve a wide range of real-world problems, from COVID-

19(Vesselinov, Middleton, and Talsma 2021) to wildfires (http://tenosrs.lanl.gov), and it has won two 2021 R&D 100 awards, including 

a bronze award for market disruptor tools. SmartTensors is written in Julia programming language, a novel, fast (two orders of 

magnitude faster than Python, R, and MATLAB; https://julialang.org) language specifically designed for technical, scientific, statistical, 

and machine learning computing. 

 

GeoThermalCloud is designed to process and analyze diverse datasets including both small and large datasets. Also, it can handle 

sparse datasets with missing values. It does not only analyze but also finds actionable information for enabling decision mak ers to make 

sound decisions for geothermal exploration, development, and production. It finds such actionable information by finding mapping 

functions between all input parameters. We analyzed 10 diverse datasets and found critical information out of them that would not be 

possible by visual inspection or any other statistical tools. Overall, GeoThermalCloud can (1) analyze large field datasets, (2) 
assimilate model simulations (large inputs and outputs), (3) process sparse datasets, (4) perform transfer learning (between sites with 

different exploratory levels), (5) extract hidden geothermal signatures in the field and simulation data, (6) label geothermal resources 

and processes, (7) identify high-value data acquisition targets, and (8) guide geothermal exploration and production by selecting optimal 

exploration, production, and drilling strategies. 
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