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ABSTRACT

Drilling optimization by use of data from past drilling records is a challenging task. A sufficient amount of data from multiple sources of
information is required, and the data must be standardized and properly recorded. Unfortunately, such requirements can be difficult to
meet in the case of geothermal wells. This study has been an attempt to use modern data science techniques to create machine learning
models that predict rate-of-penetration from past drilling records. It was necessary to overcome the limitations commonly encountered in
geothermal drilling records. In addition, rate-of-penetration is not the only criterion used in drilling optimization, so other optimization
objectives were also considered. In this study, machine learning models that can help to reduce nonproductive time by predicting potential
tripping/problems were developed. These models were found to have satisfactory prediction accuracy to be useful in real life situations.
This study also investigated the problem of incorporating “plain English” textual-type entries in drilling records into machine learning
models. These textual-type entries often carry useful information about the condition of the well that may not be available elsewhere in
the data records. However, the plain English remarks are recorded in nonstandardized ways, and vary greatly depending on who is making
the notes. This makes the task of incorporating textual-type data into any machine learning model an expensive and time-consuming
operation. We found that Bidirectional Encoder Representations from Transformers (BERT) can provide a solution for incorporating
textual data into machine learning models effectively. Using textual information, together with the standardized drilling records, was
found to improve the quality of predictions in most cases.

1. INTRODUCTION

Drilling operations use highly intricate equipment in a very uncertain and hostile downhole environment, while needing to keep the costs
to a minimum. Due to the high cost of renting and operating a drilling rig, reducing the total drilling time always has high priority when
talking about drilling optimization. Typical optimizations include increasing rate-of-penetration (ROP), and reducing nonproductive times
(due to unscheduled tripping and problems, etc.) However, there is no clear relationship between the hundreds of parameters sent from
the rigs and the optimizing parameters. Compounded with the complexities in downhole lithology and wellbore, drilling optimizations
can be unreliable and depend strongly on who is making the prediction.

M achine learning (ML) offers a promising solution to the intricate problem of drilling optimization. M odern M L methods like artificial
neural network (ANN) not only can accurately describe complex relationship between rig data and optimizing parameters, but can also
process nonnumeric data like written text, sound or image recordings. Coupled with the ability to process inputs with missingdata, modern
ML offers a new perspective on drilling optimization where classical statistical methods have failed before. With modern ML, the target
of autonomous drilling in complex formation with minimal prior knowledge may become a reality in the future.

A collection of drilling records from different geothermal field in the United States and Iceland, each with different geological properties,
was used in this study. A preliminary analysis of the collection of drilling records is the main topic of Section 2. Section 3 will discuss
about the deep neural network model developed to predict rate-of-penetration, and potential future tripping/problems. The problem of
integrating text data into the predictions is also in the scope of this study, and will be discussed in Section 4.

2. DATASET

The dataset used in this study is a part of the EDGE project (Carbonari, et al., 2021), which is a research project aimed at developing
machine learning strategies in geothermal drilling optimizationunder the support of the EDGE Program of the US Department of Energy
(DOE) Geothermal Technologies Office. The EDGE project aims to build a database of geothermal drilling data and from there develop
optimization schemes based on machine learning and deep learning methodologies. Currently, the dataset includes data from 113 wells
from different geothermal projects developed over the past 30 years. These data represent vastly different geologic and operational
settings.

For each well, records are collected, averaged daily, and tallied by record number. All collected records are stored in a relational database
for the ease of query and modification. Each relational table in the database is related to other tables by using WelllD and Record Number
as keys. There are a total of 63 tables, each corresponding to a different source of information. Sources of information include drilling
rigs, drill string, drill bit, mud logging, etc. The high variety in information sources is very beneficial to the process of ROP optimization
as modeling the subsurface environment accurately requires detailed surface measurements but also detailed wellbore measurements.
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2.1 Exploratory data analysis

By selecting frequently collected features from the database, it is possibleto do exploratory data analysis (EDA) on the collected data to
make assessments about their quality and find relationships between variables. Because naturally occurring variables will have the
tendency to be distributed under some common probability distributions (Gaussian, Exponential, etc.), any feature that is unusually
distributed is worth examining.

It is easy to see from Figure 1 and Figure 2 that while some features exhibit common distributions (MudFlowM ax, AnnVelocity DC,
AnnVelocity DP, BitHrs), some features do have a spike in the histogram around the zero value. This is an unexpected behavior, which
indicates these features may have outliers or wrong units. Another unexpected problem is that some features have negative values when
they should be positive (BitFootage, BitROPAvg).

Histograms of some example features that exhibit spikes around the zero value are in Figure 3 and Figure 4. It can be seen that while most
recorded values of BitWOBAvg and BitTorqAvgdata are in the [0-1000] range, some values go up to 35000, or about three orders of
magnitude difference compared to typical values. A theory for this behavior is that the different drillers mixed up the units when recording
the values: some recorded BitWOBAvg as Ibs while some as klbs, etc. An easy fix to this problem is noticing the original units for
BitWOBAvg and BitTorqAvgare Ibs and Ibf-ft. Therefore, any value under 100 is incorrectly recorded and should be multiplied by 1000.

The results of the proposed correction method are in Figure 5 and Figure 6. It is observed that in Figure 5, the proposed correction method
turns the BitWOBAvg distribution into a Gaussian distribution, which indicates that our theory likely is correct. However, the opposite
happened in Figure 6, where the proposed correction method does not significantly change the distribution shape, which may indicate that
our theory is not applicable for BitTorqAvg. In addition, because torque values in drilling can vary significantly when drilling when
factoring in stuck pipe, lost circulation and mud motor, BitTorqAvg should be left as is. Another problem with BitTorqAvgis that some
extreme values (20000, 35000, etc.) only appear a few times in the entire dataset. These datapoints can be considered extreme outliers and
removed.

By following the same procedures as BitWOBAvg and BitTorqAvg, improper and extreme outlier values can be identified and
fixed/filtered out as seen in Tablel.

Table 1: Correction methods

Relational table Feature name Correction method

dailybitinfo BitMudDensity Remove all values
BitMudDensity < 1 and
BitMudDensity > 20

dailybitinfo BitWOBAvg BitWOBAvg < 100 *= 1000

dailybitinfo BitTorqAvg Remove all values BitTorqAvg
> 20000

dailybitinfo BitRPMAvg Remove all values
BitRPMAvg > 2000

dailybitinfo BitMudFlowAvg Remove all values
BitMudFlowAvg > 1600

dailybitinfo BitROPAvg Remove all values BitROPAvg
= 1600

dailybitinfo BitWOBAvg Remove all values
BitWOBAvg > 300

dailydrilldetail WOBAvg WOBAvg < 100 *= 1000

dailydrilldetail RPMAvg Remove all values RPMAvg >
2000

dailydrilldetail MudFlowAvg Remove all values
MudFlowAvg > 1600

dailydrilldetail ROPAvg Remove all values ROPAvg >
200

dailydrilldetail PumpPSIAvg Remove all values

PumpPSIAvg > 5000
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Afterall improper values in the dataset are taken care of, thenext step is to find if there is any underlying structure in the dataset. This is
crucial as if some features are incorrectly recorded, or the features have no correlation to each other, there will be no or very weak
underlying structures and the modeling job will be much harder. A commonly used analysis method for this step is principal component
analysis (PCA), which is a dimensionality reduction method so the data can be visualized. However, for a dataset with a large number of
dimensions like ours, there are superior dimensionality reduction methods. In this study, t-distributed stochastic neighbor embedding (t-
SNE) (Maaten and Hinton, 2008) was used for dimensionality reduction.

An interesting feature from Figure 7 and Figure 8 is the amount of separation between dailydrilldetail data and dailybitinfo data. Each
geothermal field is more cleanly delineated in the t-SNE using dailybitinfo compared to the one from dailydrilldetail. This indicates the
data collected from dailybitinfo is of higher quality for ML modeling purpose. However, each geothermal field can be easily identified
from t-SNE graphs from dailydrilldetail data, showing that there is a strong underlying data structure even in the dailydrilldetail data.
Finally, the results from t-SNE analysis confirmed that there is data sufficiency for further rate-of-p enetration modeling,

2.2 Nonnumerical data

In additional to standard drilling records described above, there are also nonstandard drilling records in the database. These records are in
textual information format, rather than numerical format and need to be processed separately. One such feature that carries important
drilling information is the “OpsGroup” column. The “OpsGroup” column encodes what kind of drilling operations happen duringa drilling
day, from a predefined categorical format: “DRILL” for normal drilling, “TRIP” for tripping, “PROBLM ” for problems, and “OTHER”
for other operations (i.e. “DRILL”-“DRILL”- “TRIP”-“TRIP”). This feature is important as the content of the daily operations are not
transparent from the daily average numerical records alone (i.e. it is hard to infer whether trippings occur or not solely from the numerical
records). This will also serve as indicator of nonproductive times, which sometimes are correlated to significant cost-saving opportunities.

Additionally, the records also contain daily remarks from the drillers in the “Description” column. This feature includes remarks that
contain detailed descriptions of what happened that day which cannot be easily described using numbers. There are four different
categories that these remarks belong to, depending on the purposes of the remarks (Table 2 and Table 3).

Table 2: Drilling remarks’ categories

Remark category Purposes

CurrentOps Records of current drilling operations

FutureOps Tentative lists of future operations

Daily Comment Comments from the drillers about any current
drilling operation

MgmtSummary Summary and remarks from rig managements

Table 3: Sample of remarks from the “Description” column

Remark category Example

CurrentOps Drill 12 1/4” hole from xxxx to xxxx using
mud pump 2; worked on mud pump 1;
replaced 4 seats & valves. Drilled 12 1/4” hole
from xxxx to xxxx

FutureOps Recover fish, make up and inspect new bottom
hole assembly, run in hole and continue
drilling 12 1/4” hole f/ xxxx

Daily Comment No mud loss. No new fractures. Rig up drag
at xxxx - 200,000. Rig still pulling good

MgmtSummary No problems with 20” casing run. NO fill on
bottom




Tonand Horne

Histogram of MudFlowAvg

0.00012 0.0025
(oo 0.0020
0.00008
0.0015
0.00006
0.0010
0.00004
00002 0.0005
000000 0.0000
0 100000 200000 300000 100000
Histogram of WOBAvg
0.0004 8
0.0003 6
0.0002 4
0.0001 2
oo Ml awamew oo .
] 20000 140000 60000 80000
Histogram of RPMMax
0.00030
0.0010
0.00025
0.0008
0.00020
00006
0.00015
(oo 0.00010
0.0002 0.00005
0,0000 0.00000
0 10000 20000 30000 40000
Histogram of AnnVelocityDP
0.010
0,008
0.006
0.004
0.002
0.000 - - - -

100 600

800

x 1

0

Histogram of MudFlowMax

2000

500 1000 1500
s Histogram of WOBMax
100000 200000 300000 400000
Histogram of TorqAvg

o

20000 40000 GODOD 80000 100000 120000 140000

0.020

0.015

0.010

0.005

0.000

0.0005

00004

0.0003

0.0002

0.0001

0.0000

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

1)

0

Histogram of ROPAvg

500 1000 1500 2000 2500

Histogram of PumpPSIAvg

2000 4000 6000 8000 10000 12000 14000

Histogram of TorqMax

5000 10000 15000 20000 253000 30000 33000

Figure 1: Histogram of dailydrilldetail data
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Figure 2: Histogram of dailybitinfo data

The lithology of the drilling formations is also useful in creating an accurate model. However, accurate lithological information is hard
and expensive to acquire in advance. Therefore, other sources of information are usually used as proxies for lithology information. In our
dataset, the rock compositions and properties from the mud-shakers, which are recorded in a “Litho” column, can serve as a proxy.
However, the problems of processing textual data encountered with the “Description” column also apply to the “Litho” column. In fact,
the records from mud-shakers are even harder to understand compared remarks from the drillers (Table 4).

Table 4: Sample of daily records from the “Litho” column

40-60% Phyllite, 40-60% Silstone and Clay

sooxx-xxxx 0-20% Phyllite 20-40% Siltstone 40-80% Clay, xxxx-xxxx 0-20% Qtz Vng 30-50%
Phyllite 20-50% Silstone 20-40% Clay, xxxx-xxxx 0-20% Phyllite 20-40% Silstone 40-60% Clay

Mod ylsh brn; firm to hd; sbrnd ctgs; aphne w rd glassy incl; com gtz & calet fill amyg; tr clystn

Rhyolite/ Basalt; lt-med gry, prplish gry, hd, subblky-subang ctngs, aphne-sli porh, (qtz, calct,
chalcedony) fillied amyg

It could be very beneficial for the modeling process if the model can incorporate textual information in additional to the conventional
numerical information. However, despitethe wealth of information that the textual data contains, extracting that information is not easy
as theremarks are records in written English with no standardized structure. Conventionally, manual processing is the only way to extract
useful information out of the remarks, which is highly time- and resource-consuming. Even then, it is hard to incorporate the extracted
information into the M L model to use together with other drilling records. Hence, thesekinds of textual data are very often ignored in ML
modeling. This study will discuss about how to incorporate these remarks effectively without manual processingin Section 4.
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Figure 7: t-SNEresults on dailydrilldetail data. Each dot represents a datapoint and each color represents a different
geothermal field
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Figure 8: t-SNEresults on dailybitinfo data. Each dot represents a datapoint and and each color represents a different
geothermal field

3. MODELING WITH DEEP NEURAL NETWORKS

Since 2010, deep neural network (DNN) methods have gained remarkable improvements, and sometimes outperform humans in some
tasks. From the humble beginning of AlexNet (2012) with merely 66 million parameters to the modern GPT-3 (2020) with more than 17
billion parameters, DNN sizes have grown astoundingly in the last decade, and so have their capabilities. AlexNet started out with simple
object classification tasks, but now GPT-3 is capable of holding natural language conversation with humans (Brown, Mann, Ryder,
Subbiah, et al., 2020). This remarkable advance strongly corresponds to how complex the network is, i.e. the number of layers in the
network.

However, simply stacking layers upon layers does not really make a DNN powerful. DNNs are notoriously hard to train properly, coupled
with the fact that adding more parameters to the network tends to overfit the training dataset. It took research and experimentation to
arrive at modern DNN architecture.

This section discusses the dual-path dual-branch deep residual neural network (DPDBN) architecture used in this study : the methodologies
and the results of using DPDBN in well optimizations.

3.1 Dual-path dual-branch deep residual neural network

In this study, a new neural network architecture, called dual-path dual-branch neural network (DPDBN) was used. The DPDBN
architecture is composed of multiple building blocks (Figure 9), each building block can be formally defined as:
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Let:

X = [le 22,23, ..y Zﬂ—l-)’é—l]
=1l (xe)i r? = 2 (xe)

Fe(xe) = [z¢, ye

Then:

gl (r') + (1 — )g(r?), yeo1 + Bhi (r') + (1 = B)RE(r2)], in forward phase
[z, ye] = { [vgd (r') + (1 — 7)gZ (r?), ye—1 + 8h}(r') + (1 — 6)h}
[Elalg; (r') + (1 — Ela])g#(r?), ye—1 + E[B]h} (r') +

(r?)], in backpropagation phase
(1—E[B])hi(r*)], in validation

where x, is the aggregated output of the previous block, fgl, fgz, ggl, ggz, h[l, h{;z are any feed-forward neural network , and a, B, v, 6
are variables sampled from a uniformly random distribution in the range [0-1]

C ] >
[ 4
| Left branch | | Right branch |
4 L 4
| Mul(c) I | Mul(1 - ) |
Sum
v

Figure 9: Dual-path dual-branch Network building block
3.2 Methodology

3.2.1 Rate-of-penetration modeling

As discussed before, the M L model developed to help drill a successful well will have ROP as the main criterion of optimization. For that
purpose, a ML model based on DPDBN has been developed. The target is to create a ML model that is able to accurately predict ROP
from the drilling records.

The daily-averaged drilling records described in Section 2 serve as inputs, and the daily -averaged ROP will be thetarget. However, these
inputs and outputs cannot be used directly as they are due to multiple problems in the original records, as uncovered in the second section
of Section 2. Therefore, some data preprocessing works are needed to make the data ready for the later modeling part. The data
preprocessing work done on the inputs includes the follow steps:

Take care of improper values

Fill missing values or extreme outliers with nan

Scale the features to have mean of zero and standard deviation of one
Create the feature mask

bl NS
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5. Replace missing values or extreme outliers with zero
6. Concatenate scaled data with the feature mask to create the final input

The first step was described in detail in Section 2. In addition, to prevent data leaking from the inputs to the outputs, some features must
be removed from the inputs. The removed data includes features that record footage or total drilling time of the bits (BitFootage, BitHrs,
etc.). In Step 2, any missing data, or any extreme outlier deemed by the previous step, is replaced witha NAN value. The purpose of this
step is toremove theinfluences of any extreme outlier, and make the data easier to work with in the later steps. Thethird step is scaling
the data, which is a requirement for most neural network models. One of the most common scaling methods is standard scaling, which
transforms the data so that each feature has the mean of zero and standard deviation of one. Standard scaling was also the chosen scaling
method for this project due to its effectiveness and simplicity. After scaling, a feature mask is created. A feature mask is a table which has
the same dimension as the scaled data, where a value of one in the table indicates a missing/outlier value in the original data, and value of
zero indicate the data is present. The purpose of the features mask is to inform the locations of missing data so the model can react
accordingly. Using a feature mask is a strategy that helps a ML model deal with incomplete information, which can also be used to
describe the dataset used in the project. Without this feature mask, any row with missing data has to be dropped, which may reduce the
size of data by up to 75 %. Finally, the input is the simple concatenation of the scaled-data and the feature mask.

Considering the purpose of this model, which is to help drillers to model and maximize the ROP, the model can try to predict the next day
ROP from the current drilling record, giving drillers ample warning times for potential problems. Hence, the model will be trained with
drilling record at time ¢t — 1 and asked to predict the ROP at time ¢.

Conventionally in machine learning, the training set and the validation set are constructed by randomly selecting datapoints from the
original dataset. This is to ensure that both the training and the validation data have the same underlying distributions, which is an
important assumption when using them to gauge the network performances/generalizations. However, considering how a ROP model
would be used in drilling, the model is trained on drilling records of known wells so that it can accurately model the ROP of any new
similar well in the same area. This means that a random train/validation splittingscheme is not suitable as there is no information about
thenew well. To deal with this problem, another train/validation splittingscheme was used; rather than splittingthe information randomly,
the train/validation is chosen well-by-well (i.e. there are drilling records of well 10, 11, 12, 13, 14, and 15; then the records of wells 10,
11, 12, and 13 will be included in the training set while the records of wells 14, and 15 will be included in the validation set). This
train/validation splitting scheme mimics how drillers would use a ROP model in production. Both approaches were considered in the
study, with the train/validation ratio of 3:1.

3.2.2 Other than rate-of-p enetration modeling

As discussed at the end of Section 2, there are other important parameters to the success of a well. Constructing a model that can give
future warning about potential problems and nonproductive times is also beneficial to the drillers. Rather than ROP, this model will predict
what operations will happen tomorrow (the “OpsGroup” feature). In this project, a model to predict the two leading causes of
nonproductive times (“TRIP”and “PROBLM ") was developed. This model takes the drilling record at time t — 1 and predicts whether
“TRIP” or “PROBLM " happens at time ¢t. This will give drillers ample warning time to prevent/remediate p otential nonproductive periods.
For this purpose, the inputs, the train/validation splitting scheme, and the models are similar as in the ROP modeling process. The only
difference is the output, which will be coming from the “Op sGroup” column.

3.3 Results and discussion

3.3.1 Rate-of-penetration modeling

From Figure 10, it can be seen that in random train/validation splitting, the ROP model performed reasonably well on the drilling records
dataset. The model achieves an R* score of 0.56 on the training set and 0.54 on the validation set. The 95% confidence interval of the
model on Figure 11 also indicates good prediction quality.
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Figure 13: 95% confidence interval plot for ROP modeling, well-by-well train/validation splitting
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However, switching from random to well-by-well train/validation splittinghas a detrimental effect on the results. The model only achieves
an R? score of only 0.34 on the training set and 0.10 on the validation set (Figure 12). The 95% confidence interval of the model on Figure
13 shows the high uncertainties in the predictions (i.e. a real ROP of 10 ft/hr is often predicted to be in the range of 5 ft/hr to 15 ft/hr).

It is clear from the result that even with an identical machine learning model, using random train/validation splitting produced a model
that is accurate enough for use in production, while using well-by-well train/validation splittingproduced a model with subpar prediction
quality. Unfortunately, as discussed before, the model trained on random train/validation splitting data has limited use in p roduction
despiteits superior accuracy as it requires knowledge from the future. On the contrary, the model trained on well-by-well train/validation
splittinghas use in production, but its accuracy was not sufficient.

3.3.2 Other than rate-of-p enetration modeling

In contrast to the poor results with ROP modeling, modeling with other than ROP information did produce a model that is usable in

production. In Figure 14, theleft confusion matrix is from “TRIP” prediction model, while the right confusion matrix is from “PROBLM”
prediction model.

The left matrix indicates a really good result as the model predictions are correct most of the time, especially in when tripping happens,
with ratio of True positiveto False positiveratio nearly equal to 3.5:1.

On the other hand, with the right confusion matrix, while it shows good results when forecasting “PROBLM " in the cases where problem
does not happen, the model does poorly when problem does happen. When problem does happen, the ratio of True positive to False
positiveratio is 1:1. In other words, if the model forecasts problem in the future, it is just as reliable as flips of a coin.

Unfortunately, although “problem” does not happen in many drilling processes, any instance of it can result in extensive nonproductive
time and consequently significant costs. Therefore, it is important that the model be able to predict possible future “problem” correctly
rather than the opposite. The final result is a model that is useful in production. The trip prediction model, with its accurate prediction, is
able to give drillers at least one day in advance warning, which can result in proper preparation and reduction of nonproductive time.

False positive

2010

o
o

True negative

o ©
5 5
) S
= =
False negative True positive False negative
0 1 0 1
Predicted Label Predicted Label

Figure 14: Confusion matrix for tripping and problem predictions: left for tripping predictions, right for problem predictions.
One indicates tripping/problem did happen, zero indicates trip ping/problem did not happen.

4. NATURAL LANGUAGE PROCESSING

In additional to impressive results in computer vision that made self-driving vehicles a reality, modern deep neural network also
revolutionized the field of natural language processing (NLP). The most modern NLP models, with the help of deep neural networks, are
capable of NLP tasks that exceed the highest expectation of a decade ago. With GPT-3 (Brown et al., 2020) or RoBERTa (Liu, et al.,
2019), researchers have created NLP models that are capable of holding natural conversations with humans, or writing an essay from a
single sentence prompt that is indistinguishable from human writings.

This section will discuss the usage of natural language processing (NLP) in the drilling modeling process. M ore specifically, this section
shows how to prepare the data and train the BERT model, and how to integrate the new results into the results obtained from Section 3.
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4.1 Bidirectional Encoder Representations from Transformers

A significant breakthrough came in 2017 with the Transformer architecture. On top of the improved quality, Transformer also brings an
order of magnitude of improvements in training speed when dealing with NLP models. As 0f2022, the Transformer model is the preferred
architecture for most NLP tasks.

A new and very important concept in the Transformer is the concept of self-attention. Formally, the concept of self-attention can be
described with a concept of query-key-value attention mechanism, where query, key, and value are three vectors which can be defined as:

*  Query:Q =W, X [embedded input ], vector the attention mechanism is looking from
o Key:K = W, x [ embedded input ], vector the attention mechanism is looking to
e Value: V =W, x [ embedded input ], the value of the attention

where W, Wy, and W, are three learnable matrices with same dimension. There are a query, a key, and a value matrix corresponding to
every embedded element in the input. Then the self-attention can be defined as:

T

Vd

where KT is the transpose of the key matrix and d is is the dimension of K. This concept is illustrated in Figure 15.

Attention(Q, K,V) = sof tmax(

)V

One major benefit of the self-attention head model is it can easily expand, bothin the horizontal direction and the vertical direction. If
the model is expanded horizontally, then it is called a multihead self-attention model where each head produces a different self-
attention. If the model is expanded vertically, then it is called a multilayer self-attention model where the previous head’s self-attention
is the input for next self-attention head. The Transformer encoder-decoder model takes full advantage of the self-attention mechanism
by expanding the self-attention head vertically and horizontally (Figure 16).
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Figure 15: Self-attention head
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Figure 16: Transformer architecture

With the introduction of Transformer, a new era of NLP was opened. Now NLP models can process very long inputs, can be effectively
trained on terabyte-size datasets, and can achieve near human performance in some NLP tasks. However, these state-of-the-art NLP
models all share some common points: they are all enormous with billions of trainable parameters, and they are all trained on extremely
large datasets, which requires an enormous amount of computational power. Therefore, training a model for a specific NLP task until it

achieves state-of-the-art performance is something only the biggest organizations can achieve.

Due to the difficulty in training a good NLP model, transfer learning is an active field of research in NLP. The goal of transfer learning is
to transfer knowledge and information between different models in order to accelerate the training process. Transfer learning is especially
effective when dealing with NLP tasks. Although NLP tasks may be different drastically from each other, most of the time they all have
same common requirement to the NLP models built to solve them, which is the ability to read and understand written natural language.

Bidirectional Encoder Representations from Transformers (BERT) (Devlin, et al., 2019) is a Transformer based NLP model with very
good results on most NLP tasks and exceptional transfer learning capability. The architecture of BERT is remarkably simple: it is the

encoder part of the Transformer architecture (Figure 16).

The main idea is that: to fine tune BERT to the downstream task, the input is fed into the pretrained BERT model, and the output
corresponds to the <CLS> token will be used as input for a feed-forward neural network. This feed-forward neural network will have its
outputs suitable for the downstream tasks, and will be trained together with the model used in the downstream tasks (Figure 17). In most
cases, the pretrained BERT model’s parameters are frozen and will not be modified in the fine tuning process.
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Figure 17: BERT architecture
4.2 Methodology
4.2.1 Qualification of BERT

In this project, a pretrained BERT model called bert-base-uncased was used to process the textual drilling records. This pretrained model
is a case-insensitive, 12 layer, 12 attention head, and 110 million parameter model. The neural network is trained on the BookCorpus, a
corpus of 11038 unpublished books, and the entire English Wikipedia.

The first task was to qualify the pretrained BERT model, so that is it is able to parse and understand these remarks and lithological
comments from the drilling records. As described at the end of Section 2, there are four different categories for the remarks. Together
with the lithological type, there are five categories that any piece of textual data can fall into. If the network can truly understand the
contents of the remarks/comments, then it should be easy to categorize them into the correct type.

In order to test its performances on the drilling records, the remarks/comments were fed into the pretrained BERT model, then the output
corresponding to the <CLS> token was fed to another feed-forward neural network to categorize the source of the input. All the
remarks/comments in the drilling records were used as the dataset for this task; 70% of the randomly selected remarks/comments were
used for the training, and the rests were used for validation.

4.2.2 Modeling with Natural Language Processing

As discussed at the end of Section 2, in addition to standard numerical records, there is also a wealth of textual data in the daily drilling
record. This textual information often provides valuable information that is not available elsewhere. However, this textual information is
recorded as written English remarks without any standardized structure. It is very hard to process these records numerically. However,
BERT provided an elegant solution to process these textual records.

The numerical representations of the remarks/comments described previously, together with the numerical drilling records, were used as
inputs for this task. The new representations of the remarks/comments is concatenated into the final input described in Section 3. Except
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with the new inputs, the methodology and the goals of the studies described in this section are identical to the methodology and the goals
of Section 3: DPDBN is the still the deep neural network architecture used; the target is still to create a M L model that is able to accurately
predict the ROP/“TRIP”/“PROBLM?” from the drilling records.

4.3 Results and discussions

4.3.1 Qualification of BERT

The bert-base-uncased was able to achieve an F-1 score of 0.9 on both training and validation dataset, indicating the capabilities to read
and understand textual information included in the drilling records. The results show that the BERT model was also able to work with
long input (up to 512 tokens) without the problem of “forgetting”. It could be concluded from the results that BERT is strong enough to
use in latter modeling parts.

4.3.1 Modeling with Natural Language Processing

Direct comparisons between Figure 10 and Figure 18, Figure 11 and Figure 19, Figure 12 and Figure 20, and Figure 13 and Figure 21
show that adding textual information provides only small improvements in the quality of ROP predictions. This contradicts the hyp othesis
from the end of Section 3 that adding lithological information would improve the quality of ROP predictions. Even with drillers’ remarks
and lithological information proxies from the mud-shakers, it is not possible to improve the ROP results enough to make the models usable
in production.

Actual ROP, ft/h

Actual ROP, ft/h

Figure 18: Correlation plot for ROP modeling with textual information, random train/validation
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Figure 20: Correlation plot for ROP modeling with textual information, well-by-well train/validation splitting
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Figure 21: 95% confidence interval plot for ROP modeling with textual information, well-by-well train/validation splitting

However, comparing Figure 14 to Figure 22 and Figure 23 provides a completely different picture when using BERT. Figure 22 shows
that using BERT also provides small improvements in tripping prediction accuracy. However, Figure 23 shows that BERT helps bring
significant improvements in problem prediction accuracy. Without using BERT, the accuracy ofpredictions if problems do indeed happen
is only 50%, which is no better than a random guess. However, with BERT, the ratio of True positive to False positive improved to nearly
2:1. This results in a model that is accurate enough to use in production, which can give drillers ample preparation for possible future
problems.

The results in Figure 23 can be explained by the fact that the drillers tend to make remarks/comments about unusual observations
encountered when drilling. A future problem will likely correlate to unusual observations in the past (however the oppositeis not true).
BERT is able to pick out those observations, and in conjunction with numerical drilling records, DPDBN can give accurate forecast about
possible future problems.

Another observation is that by adding outputs from BERT, the prediction quality will improve in most cases. This shows that DPDBN is
capable of processing very large inputs, and only pick out the most relevant features while ignoring the rest, which is a vital property
when processing data like the inputs with BERT which are composed of more than one thousand features.
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Figure 22: Confusion matrix for tripping predictions: left uses textual information, right do not. One indicates tripping did
happen, zero indicates tripping did not happen.
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Figure 23: Confusion matrix for problem predictions: left uses textual information, right do not. One indicates problem did
happen, zero indicates problem did not happen.

5. CONCLUSION

Although this study failed to develop an accurate ROP predicting deep neural network model, it outlines in detail the procedures on how
toprocess, develop, and train a deep neural network model on geothermal drilling records.

Due to the fact that the dataset used in this study is daily -averaged, it is hard to pinpoint the reason for the low performance of ROP
prediction. As there many different drilling operations throughout a single drilling day, daily -averaged records cannot capture all of these
operations. If higher resolution data were available, then better ROP predictions may be achievable.

This study also shows that using Bidirectional Encoder Representations from Transformers (BERT) can effectively process and encode
textual information into a form that can be incorporated with normal numerical records. This enables the use of textual data in drilling
optimization without costly manual preprocessing, If a sufficiently powerful neural network is used in modeling, then the encoded textual
information will provide benefits when used with conventional numerical data.
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