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ABSTRACT 

Energy transition extends the range of geological settings and physical processes to be considered in subsurface reservoir modeling. 
Numerous applications consider essentially anisotropic reservoirs or require advanced gridding that cannot be resolved consistently by 

conventionally used Two Point Flux Approximation (TPFA). The presence of anisotropy and heterogeneity can occur in both permeability 

(porous media) and stiffness tensor (linear elasticity). Just like any subsurface formation, geothermal reservoirs can have fluvial channels, 

sand lenses, and spatial heterogeneity in permeability which will not give an accurate solution on non-K-orthogonal grids. A Finite Volume 

(FV) framework forms the basis for this project due to the local mass conservation property while solving the flow problem. When there 
are full tensor material properties, multipoint methods provide a good approximation of flux across interfaces. But these met hods are 

known to be non-monotone which can introduce new types of numerical errors. So, we present a Nonlinear Two Point Flux Approximation 

(NTPFA) based on gradient reconstruction and homogenization function, and a Nonlinear Two Point Stress Approximation (NTPSA) 

where the linear elasticity equation is solved in FV framework using the nonlinear discretization technique instead of a multipoint 

approach. Currently, we treat both the models independently but the main idea of this kind of approximation is to integrate f low and 
mechanics in a unified nonlinear framework with minimal degrees of freedom, and we can derive the coupled equation for a poro-

mechanical simulation. Reducing monotonicity in our primary variables can improve the accuracy of the traction component at t he 

interface which is especially useful when we model displacement along the fault. 

1. INTRODUCTION 

The Finite Volume Method (FVM) provides a convenient framework in various engineering applications where advection, diffusion, and 
other types of physics drive nature [1]. The conservation laws involved within the domain are represented by a partial differential equation 

(PDE) which are approximated by the FVM to obtain the solution of an unknown variable for any point in space and time. The local mass 

conservation is an intrinsic property in FVM which makes it an ideal framework in the field of fluid mechanics. 

Especially when we investigate deep geothermal simulation, the grids we have are often highly distorted because of the presence of 
impermeable zones, fractures, faults, or all together. These features not only complicate the geological model but also bring additional 

sensitivity. This sensitivity is related to the dynamic response of the reservoir to any perturbations in the geology. From a mathematical 

point of view, we can attribute these features to a heterogeneous permeability tensor which characterizes how easy fluid flows in porous 

media. Due to the presence of this heterogeneous and anisotropic permeability tensor, the conventional TPFA will not be a rep resentative 

approximation of flux and gives up convergence. To tackle this problem, there have been numerous theories and developments, which 

help us conceptually understand how fluid flow is controlled by these complexities. 

It started with the development of Multi-Point flux approximation (MPFA) schemes [2], [3], [4] and [5] where we utilize more than two 

cells for approximating flux across the interface between control volumes. The MPFA method generally gives an accurate approximation 

of flux across the interface where all or most cells surrounding the interface are considered. However, in many cases, MPFA methods are 

known to be conditionally monotone according to [6] and violate the discrete maximum principle (DMP) in extreme cases. This violation 
often takes the form of spurious oscillations in the numerical solution across the grid. There has been extensive research associated with 

how we can minimize these oscillations and make the MPFA discretization more robust. 

To tackle this problem, a nonlinear formulation of the discrete flux equation was developed by [7] and [8] and then modified by various 

researches [9], [10], [11], [12], [13] and [14]. In this formulation, the linear elliptical equation is transformed to a nonlinear form such that 

the scheme becomes monotone. The idea of nonlinear Finite Volume (FV) approaches is that the flux approximations should have non-
negative coefficients in front of unknowns which is pressure in our case. Specifically, in this paper, the Nonlinear Two Point Flux 

Approximation (NTPFA) we will follow is positivity preserving but does not satisfy the DMP condition. 

Now after the MPFA procedure gained attention because of its ability to handle anisotropic discontinuous full permeability tensor, there 

have been attempts to formulate a similar type of Finite volume framework for linear elasticity problem in [15], [16], [17] and [18]. 

Although the research in the field of simulation of momentum equations by Finite Elements (FE) is more mature, the advantage of using 
an FV framework in mechanics is the ability to resolve coupled poro-mechanical problems by a unified FV framework. The local 

conservation guaranteed in the FV framework makes it more feasible to shift mechanics to FV rather than flow to FE.  
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This brings us to the main motivation behind this project. We will first develop NTPFA for multiphase flow problems in subsurface porous 
media with fracture network. Then we will also extend our method to mechanics by introducing Nonlinear Two Point Stress 

Approximation (NTPSA), which is a new discretization technique in FV mechanics. Next we analyze the traction profile along a fracture 

plane in the domain. The method is implemented in the DARTS platform, which is an open-source general-purpose simulation platform 

[19]. DARTS has been successfully applied to various energy transition applications including geothermal energy [20] and poro-

mechanical simulations [21]. 

2. PROBLEM FORMULATION 

The procedure followed in the flow problem is taken from both [22] and [12]. We will first discuss the governing equations for both flow 

and mechanics. 

2.1 Multiphase Flow 

We consider a two-phase two-component flow which assumes immiscible phases (each phase does not dissolve into one another). Water 
flooding into oil reservoir or high enthalpy geothermal systems can be modelled using these equations. Although for geothermal we also 

need to consider energy balance equation where we should account for EoS of water [20]. 

 
𝝏(𝝓𝝆𝖆𝒔𝖆)

𝝏𝒕
+𝛁 ⋅ (𝝆𝖆𝒗𝖆) = 𝒇𝖆 in 𝛀, Eq-1 

 
𝛼 𝑝𝔞 +  𝛽 𝐧 ⋅ 𝒗𝔞  =  𝛾 𝑖𝑛  𝜕Ω, 

Eq-2 

 

 𝒗𝔞 = −
𝑘𝑟𝔞𝕂

𝜇𝔞
∇𝑝,  𝔞 = 𝑤 𝑜𝑟 𝑜, 

Eq-3 

where Ω is represents our domain, 𝜕Ω is the boundary, 𝔞 = {𝑤, 𝑜} is the phase in our system, 𝑠𝔞 is the saturation, 𝜌𝔞 is phase density, 𝒗𝔞 

is Darcy velocity, 𝑘𝑟𝔞 is relative phase permeability, 𝕂 is permeability tensor and 𝜇𝔞 is viscosity of that phase. The source/sink is 

represented by 𝑓𝔞 and 𝑝 is pore pressure. Different phases can have different pressures if we consider capillarity and gravity, but for the 

sake of simplicity we will not be including those terms. A general boundary condition is also considered in Eq-2, where values of 𝛼, 𝛽 

and 𝛾 can be varied and 𝐧 is the normal vector of our interface/boundary face. In a simple case 𝛼 =  0, represents Neumann and 𝛽 =  0, 

represents Dirichlet. We also consider compressible system where both phase density 𝜌𝔞 and porosity 𝜙 are functions of pressure. 

2.2 Linear Elasticity 

In this section we consider equations and physics involved in the mechanics problem. We assume the material is elastic, which represents 

the mechanical properties of unsaturated subsurface formations. We do not couple it with the fluid flow. The momentum balance equation 

looks as follows: 

 − ∇ ⋅ 𝝈 =   𝐟  𝑖𝑛  Ω, 
Eq-4 

 

 𝛼𝐮𝐛  +  𝛽𝑷 (𝝈 ⋅ 𝐧 ) =  𝐫   𝑖𝑛  𝜕Ω, 
Eq-5 

here 𝝈 is the stress tensor which is a 3x3 matrix, 𝐟 is analogous to source/sink term in equation Eq-1 which corresponds to volumetric 

force vector 3x1,𝛼 and 𝛽 values are similar to values used in equation Eq-2 , 𝐮𝐛 is the displacement at the boundary interface, 𝑷 is a 3x3 

projection operator and 𝐫 is similar to 𝛾 in equation Eq-2. We also need a stress-strain relationship which has the same purpose as equation 

Eq-3, so we consider Hooke's law in a continuous elastic medium as: 

 𝝈 = ℂ ∶ 𝜺 = ℂ ∶
∇𝒖 +∇𝒖𝑇

2
, Eq-6 

here, the first part of equation Eq-6 is represented in tensorial form with ℂ being 4th order material stiffness tensor, 𝜺 is the strain tensor. 

This equation can be rearranged in the format represented in second part of Eq-6 where ∇𝒖 is the gradient of displacement (also 3x3 

tensor). The roller boundary condition is also considered which is represented by 

 𝐧𝑇𝐮𝐛 = 0, (𝕀 − 𝐧𝐧𝑇)(𝝈 ⋅ 𝐧) = 𝟎. 
Eq-7 

 

3. DISCRETIZATION AND GRADIENT RECONSTRUCTION 

Now that we know the physics governing the system, we will use FV discretization to find the approximate solution of the problem in our 

domain. 
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3.1 Discretization Flow 

The conservation equation is discretized using gauss law and stokes theorem to characterize flux on the interface. 

 

∫ (
𝜕(𝜙𝜌𝔞𝑠𝔞)

𝜕𝑡
−   ∇ ⋅ (

𝜌𝔞𝑘𝑟𝔞𝐾

𝜇𝔞
∇𝑝))𝑑𝑉

𝑉𝑖

 = ∫
𝜕(𝜙𝜌𝔞𝑠𝔞)

𝜕𝑡
𝑑𝑉

𝜕𝑉𝑖

 ∓ ∫
𝜌𝔞𝑘𝑟𝔞𝑞𝔞

𝜇𝔞
𝜕𝑉𝑖

 𝑑𝑆 

≈ 
Δ(𝜙𝜌𝔞𝑠𝔞)𝑖

Δ𝑡
𝑉𝑖 ∓ ∑ 𝛿𝑗 (

𝜌𝔞𝑘𝑟𝔞

𝜇𝔞
)
𝑠

𝑞𝑖𝑗

𝑗∈𝜕𝑉𝑖

= 𝑓𝔞𝑖𝑉𝑖 , 

Eq-8 

 

where 𝑉𝑖 is the volume of the discretized cell 𝑖, 𝛿𝑗 is the area of interface 𝑗 which belongs to cell 𝑖. Δ𝑡 is the time step size and Δ(𝜙𝜌𝔞𝑠𝔞)𝑖 

is approximated by backward Euler in time i.e., Δ(𝜙𝜌𝔞𝑠𝔞)𝑖  =  (𝜙𝜌𝔞𝑠𝔞)𝑖
𝑛+1−  (𝜙𝜌𝔞𝑠𝔞)𝑖

𝑛, subscript 𝑠 denotes the property taken from the 

upwind direction. We also introduce a new term 𝑞 = −𝕂𝒏 ⋅ ∇𝑝 we will call as the flux that is approximated in a nonlinear way. 

3.2 Pressure Gradient Reconstruction 

To get the approximation of flux we need to determine what value of ∇𝑝 between two cells across which flow is taking place. The starting 

point is to consider an interface between cells 1 and 2, we assume pressure is piecewise linear, pressure and flux are continuous across 

this interface 𝑗, 

 
𝑝1+ (𝒙𝑗 −𝒙𝟏)

𝑇
⋅ ∇𝑝1 = 𝑝2+ (𝒙𝑗 − 𝒙𝟐)

𝑇
⋅ ∇𝑝2, 

−𝕂1𝐧𝑗 ⋅ ∇𝑝1 = −𝕂2𝐧𝑗 ⋅ ∇𝑝2, 
Eq-9 

𝑝1,   𝑝2 are the pressures in the cells, 𝒙𝟏, 𝒙𝟐 are the cell centers and 𝕂1, 𝕂2 are the permeability tensors in the cells. The unit normal to the 

interface j is represented as 𝐧𝑗. The continuity point 𝒙𝑗 is chosen as the harmonic averaging point, which is detailed in [22].  

Then using the information about harmonic averaging point we can derive the pressure gradient by using the equation, 

 [

(𝒙ℎ2 − 𝒙𝟏)
𝑇

(𝒙ℎ3 − 𝒙𝟏)
𝑇

(𝒙ℎ4 − 𝒙𝟏)
𝑇

] ⋅ ∇𝑝
1
 =  [

𝑝
ℎ2

 −  𝑝
1

𝑝
ℎ3

 −  𝑝
1

𝑝
ℎ4

 −  𝑝
1

], Eq-10 

where  𝒙ℎ𝑖 is a known point in space, 𝑝ℎ𝑖 is our unknown pressure at that point which can be estimated by interpolating between cell 1 

and cell 𝑖. The dimension of 𝒙ℎ𝑖 − 𝒙𝟏 is 3x3 matrix and right side of equation Eq-10 is a 3x1 vector. We choose the matrix and cell 𝑖 such 
that coefficients in front of pressure from flux equation are non-negative. This is the criteria for an NTPFA approximation as weights 

cannot be negative when we combine the semi fluxes from both sides of the interface. But there can also be an instance where a perfect 

positive basis including the two-point cell i.e., cell 2 in this case, does not exist. So, we use a homogenization function suggested in [12], 

that allows us to interpolate pressure gradient by using cells which are not considered as immediate neighbors to our primary cell 1. We 

introduce (vector) homogenization function as: 

 

ℋ1,𝓀+1
Σ (𝒙 −𝒙𝟏)  = ∏[𝕀 +

1

𝜆𝑖+1
𝑖

[𝕂𝑖 − 𝕂𝑖+𝟙]𝒏𝑖𝒏𝑖
𝑇] (𝒙− 𝒙𝟏)

𝑘

𝑖=1

− ∑(∏[𝕀+
1

𝜆𝑖+1
𝑖

[𝕂𝑖 − 𝕂𝑖+𝟙]𝒏𝑖𝒏𝑖
𝑇]

𝑗−1

𝑖=1

)

𝑘

𝑗=1

𝑟1
𝑗

𝜆𝑗+1
𝑗

(𝕂𝑗 − 𝕂𝑗+1)𝒏𝑗 , 
Eq-11 

where Σ = {δ1, δ2 ,… , δk} denotes the set of interfaces and Θ = {V1, V2 ,… , Vk+1} is the set of cells through which we are homogenizing,  

𝜆𝑖+1
𝑖 = 𝐧i

T𝕂i+1𝐧i and 𝑟1
𝑗
 is the shortest distance between collocation point in 𝑉1 i.e. 𝒙𝟏, interface 𝑗 and the level of homogenization is 

represented by 𝑘. After we obtain the homogenization function, we can define our auxiliary conditions which will help us to reconstruct 

the pressure gradient, if we do not find a positive basis from the immediate neighbors of current cell-interface pair 

 ℋ1,𝒾
Σ (𝒙𝒊 − 𝒙𝟏)∇𝑝1 = 𝑝𝑖 − 𝑝1. Eq-12 

3.3 Nonlinear Flux for Flow 

We will derive the formulation only for an internal interface in this paper. Information about boundary faces can be found in the thesis 

work [23] 

 𝑞1
𝛿 = 𝑐11(𝑝1− 𝑝2)+ 𝑐12(𝑝1−𝑝3) + 𝑐13(𝑝1 −𝑝𝐺1

), 
Eq-13 
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 𝑞2
𝛿 = 𝑐21(𝑝1 −𝑝2) + 𝑐22(𝑝4− 𝑝2) + 𝑐23(𝑔𝐷 − 𝑝2). Eq-14 

here we are evaluating flux across interface δ, 𝑝𝐺1
 and 𝑔𝐷 correspond to pressures when we take Neumann or Dirichlet conditions 

respectively. The value of 𝑐𝑖𝑗 is always non-negative in this equation. We can combine both semi fluxes using the formula 

 𝑞𝛿 = 𝜇1𝑞1
𝜎 +𝜇2𝑞2

𝜎 , 
Eq-15 

where  𝜇1 and 𝜇2 are weighting parameters and that lie between 0 and 1. They are chosen such that 𝜇1 + 𝜇2  =  1 and the flux will only 

remain with two-point pressures in the final form: 

 𝑞𝛿 = 𝕋1𝑝1− 𝕋2𝑝2. Eq-16 

In equation Eq-16, 𝕋1 and 𝕋2 are non-negative and function of 𝑝3,  𝑝4,  𝑝𝐺1
,  𝑔𝐷, hence they will change according to how the pressure 

in the reservoir domain changes as 𝑝3,  𝑝4,  𝑝𝐺1
,  𝑔𝐷 are unknowns in our formulation and we have to provide the values from previous 

iteration. 

We also couple the discretization with fractures as considered in [24]. 

3.4 Discretization Mechanics 

In this section, we derive nonlinear traction approximation for mechanics. The discretization framework will follow a similar  path to 

NTPFA. First the discrete equation can be formulated by using stokes theorem as follows: 

 
−∫∇

𝑉
⋅ ℂ ∶

∇𝒖 + ∇𝒖𝑇

2
𝒅𝑉 = − ∑ ∫ℂ

𝛿
𝛿∈𝐹(𝑉)

:
∇𝒖 +∇𝒖𝑇

2
𝒏𝑑𝑆 ≈ − ∑ |𝛿| [ℂ ∶

∇𝒖 + ∇𝒖𝑇

2
]
𝛿

𝒏𝛿

𝛿∈𝐹(𝑉)

 

= 𝐟 |𝑉|, 
Eq-17 

where |𝑉| is the volume of our cell, |δ| is the area and 𝒏δ is the normal of interface 𝛿 which belongs to the current control volume 𝑉. 

Below we use the traction vector defined as 𝑭 = − [ℂ ∶
∇𝒖+∇𝒖𝑇

2
]
𝛿
𝒏𝛿 at the interface 𝛿.  

3.5 Displacement Gradient Reconstruction 

First, we need to establish traction and displacement continuity on our interface with displacement being piecewise linear. The formulation 

of traction vector is taken from [17], where the 6x6 matrix ℂ is split into six 3x3 submatrices 𝔸𝑖 . 

 

𝑭 =  − [

𝐧𝑇𝔸1 𝐧𝑇𝔸6
𝑇 𝐧𝑇𝔸5

𝑇

𝐧𝑇𝔸6 𝐧𝑇𝔸2 𝐧𝑇𝔸4
𝑇

𝐧𝑇𝔸5 𝐧𝑇𝔸4 𝐧𝑇𝔸3

][
𝛻𝑢
𝛻𝑣
𝛻𝑤

]. 
Eq-18 

Then we can write the continuity of traction and displacement vectors as: 

 

𝑭 = − [
𝐧𝑇𝔸1 . 𝛻𝑢1  +  𝐧𝑇𝔸6

𝑇 . 𝛻𝑣1  + 𝐧𝑇𝔸5
𝑇 . 𝛻𝑤1

𝐧𝑇𝔸6 . 𝛻𝑢1 +   𝐧𝑇𝔸2 . 𝛻𝑣1  + 𝐧𝑇𝔸4
𝑇 . 𝛻𝑤1

𝐧𝑇𝔸5. 𝛻𝑢1  +  𝐧𝑇𝔸4 . 𝛻𝑣1  + 𝐧𝑇𝔸3 . 𝛻𝑤1

]  

= − [

𝐧𝑇𝔹1 . 𝛻𝑢2  +  𝐧𝑇𝔹6
𝑇. 𝛻𝑣2  +  𝐧𝑇𝔹5

𝑇. 𝛻𝑤2

𝐧𝑇𝔹6. 𝛻𝑢2  +   𝐧𝑇𝔹2. 𝛻𝑣2  +  𝐧𝑇𝔹4
𝑇. 𝛻𝑤2

𝐧𝑇𝔹5. 𝛻𝑢2  +  𝐧𝑇𝔹4 . 𝛻𝑣2  + 𝐧𝑇𝔹3 . 𝛻𝑤2

] , 

𝒖1+ 𝑮1(𝒙 −𝒙𝟏) = 𝒖2+ 𝑮2(𝒙− 𝒙𝟐). 

Eq-19 

The values of  𝒖𝑖 and 𝑮𝑖 are 

𝒖𝑖 = [𝑢𝑖 , 𝑣𝑖,𝑤𝑖],       𝑮𝑖 =

[
 
 
 
 
∂𝑢𝑖

∂𝑥

∂𝑢𝑖

∂𝑦

∂𝑢𝑖

∂𝑧
∂𝑣𝑖

∂𝑥

∂𝑣𝑖

∂𝑦

∂𝑣𝑖

∂𝑧

∂𝑤𝑖

∂𝑥

∂𝑤𝑖

∂𝑦

∂𝑤𝑖

∂𝑧 ]
 
 
 
 

, 

Then traction can be characterized by splitting the harmonic part (corresponding to two-point cells) and transversal part (with transversal 

displacement gradient): 

 𝑭 = −𝑻(𝒖2 − 𝒖1)− 𝚪𝑮𝜏,  𝑻 = 𝑻1(𝑟1𝑻2 + 𝑟2𝑻1)
−1𝑻2 , Eq-20 
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where 𝑻, 𝑻1 and 𝑻2 are 3x3 matrices, 𝑟𝑖 is the distance from collocation point 1 to the interface between 1 and 2, 𝚪 is the 3x9 coefficient  

matrix and transversal displacement gradient 𝑮τ is rearranged as 9x1 vector. The reconstruction process is carried on the transversal 

gradient and the equations look like: 

 
𝚪 [

∇𝑢1
∇𝑣1

∇𝑤1

] = 𝚪(𝑸)−1[

𝒖2 −𝒖1
𝒖3 −𝒖1
𝒖4 −𝒖1

], 
Eq-21 

Here (𝑄)−1 will be a 9x9 matrix and the product of Γ(𝑄)−1 should yield a 3x9 matrix with all non-negative entries. This might be quite 

challenging, so we investigate the homogeneous problem where we can split the displacement gradients 𝛻𝑢 , 𝛻𝑣, 𝛻𝑤  such that we only 

must invert 3x3 matrices. The auxiliary conditions are as follows: 

 

([𝕀 ⊗ (𝒙2 − 𝒙𝟏)
𝑇] + 𝑟2  𝑻2

−1[

𝐧𝑇(𝔸1 − 𝔹1) 𝐧𝑇(𝔸6
𝑇 − 𝔹6

𝑇) 𝐧𝑇(𝔸5
𝑇 − 𝔹5

𝑇)

𝐧𝑇(𝔸6 − 𝔹6) 𝐧𝑇(𝔸2 − 𝔹2) 𝐧𝑇(𝔸4
𝑇 − 𝔹4

𝑇)

𝐧𝑇(𝔸5 − 𝔹5) 𝐧𝑇(𝔸4 − 𝔹4) 𝐧𝑇(𝔸3 − 𝔹3)
])[

∇𝑢1

∇𝑣1

∇𝑤1

]

= 𝒖2 − 𝒖1 , 

Eq-22 

which could be simplified in a homogeneous case where 𝔸𝑖  =  𝔹𝑖 . Again, the auxiliary conditions at boundaries will not be addressed 

in this description to keep it simple. 

3.6 Nonlinear Traction for Mechanics 

The traction can be represented as combination of harmonic part and weighted sum of transversal part of semi fluxes. The final form looks 

like: 

 𝑭 = −𝑻(𝒖2 −𝒖1) − 𝝌1𝑭𝛿1 −𝝌2𝑭𝛿2, Eq-23 

with the weights that are represented by, 

 
𝝌1 = [

𝜇𝑥1 0 0
0 𝜇𝑦1 0

0 0 𝜇𝑧1

] , 𝝌2  =  [
𝜇𝑥2 0 0
0 𝜇𝑦2 0

0 0 𝜇𝑧2

] 
Eq-24 

where 𝜇𝑑1 +  𝜇𝑑2 =  1    ∀   𝑑 ∈  {𝑥, 𝑦, 𝑧} 𝑖. 𝑒.  𝝌1+𝝌2  =  𝕀, 

both the transversal tractions can be calculated from, 

 𝑭𝛿1 = 𝑹2
𝑐(𝒖2 − 𝒖1)+ 𝑹3

𝑐 (𝒖3 −𝒖1) + 𝑹4
𝑐(𝒖4 − 𝒖1) +𝑹5

𝑐(𝒓5 −𝛼𝒖1) +𝑹6
𝑐(𝒓6 −𝛼𝒖1), Eq-25 

 

 𝑭𝛿2 = 𝑹1
𝑑(𝒖2 − 𝒖1)+ 𝑹7

𝑑(𝒖2 −𝒖7)+ 𝑅8
𝑑(𝒖2 − 𝒖8) +𝑹9

𝑑(𝛼𝒖2 − 𝒓9)+ 𝑹10
𝑑 (𝛼𝒖2 − 𝒓10). Eq-26 

Once the terms corresponding to stencil other that two-point displacements are eliminated by our closure condition we will have traction 

as: 

 𝑭 = 𝕋𝟙𝒖1 −𝕋𝟚𝒖2, Eq-27 

where 𝕋𝟙 and 𝕋𝟚 are functions of 𝒖3, 𝒖4 , 𝒓5 , 𝒓6 ,𝒖7 , 𝒖8, 𝒓9 and 𝒓10. Also note that 𝕋𝟙 and 𝕋𝟚 are 3x3 matrices with non-negative entries. 

4. SOLUTION STRATEGY 

For both flow and mechanics, we use newton iterations and derive the Jacobian terms to solve the equation in the form: 

 𝔸 𝒖 = 𝒈, 
Eq-28 

with the 𝔸 matrix assembled by using the flux information from equations Eq-16 and Eq-27. 𝕋𝟙 and 𝕋𝟚 will be 3x3 matrices for mechanics  

which means the 𝔸 will be 3𝒏c x 3𝒏c matrix where 𝒏c is the total number of control volumes. 

 𝔸 = (
𝕋𝟙 −𝕋𝟚

−𝕋𝟙 𝕋𝟚
). 

Eq-29 

Then we compute the residual vector and assemble our Jacobian matrix that comprises of derivatives of residual. So, it is better to evaluate 

the derivatives of 𝑭 from Eq-27 with respect to each displacement in the nonlinear stencil and assemble our Jacobian. 
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 𝒥𝑘  ∆𝑥𝑘  =  −ℛ𝑘, ∆𝑥𝑘  =  𝑥𝑘+1  − 𝑥𝑘, 𝒥𝑘  = 
𝜕ℛ𝑘

𝜕𝑥𝑘
⁄  

Eq-30 

In Eq-30,  𝒥𝑘  is evaluated by taking derivative of each element of ℛ𝑘 with 𝑥𝑘 and ℛ𝑘 is a function of 𝑥𝑘. Also 𝑥𝑘 is the unknown vector 

i.e., pressure or displacement in our case. 

5. NUMERICAL EXPERIMENTS 

In this section we will demonstrate how the scheme works in both flow and mechanics, then compare it with other types of discretization 

schemes. We use GMSH to generate our meshes for these example problems.  

5.1 Multi-Phase Flow Problem 

The goal of this experiment is to demonstrate multiphase flow when a heterogeneous permeability tensor is present in the domain. This is 

taken from [22]. Both structured and unstructured meshes are tested as shown in Table 1 

Table 1: Multi-phase flow test for different meshes. 

Mesh Type No. of cells NI NI/dt 

Coarse Transfinite 576 176 2.93 

Coarse Hexahedrons 669 195 3.25 

Adaptive Hexahedrons 3277 220 3.67 

Adaptive Wedges 6702 244 4.07 

Fine Transfinite 6561 248 4.13 

Fine Wedges 7064 249 4.15 

 

Figure 01: Problem setup of heterogeneous tensor taken from [22]. 



Tripuraneni et al. 

 7 

 

 

Figure 2: Pressure solution for unstructured adaptive wedges (left) and adaptive hexahedrons (right). 

 

Figure 3: Saturation solution for unstructured adaptive wedges (left) and adaptive hexahedrons (right). 
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We can see from Figures 2, 3 the saturation front follows the direction of permeability tensor unlike the TPFA approximation [22], where 

the solution is dispersed. 

5.2 Discrete Fracture Network 

In this section, we try to test our discretizer when combined with the fracture network. We say fracture network, but the examples mainly 

consider flow in subsurface domain with matrix anisotropy and the set of single fracture and intersecting fractures. The flow will be driven 

by wells (we use the Peaceman well model). The following scenarios are considered: 

Table 2: DFN + NTPFA. 

Case Permeability (mD) Well location 
Aperture 

(mm) 

t (days) NI NI/dt 

Single Fracture ℝ−45 [
500 0 0
0 10 0
0 0 10

]ℝ−45
𝑇  

I (0,0) 

P (50, 100) 

P (100, 0) 

1 300 136 4.5 

Intersecting Fractures ℝ−5[
1000 0 0

0 10 0
0 0 10

]ℝ−5
𝑇  

I (0,0) 

P (50, 100) 

P (100, 50) 

1 300 147 4.8 

 

Where ℝ−5 and ℝ−45 are rotation matrices used in the z-axis. I and P, are locations of injectors and producers respectively  and our domain 

spans [0, 100]2. Total number of cells in both meshes are 2500. 

 

Figure 4: Meshes used for DFN+NTPFA with single fracture (left) and intersecting fractures (right).  
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Figure 5: Solution of DFN+NTPFA with single fracture, pressure (left) and saturation (right). 

 

Figure 6: Solution of DFN+NTPFA with intersecting fracture, pressure (left) and saturation (right).  
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As we use a non-K-orthogonal grid, we see primary direction of flow is corresponding to the permeability tensor, then due to the presence 

of fracture the flow is deviated. 

5.3 Compression and Shear (Mechanics) 

In this part, we take the following problem previously discussed in [21]. For pure mechanics, as we are not considering any fracture 

formation and slip along the fracture, we will analyze the traction profile on a specific line or feature in our grid domain. The setup of the 

problem is formulated in Figure 7.  

 

Figure 7: Problem setup on 3D extruded grid, roller boundary conditions in the z+ and z- planes. 

 

 

Figure 8: Deformation in our domain ux (left) and uy (right). 
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Figure 9: Traction along the orange plane with Fn (left) and Ft (right). 

 

First, we must perform domain shifting such that our initial conditions u, v and w are from 10, 10 and 0 respectively for the NTPSA to 

have non-negative weights. We present solutions from coarse wedges as there are some oscillations observed when implementing on 

unstructured wedges. From the solutions in Figures~8 and 9, we see some oscillations in normal traction along the orange plane described 

in Figure 7. We also compare this result with MPSA approximation form [17] and both these methods present oscillations. A more detailed 

analysis on oscillations will be added in the future work. 

6. CONCLUSION 

Nonlinear discretization methods in subsurface flow simulation are known for their robustness by not only approximating an accurate 

form of flux (taking anisotropy and heterogeneity) across the interface, but also giving a monotone solution with no oscillat ions which 

are usually observed in MPFA. The flux approximation specifically developed in this project can reconstruct t he pressure gradient in most 
distorted meshes with severe anisotropy by using the homogenization technique, which helps us to find a positive basis considering the 

minimum number of cells in the process. 

The insights gained from NTPSA formulation can be used to formulate a Nonlinear poromechanical discretization framework in FV 

domain. When we investigate any practical applications such as high enthalpy geothermal simulations, coupling both flow and mechanics  

is important to understand how deformation looks during the process. By coupling them in a nonlinear FV framework we can make sure 

oscillations in primary variable are reduced.  
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