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ABSTRACT

Energy transition extends the range of geological settings and physical processes to be considered in subsurface reservoir modeling.
Numerous applications consider essentially anisotropic reservoirs or require advanced gridding that cannot be resolved consistently by
conventionally used Two Point Flux Approximation (TPFA). The presence of anisotropy and heterogeneity can occur in both permeability
(porous media) and stiffness tensor (linear elasticity). Just like any subsurface formation, geothermal reservoirs can have fluvial channels,
sand lenses, and spatial heterogeneity in permeability which will not give an accurate solution on non-K-orthogonal grids. A Finite Volume
(FV) framework forms the basis for this project due to the local mass conservation property while solving the flow problem. When there
are full tensor material properties, multipoint methods provide a good approximation of flux across interfaces. But these methods are
known to be non-monotone which can introduce new types of numerical errors. So, we present a Nonlinear Two Point Flux Approximation
(NTPFA) based on gradient reconstruction and homogenization function, and a Nonlinear Two Point Stress Approximation (NTPSA)
where the linear elasticity equation is solved in FV framework using the nonlinear discretization technique instead of a multipoint
approach. Currently, we treat both the models independently but the main idea of this kind of approximation is to integrate flow and
mechanics in a unified nonlinear framework with minimal degrees of freedom, and we can derive the coupled equation for a poro-
mechanical simulation. Reducing monotonicity in our primary variables can improve the accuracy of the traction component at the
interface which is especially useful when we model displacement along the fault.

1. INTRODUCTION

The Finite Volume M ethod (FVM) provides a convenient framework in various engineering applications where advection, diffusion, and
other types of physics drive nature [1]. The conservation laws involved within the domain are represented by a partial differential equation
(PDE) which are approximated by the FVM to obtain the solution of an unknown variable for any point in space and time. The local mass
conservation is an intrinsic property in FVM which makes it an ideal framework in the field of fluid mechanics.

Especially when we investigate deep geothermal simulation, the grids we have are often highly distorted because of the presence of
impermeable zones, fractures, faults, or all together. These features not only complicate the geological model but also bring additional
sensitivity . This sensitivity is related to the dynamic response of the reservoir to any perturbations in the geology. From a mathematical
point of view, we can attribute these features to a heterogeneous permeability tensor which characterizes how easy fluid flows in porous
media. Due to the presence ofthis heterogeneous and anisotropic permeability tensor, the conventional TPFA will not be a rep resentative
approximation of flux and gives up convergence. To tackle this problem, there have been numerous theories and developments, which
help us conceptually understand how fluid flow is controlled by these complexities.

It started with the development of Multi-Point flux approximation (M PFA) schemes [2], [3], [4] and [5] where we utilize more than two
cells for approximating flux across the interface between control volumes. The M PFA method generally gives an accurate approximation
of flux across the interface where all or most cells surrounding the interface are considered. However, in many cases, MPFA methods are
known to be conditionally monotone according to [6] and violate the discrete maximum principle (DM P) in extreme cases. This violation
often takes the form of spurious oscillations in the numerical solution across the grid. There has been extensive research associated with
how we can minimize these oscillations and make the M PFA discretization more robust.

To tackle this problem, a nonlinear formulation of the discrete flux equation was developed by [7] and [8] and then modified by various
researches [9],[10], [11], [12],[13] and [14]. In this formulation, the linear elliptical equation is transformed to a nonlinear form such that
the scheme becomes monotone. The idea of nonlinear Finite Volume (FV) approaches is that the flux approximations should have non-
negative coefficients in front of unknowns which is pressure in our case. Specifically, in this paper, the Nonlinear Two Point Flux
Approximation (NTPFA) we will follow is positivity preservingbut does not satisfy the DM P condition.

Now after the MPFA procedure gained attention because of its ability to handle anisotropic discontinuous full permeability tensor, there
have been attempts to formulate a similar type of Finite volume framework for linear elasticity problem in [15], [16], [17] and [18].
Although the research in thefield of simulation of momentum equations by Finite Elements (FE) is more mature, the advantage of using
an FV framework in mechanics is the ability to resolve coupled poro-mechanical problems by a unified FV framework. The local
conservation guaranteed in the FV framework makes it more feasible to shift mechanics to FV rather than flow to FE.
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This brings us to the main motivation behind this project. We will first develop NTPFA for multiphase flow problems in subsurface p orous
media with fracture network. Then we will also extend our method to mechanics by introducing Nonlinear Two Point Stress
Approximation (NTPSA), which is a new discretization technique in FV mechanics. Next we analyze the traction profile along a fracture
plane in the domain. The method is implemented in the DARTS platform, which is an open-source general-purpose simulation platform
[19]. DARTS has been successfully applied to various energy transition applications including geothermal energy [20] and poro-
mechanical simulations [21].

2. PROBLEM FORMULATION

The procedure followed in the flow problem is taken from both [22] and [12]. We will first discuss the governing equations for both flow
and mechanics.

2.1 Multiphase Flow

We consider a two-phase two-comp onent flow which assumes immiscible phases (each phase does not dissolve into one another). Water
flooding into oil reservoir or high enthalpy geothermal systems can be modelled using these equations. Although for geothermal we also
need to consider energy balance equation where we should account for EoS of water [20].
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where 1 is represents our domain, d(Q) is the boundary, a = {w, o0} is the phase in our system, s, is the saturation, p, is phase density, v,
is Darcy velocity, k,, is relative phase permeability, K is permeability tensor and u, is viscosity of that phase. The source/sink is
represented by f; and p is pore pressure. Different phases can have different pressures if we consider capillarity and gravity, but for the
sake of simplicity we will not be including those terms. A general boundary condition is also considered in Eq-2, where values of a, §
and y can be varied and n is the normal vector of our interface/boundary face. In a simple case @ = 0, represents Neumann and § = 0,
represents Dirichlet. We also consider compressible system where both phase density p, and porosity ¢ are functions of pressure.

2.2 Linear Elasticity
In this section we consider equations and physics involved in the mechanics problem. We assume the material is elastic, which represents

the mechanical properties of unsaturated subsurface formations. We do not couple it with the fluid flow. The momentum balance equation
looks as follows:

-V-e=f in Q Eq-4
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here o is the stress tensor which is a 3x3 matrix, f is analogous to source/sink term in equation Eq-1 which corresponds to volumetric
force vector 3x1,a and f values are similar to values used in equation Eq-2 , uy, is the displacement at the boundary interface, P is a 3x3
projection operator and r is similar toy inequation Eq-2. We also need a stress-strain relationship which has the same purpose as equation
Eq-3, so we consider Hooke's law in a continuous elastic medium as:

CCie=C: Vu +vu’

gmCremtiTH— Eq-6

here, the first part of equation Eq-6 is represented in tensorial form with C being 4th order material stiffness tensor, € is the strain tensor.
This equation can be rearranged in the format represented in second part of Eq-6 where Vu is the gradient of displacement (also 3x3
tensor). The roller boundary condition is also considered which is represented by

nu, =0, ([I—-nn")(e-n)=0.

Eq-7

3. DISCRETIZATION AND GRADIENT RECONSTRUCTION

Now that we know the physics governing the system, we will use FV discretization to find the ap proximate solution of the problem in our
domain.
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3.1 Discretization Flow

The conservation equation is discretized using gauss law and stokes theorem to characterize flux on the interface.
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where V; is the volume of the discretized cell i, §; is thearea of interface j which belongs tocell i. At is the time step sizeand A(¢p,S,);
is approximated by backward Euler in time i.e., A(pp S); = (PPSOTH — (9p,S,)F, subscript s denotes the property taken from the
upwind direction. We also introduce a new term g = —Kn - Vp we will call as the flux that is approximated in a nonlinear way.

3.2 Pressure Gradient Reconstruction

To get the approximation of flux we need to determine what value of Vp between two cells across which flow is taking place. The starting
point is to consider an interface between cells 1 and 2, we assume pressure is piecewise linear, pressure and flux are continuous across
this interface j,

T T
pyt (xj —xl) ‘Vpi=p,+ (xj - xz) - Vpy,
Eq-9
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P4, D are the pressures in the cells, x4, x; are thecell centers and KK,, K, are the permeability tensors in the cells. The unit normal to the
interface j is represented as n;. The continuity point x; is chosen as the harmonic averaging point, which is detailed in [22].

Then using the information about harmonic averaging point we can derive the pressure gradient by using the equation,
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where xj; is a known point in space, py; is our unknown pressure at that point which can be estimated by interpolating between cell 1
and cell i. The dimension of x; — x4 is 3x3 matrix and right side of equation Eq-10 is a 3x1 vector. We choose the matrix and cell i such
that coefficients in front of pressure from flux equation are non-negative. This is the criteria for an NTPFA approximation as weights
cannot be negative when we combine the semi fluxes from both sides of the interface. But there can also be an instance where a perfect
positive basis including the two-point cell i.e., cell 2 in this case, does not exist. So, we use a homogenization function suggested in [12],
that allows us to interpolate pressure gradient by using cells which are not considered as immediate neighbors to our primary cell 1. We
introduce (vector) homogenization function as:
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where X = {§,,6,, ... Sk} denotes the set of interfaces and © = {V;,V,, ..., Vi, 1} is the set of cells through which we are homogenizing,
ALH = n K;,1n; and r is the shortest distance between collocation point in V; i.e. x4, interface j and the level of homogenization is
represented by k. After we obtain the homogenization function, we can define our auxiliary conditions which will help us to reconstruct
the pressure gradient, if we do not find a positive basis from the immediate neighbors of current cell-interface pair

}[fi(xi —x)Vp1=pi— Py Eq-12

3.3 Nonlinear Flux for Flow

We will derive the formulation only for an internal interface in this paper. Information about boundary faces can be found in the thesis
work [23]

4y = c11(p1— p2) + c15(p1 —p3) +c13(py — pcl)’ Eq-13



Tripuraneni et al.

@3 = c21(pr = P2) +22(P4— P2) + c23(gp — P2). Eq-14

here we are evaluating flux across interface 8, pg, and g correspond to pressures when we take Neumann or Dirichlet conditions
respectively. The value of ¢;; is always non-negative in this equation. We can combine both semi fluxes using the formula

q° = p1af +p243, Fq-15

where u, and p, are weighting parameters and that lie between 0 and 1. They are chosen such that u; + @, = 1and the flux will only
remain with two-point pressures in the final form:

qa =Tip; — Typ, Eq-16

In equation Eq-16, T, and T, are non-negative and function of p3, py, Pg, gp, hence they will change according to how the pressure
in the reservoir domain changes as ps, p4, Pg,, gp are unknowns in our formulation and we have to provide the values from previous

iteration.

We also couple the discretization with fractures as considered in [24].

3.4 Discretization Mechanics
In this section, we derive nonlinear traction approximation for mechanics. The discretization framework will follow a similar path to
NTPFA. First the discrete equation can be formulated by using stokes theorem as follows:

Vu + vu’ Vu +vu’ Vu+ vu’
- |vei——av=- Cim——ndS ~ - |5| ——| s
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where |V] is the volume of our cell, |§| is the area and ng is the normal of interface § which belongs to the current control volume V.
Vu+Vu

Below we use the traction vector defined as F = [(C ] ng at the interface 6.

3.5 Displacement Gradient Reconstruction
First, weneed to establish traction and displacement continuity on our interface with displacement being piecewise linear. The formulation
of traction vector is taken from [17], where the 6x6 matrix C is split into six 3x3 submatrices A.

F=—|n"A, n"A, n"A]
n"A; n"A, nTA;

n"A; n"A?l n"Allrpy
[ Eq-18

Then we can write the continuity of traction and displacement vectors as:

n"A,.Vu; + n"AL.Vv; + n"AL.vw,
F = —|n"A,.Vu; + n"A,.Vv; + n"AL.vw,
n" A Vu; + n'A,. Vv, + n"TA;.Vw,
n'B,.Vu, + n"BL. Vv, + n"BL. vw,
=~ |n"B,.Vu, + 0B, Vv, + n"Bl.Vw, |, Eq-19
n’ Bs. Vu, + n'B,.Vv, + n'B;.Vw,

U+ G (x —xy) =u, + G,(x— x).

The values of u; and G; are

[ ow 0w

| ox ay 0z |

= =& o
u; = [ui; VL',WL'], | ox 9y oz lr
lﬁ ay 0ZJ

Then traction can be characterized by splitting the harmonic part (corresponding to two-point cells) and transversal part (with transversal
displacement gradient):

F=-T@u,—u)-T6G, T=T,(rT,+1,T) T, Fq-20
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where T, T; and T, are 3x3 matrices, 7; is the distance from collocation point 1 to the interface between 1 and 2, T is the 3x9 coefficient
matrix and transversal displacement gradient G is rearranged as 9x1 vector. The reconstruction process is carried on the transversal
gradient and the equations look like:

Vu1 uz _ul
Vv | = F(Q)_l[u3 _u1}
’ -21
Vw;, u, —uy b

Here (Q) ™ will be a 9x9 matrix and the product of I'(Q) ~* should yield a 3x9 matrix withall non-negative entries. This might be quite
challenging, so we investigate the homogeneous problem where we can split the displacement gradients Vu, Vv, Vw such that we only
must invert 3x3 matrices. The auxiliary conditions are as follows:

I®(x,—x)"+r, ;' 0" (&, -B,) n'(A,-B,) n'(a] —B})

o (A -B;) n'(aAf -Bf) n'(Af -BI)|\ [Vu,
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Eq-22
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which could be simplified in a homogeneous case where A; = B;. Again, the auxiliary conditions at boundaries will not be addressed
in this description to keep it simple.

3.6 Nonlinear Traction for Mechanics

The traction can be represented as combination of harmonic part and weighted sum of transversal part of semi fluxes. The final form looks
like:

F=-T(u,-uy) - x:1Fs51 — X2 F 52 Eq-23
with the weights that are represented by,
Hyr 0 0 by O 0
xX1=(0 uy, 0, X2=|[0 4y, O Eq-24
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where gy + gy, =1 V d€ {x,y,z}ie x,+x, =1,
both the transversal tractions can be calculated from,

Fgs = R5(u, —uy) + R§(uz —uy) + R{(uy, — uy) + RE(rg —auy) + RE(rg —auy),

Eq-25

Fs, = R‘{l(u2 —uy)+ R‘; (u, —u,) + Rg(u2 —ug) + Rg (au, —19) + R‘li0 (au, —1r49).

Eq-26

Once the terms corresponding to stencil other that two-point displacements are eliminated by our closure condition we will have traction
as:

F = Tﬂul - T2u2,

Eq-27

where Ty and T, are functions of u3, u,, 7, g, U, Ug, g and 14,. Also note that T; and T, are 3x3 matrices with non-negative entries.

4. SOLUTION STRATEGY

For both flow and mechanics, we use newton iterations and derive the Jacobian terms to solve the equation in the form:
Au=g, Eq-28

with the A matrix assembled by using the flux information from equations Eq-16 and Eq-27. Ty and T, will be 3x3 matrices for mechanics

which means the A will be 3n, x 3n_ matrix where n_ is the total number of control volumes.

o5 )

Ty T Eq-29
Then we compute the residual vector and assemble our Jacobian matrix that comprises of derivatives of residual. So, it is better to evaluate
the derivatives of F from Eq-27 with respect to each displacement in the nonlinear stencil and assemble our Jacobian.
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In Eq-30, J, is evaluated by taking derivative of each element of R; with x; and R, is a function of x;. Also x;, is the unknown vector
i.e., pressure or displacement in our case.

5. NUMERICAL EXPERIMENTS

In this section we will demonstrate how the scheme works in both flow and mechanics, then compare it with other types of discretization
schemes. We use GM SH to generate our meshes for these example problems.

5.1 Multi-Phase Flow Problem

The goal of this experiment is to demonstrate multiphase flow when a heterogeneous permeability tensor is present in the domain. This is
taken from [22]. Both structured and unstructured meshes are tested as shown in Table 1

Table 1: Multi-phase flow test for different meshes.

Mesh Type No. of cells NI NUL/dt
Coarse Transfinite 576 176 2.93
Coarse Hexahedrons 669 195 3.25
Adaptive Hexahedrons 3277 220 3.67
Adaptive Wedges 6702 244 4.07
Fine Transfinite 6561 248 4.13
Fine Wedges 7064 249 4.15
Producer
24|12
LMD
L 1 /
I l.
1]
/\ | Rk [
/\ T -
1
1
/2/ >\ \\'\

Injector

Figure 01: Problem setup of heterogeneous tensor taken from [22].
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Figure 2: Pressure solution for unstructured adaptive wedges (left) and adaptive hexahedrons (right).

saturation saturation
8.4e01 %2
[

Figure 3: Saturation solution for unstructured adaptive wedges (left) and adaptive hexahedrons (right).
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We can see from Figures 2, 3 the saturation front follows the direction of permeability tensor unlike the TPFA approximation [22], where
the solution is dispersed.

5.2 Discrete Fracture Network

In this section, we try to test our discretizer when combined with the fracture network. We say fracture network, but the examples mainly
consider flow in subsurface domain with matrix anisotropy and the set of single fracture and intersecting fractures. The flow will be driven
by wells (we use the Peaceman well model). The following scenarios are considered:

Table 2: DFN + NTPFA.

Case Permeability (mD) Well location ?’5 ;Z‘ure t (days) N NIt
1(0,0)
500 0 O
Single Fracture R_4s| 0 10 0 |RT,q P (50, 100) 1 300 136 4.5
0 0 10
P (100, 0)
1(0,0)
1000 0 O
Intersecting Fractures R_s| © 10 0 ]R{ZS P (50, 100) 1 300 147 4.8
0 0 10
P (100, 50)

Where R_gand R_ 5 are rotation matrices used in the z-axis. I and P, are locations of injectors and producers respectively and our domain
spans [0, 100]%. Total number of cells in both meshes are 2500.

A
A

Figure 4: Meshes used for DFN+NTPFA with single fracture (left) andintersecting fractures (right).
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pressure saturation
349.6 355 360 365 . . 0.6

| o o

Figure 5: Solution of DFN+NTPFA with single fracture, pressure (left) and saturation (right).

pressure saturation
3510 355 360 365 3684 0.4 0.6

| . o

Figure 6: Solution of DFN+NTPFA with intersecting fracture, pressure (left) and saturation (right).
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As we use a non-K-orthogonal grid, we see primary direction of flow is corresponding to the permeability tensor, then due to the presence
of fracture the flow is deviated.

5.3 Compression and Shear (Mechanics)

In this part, we take the following problem previously discussed in [21]. For pure mechanics, as we are not considering any fracture
formation and slip along the fracture, we will analyze the traction profile on a specific line or feature in our grid domain. The setup ofthe
problem is formulated in Figure 7.

Displaced (Dirichlet)

-

Free
[(Neumann)

Free
(Neumann)

Fixed (Dirichlet)

Figure 7: Problem setup on 3D extruded grid, roller boundary conditions in the z+ and z- planes.

0.006

0.004 -0.001

2 0.002

Figure 8: Deformation in our domain uy (left) and uy (right).
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Figure 9: Traction along the orange plane with F, (left) and F¢ (right).

First, we must perform domain shifting such that our initial conditions u, v and w are from 10, 10 and 0 respectively for the NTPSA to
have non-negative weights. We present solutions from coarse wedges as there are some oscillations observed when implementing on
unstructured wedges. From the solutions in Figures~8 and 9, we see some oscillations in normal traction along the orange plane described
in Figure 7. We also compare this result with M PSA approximation form [17] and both these methods present oscillations. A more detailed
analysis on oscillations will be added in the future work.

6. CONCLUSION
Nonlinear discretization methods in subsurface flow simulation are known for their robustness by not only approximating an accurate
form of flux (taking anisotropy and heterogeneity) across the interface, but also giving a monotone solution with no oscillations which

are usually observed in MPFA. The fluxap proximation specifically developed in this project can reconstruct the pressure gradient in most
distorted meshes with severe anisotropy by using the homogenization technique, which helps us to find a positive basis considering the

minimum number of cells in the process.

The insights gained from NTPSA formulation can be used to formulate a Nonlinear poromechanical discretization framework in FV
domain. When we investigate any practical applications such as high enthalpy geothermal simulations, coupling both flow and mechanics
is important to understand how deformation looks during the process. By coupling them in a nonlinear FV framework we can make sure
oscillations in primary variable are reduced.
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