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ABSTRACT

Geothermal Operational Optimization with M achine Learning (GOOML) is a transferable and extensible component-based geothermal
asset modeling framework that considers complex steamfield relationships and identifies optimization prospects using a data-driven
approach to physics-guided, data-centric machine learning, This framework has been used to develop digital twins that provide steamfield
operators with operational environments to analyze and understand historical and forecasted p ower production, explore new steamfield
configuration possibilities, and seek optimal asset management in real world applications.

To create, test, and apply the GOOML framework, diverse time-series datasets spanning multiple years were sourced from various
geothermal power plant components within several complex real-world geothermal operations. These operations are based in the United
States and New Zealand and include a variety of technologies, end-uses and configurations, collectively covering nearly all relevant
operating conditions for modern geothermal fields. Datasets were acquired from multiple sources to ensure that machine learning
experiments generalized properly to various operating conditions. It was found that the data varied in quality, format, and completeness.
To ensure consistency between the various datasets, a standardized data curation process was developed to reliably streamline data
preparation.

This paper will discuss best practices as learned from the GOOM L data curation process which takes the following steps: 1) acquisition
of large quantities of data from power plant operators, 2) digestion of data to gain an initial understanding of what is included, 3) data
transformation, which includes converting the data into a standardized machine-readable format so that they can be visualized, quality
checked, and cleaned, 4) quality assurance and quality control, involving identification of significant data gaps and apparent anomalies
through mapping of data features to real world componentry viathe GOOM L historical model, followed by discussion with modelers and
power plant operators to identify additional data needs and to resolve issues, 5) use in machine learning algorithms, and 6) repetition of
steps one through five until all dataneeds are met and data are deemed suitable for producing trustworthy modeling results which may be
disseminated, ideally along with the curated dataset. This iterative process is focused on improving the quality of the data rather than
tuning machine learning model parameters and supports a shift towards a more data-centric philosophy as a means for improving real-
world applicability of geothermal machine learning projects.

1. INTRODUCTION
1.1 Data Curation

Data curation may be thought of as the process of “caring’ for the data, including organizing, describing, cleaning, enhancing, and
preserving data for scientific use (Knight, 2017). For the purposes of this paper, the data curation definition is expanded to include data
acquisition, data digestion, and data transformation, in addition to the described quality assurance (QA) and quality control (QC) measures
followed by datause or dissemination. These processes are especially relevant to large real-world datasets, in which sensors malfunction,
network connections fail, portions of datasets are misplaced or lost, and human intervention introduces potential bias or error. These
occurrences introduce gaps, anomalies, erroneous values, and bias in datasets which must be addressed to maximize data utility. Even
exemplary data require standardization in terms of units, sampling rates, and other factors.

Data curation is not only essential for preserving high-value data in a meaningful way for future use but is also useful for deriving the
utmost possible information from data prior to use in machine learning algorithms. A robust data curation process is a critical part of any
successful machine learning project that uses real-world data, because without it, results of machine learning experiments lack important
context and applicability to the real world. M ost of the modern practices surrounding data curation in the geothermal industry are on an
ad-hoc basis or are specific to individual organizations. Standardization of this process would ease collaboration between organizations
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by improving data quality, accessibility, and usability, which is of increasing imp ortance with the rise of data-driven technological methods
in recent years.

1.2 Geothermal Operational Optimization with Machine Learning (GOOML)

Geothermal Operational Optimization with Machine Learning, or GOOML, is a modeling framework for creating digital twins of
geothermal power plants. It is based on hybrid data-driven thermodynamics components-based systems models. Instead of relying on
extensive theoretical and semi-empirical relationships, it enforces simple first-principal thermodynamic mass and energy conservation
equations and then uses real historical plant data for training machine learning models to describe the thermodynamic operations of various
steamfield components (see Buster, et al., 2021 (a) for additional information).

GOOM L was developed based off of and tested on three vastly different operating geothermal fields, including: Ormat’s M cGinness Hills
Geothermal Power Plant in Nevada, United States, Ngati Tawharetoa Geothermal Assets’ (NTGA’s) Kawerau Geothermal Power Plant
in New Zealand, and Contact Energy’s Wairakei Geothermal Power Plant in New Zealand. M cGinness Hills is the least complex of the
three in terms of the number of power plant comp onents, with several single-phase production and injection wells, and seven binary Ormat
Energy Converters (OECs). Kawerau is slightly more complex than M cGinness Hills with several two-phase production and injection
wells, multiple separators, six industrial direct use partners and one binary plant. Wairakei is the most complex of the three geothermal
plants, with many two-phase production wells and injection wells, several dry steam production wells, numerous separators, eleven steam
turbines, and two binary units, which have all been added at various stages throughout the field’s 60+ years of operation. In addition,
Wairakei has several swinging wells, which can have their flow redirected in two or three different directions whenever needed. Despite
the differences in the geothermal power plants investigated, GOOML has accurately described all three geothermal systems without
relying exclusively on theory whilst reducing the required engineering design details. GOOM L has the potential to improve overall system
understanding and to increase capacity factors and overall systemutilization. These results are described in more detail in Buster, et al.,
2021 (a), but GOOML’s success is in part credited to a more data-centric approach.

1.3 Data-Centric Artificial Intelligence (Al)

Data-centric artificial intelligence (AI) is a movement focused on improving the quality of data used to train models rather than tuning
model parameters or architecture to improve the accuracy of modeling results. In the presently dominant model-centric approach to
machine learning, as much data as possible is collected and a model is developed that is powerful enough to deal with noise and other
problematic data. In this approach, the data is generally seen as fixed, and the model is iteratively improved until the desired performance
is achieved. In contrast, the data-centric approach holds the model (mostly) fixed and the quality of the data is iteratively improved. It is
often the case that improving the data rather than the model architecture and parameters results in a much more favorable value-to-effort
ratio in real-world applications.

It is a common approach in the machine learning community to simply “add more data” to alleviate the detrimental effects caused by low-
quality data rather than addressing the data quality issues directly. M ore recently, low-quality data has been identified as one of the root
causes of the “proof-of-concept to production gap,” which refers to the inability for machine learning models to succeed when applied in
the real world (Press, 2021). “Data cascades,” which are compounding events that cause negative, downstream effects when issues in the
dataexist, are triggered by conventional machine learning practices that undervalue data quality. Data cascades can be pervasive, invisible,
and delayed, but are often avoidable. Generally speaking, data work is extremely undervalued in machine learning projects across all
domains (Sambasivan, et al., 2021). This is also the case in machine learning projects applied to geothermal. In this paper, we attempt to
reconcile this by laying a foundation for rigorous data-centric Al as applied to the geothermal industry.

1.4 Data Curation and Geothermal Operational Optimization with Machine Learning (GOOML)

The data curation portion ofthe GOOML framework, outlined by Figure 1, includes data acquisition, data digestion, data transformation,
QA and QC, until data are thought to be suitable for use in machine learning models. This process involves repetition of the prior steps
until modeling results meet desired performance criteria and are ready for dissemination, ideally along with the curated dataset. The data
transformation and QA and QC steps of this process have been developed into a software suite. This iterative process caters to the idea of
data-centric Al in an attempt to address the general lack of attention given to data curation in machine learning projects and to ensure that
outputs are of the highest possible quality .
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Figure 1: Graphic describing the data curation process usedby the GOOML project.

2. DATA ACQUISITION

Data acquisition, or data transfer is the first step in any data curation process. This step can be challenging, especially when dealing with
sizable datasets or datasets made up of an inconvenient number of files. Thoughtful data management on the part of the originators of the
data helps to streamline this process. Data management platforms, such as the OSIsoft’s PI system (OSIsoft, 2021), can aid data owners
in file organization on a larger scale, but often the burden of file organization falls directly onto those collecting the data. In these cases,
it is essential that 1) all relevant metadata and data are collected and properly documented, 2) files are organized in a logical manner, 3)
files and directories are named in self-explanatory ways, 4) files are formatted in nonproprietary and widely accessible formats, and 5)
data are stored in a way that minimizes risk of data loss. On top of that, some data are sensitive and data owners are often reluctant to
share such data without assurance that it will be protected in transit and not susceptible to data breaches. Using reliable and secure data
transfer and storage mechanisms can help assure data providers that their data will not be subject to data breaches.

2.1 GOOML Data Acquisition

The GOOM L data acquisition process was different for each modeled field based on the availability of data, the source data format, and
the size of the data. All data was stored in the Data Foundry (Weers, et al., 2020) to allow sharing of files between industry partners and
the GOOML team. The Data Foundry is a file storage solution for Department of Energy (DOE)-funded research that provides secure,
cloud-based storage and universal access to digital information, allowing collaboration between government agencies, national labs,
universities, and private organizations. It is hosted by OpenEI, which provides access to open energy information, data, and resources,
and is a preferred file storage solution for DOE-funded data prior to dissemination because of its adherence to DOE data management and
cyber security protocols. Within the GOOM L data acquisition process, some additional costs were incurred because some data were being
moved halfway across the world (i.e., from New Zealand to the United States).

2.1.1 M cGinness Hills Data Acquisition

When acquiring data from the M cGinness Hills geothermal power plant, spreadsheets containing curated datasets were uploaded from
Ormat’s data historian to the Data Foundry. While this approach was straightforward and eliminated many of the issues associated with
raw data (i.e., gaps, anomalies, and erroneous values), it limited the granularity and frequency of data able to be accessed.
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2.1.2 Kawerau Data Acquisition

Toacquire data from the Kawerau Geothermal Field, specified data were manually exported from the PIsystem which collects and
stores operational data. Unnecessary columns in the data were deleted by hand, and data were manually uploaded to the Data Foundry.
This approach allowed more granular and higher frequency data to be acquired but is infeasible for larger geothermal fields because of
the manual nature of the sub-processes.

2.1.3 Wairakei Data Acquisition

In acquiring data from the Wairakei Geothermal Field, where the amount of data in question was too massive to manually manipulate and
transfer (originally consisting of over 600 files consisting of more than 10 GB of uncompressed comma separated values (CSV) files in
their raw form), select data was gathered from the TIBCO server (TIBCO, 2021) which is used by Contact Energy as a data analytics
solution. At Wairakei, the TIBCO server is connected to the PI system. A series of automated data transfers were set up to up load data
from the TIBCO server to the Data Foundry. This approach was the most streamlined and versatile of the three for the purposes of the
GOOML project.

2.2 GOOML Data Acquisition Lessons Learned

One of the best practices learned from the GOOML data acquisition process is that it is essential to set up regular and reliable
communication with the owners of the data early on. Under certain circumstances, such as a global pandemic that prevents in-person
meetings, communication with power plant operators can be difficult. Setting up regular and reliable communication channels at the start
ofthe project encourages discussion surrounding the estimated timelines for data delivery, allows questions to be asked about data contents
and formats, and builds trust between parties, particularly when the data in question are sensitive. Another best practice includes oversight
on automated data transfers. When automated transfers are left unchecked for too long, issues can arise that introduce gaps in datasets. If
theseare not caught early on, major problems with unclear causes can appear in the data. For example, during the GOOM L historical data
acquisition process, several data files were lost during the transfer, resulting in periodic data gaps which heavily impacted the training of
GOOM L machine learning models.

Storage-efficient file formats are very useful in streamlining the data transfer process. This reduces duplicative information in each file,
keeping only what is necessary. For example, a format in which data features are the columns and time stamps are row indices is preferred
toa format in which each row represents a unique combination of feature name and time index.

Lastly, if possible, all available data should be sent as a single set, rather than as subsets. This reduces the need for additional data requests
that are unavoidable as more information is gathered about the system. Within the GOOML project, the data curation process became a
recursive one in which data were acquired, digested, transformed, cleaned, and then more data were requested and acquired, starting the
process over again. In an ideal scenario, this process would only occur once, although this is almost never the case in reality. Even
seemingly unimportant data can aid in the modeling process (e.g., nearby alarms, electronic gate data, etc.), so it is difficult to determine
what is useful prior to building the model. Often it is only during the refinement of the model that these data are identified as relevant.
The best way to deal with this is to obtain all data and then simply not use what is not needed. If only a subset of the data is provided,
there may be a disconnect between what data are provided and what data exist, where potentially useful data can go unrequested.

3. DATA DIGESTION

The next step in data curation should involve digestion of the data, which includes gaining an understanding of what is contained within
the data. This step can be thought of as “getting to know the data” by spending time exploring the content, format(s), and source(s).
Generally, this process consists of reading background material, mapping measurements to sensors and physical properties being
measured, and conducting exploratory data analysis (EDA) to examine the quality of the data. In the case of geothermal power plant
operational data, piping and instrumentation diagrams (PIDs), engineering drawings, and discussions with power plant operators are also
useful sources. Some additional data digestion may occur after the data transformation step, which will be discussed in more detail in the
next section.

3.1 GOOML Data Digestion

Within the GOOM L project, the data digestion process took the form of first determining which metadata were included, then gaining an
understanding of how that metadata plays into the interpretation of the data, and next methodically mapping data features to individual
components as a means of understanding what is included in the dataset. The mapping of data features to componentry was aided by
background material where available, PIDs, engineering drawings, and discussions with power plant operators.

3.1.1 McGinness Hills Data Digestion

The M cGinness Hills geothermal power plant data were rather simple to digest, as the field is relatively small in terms of the number of
power plant components and associated sensors. In addition, the historian-provided spreadsheets containing curated datasets meant that
the data were already in an interpretable format which streamlined the intake of the data. However, the granularity of these data prevented
deeper analyses and a comprehensive understanding of the field. The data that were obtained were determined to provide enough insight
to move forward with the data curation and modeling processes, and following an initial look at the data, features were mapped to
individual components as described above.
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3.1.2 Kawerau Data Digestion

The Kawerau geothermal field operational data were provided to us in an interpretable format, however due to the field lay out being more
complex than that of M cGinness Hills, additional effort was required to properly digest the data. Kawerau is considered more complex
because it has a higher quantity of power plant components, it provides steam to several direct use industrial partners, its configuration
has changed significantly in recent years, and on occasion, one of its separators receives two-phase fluid from a separate but neighboring
power plant owner. Keeping all of this in mind, an initial understanding of the field was obtained, and decisions were made about which
components (and their associated measurements) to exclude from GOOM L modeling. Specifically, direct use (heat) applications and wells
that were too new to have reliable historical data were excluded from GOOM L analyses. After these decisions were made, measurements
were mapped to relevant componentry as described above.

3.1.3 Wairakei Data Digestion

The Wairakei data digestion was the most complex of the three fields due to the massive quantity of power plant components, the large
amount of metadata provided, and the format that the data arrived in. The format of these data included several metadata fields that did
not prove to be useful for GOOM L analyses. While these were dropped to make the data intake process less laborious, having obtained
them initially helped in gaining a comprehensive understanding of which data were collected and how. Having excess data is always
preferred over having insufficient data. There were also several metadata fields that needed to be used to derive useful quantities, such as
the “expression” field that represented text descriptions of the well condition data, and the “applies from datetime” and “applies to
datetime” which were used to derive an accurate time index reflective of updates made to data values following their collection.
Subsequent to this initial data cleaning, data were carefully mapped to their associated components as described previously.

3.2 GOOML Data Digestion Lessons Learned

From the GOOM L data digestion process, it was learned that it is imperative to gain a comprehensive understanding of the data as early
as possible. This prevents improper interpretation of data which can skew results. Working closely with plant operators and subject matter
experts in this effort is invaluable. In addition, doing this early on reduces the need to go back and adjust methodologies following their
initial imp lementation.

Clear and open communication is essential. Keeping up regular communication with power plant operators and engineers makes
understanding the data much more efficient than it would be without these conversations.

Lastly, it is helpful to obtain as much metadata and documentation as possible. This includes annual reports on operations, PIDs,
engineering drawings, and supporting metadata used to derive useful values. This information allows a complete understanding of the
field in question to be obtained.

4. DATA TRANSFORMATION

Data transformation mainly consists of converting non-standard data into a standardized and machine-readable format. The complexity
of this process is dependent upon the original format of the data. In almost all cases, this is best carried out using a programming language
that works well for data engineering, such as Python, to construct modular functions, which may be combined in various ways to produce
flexible data pipelines.

4.1 GOOML Data Transformation

Within the GOOM L project, asoftware suite was developed consisting of modular functions for use in transforming the data from various
non-standard power plant operational data formats to the standardized GOOML format. The data were transformed in a way that allows
efficient data QA and QC and eventual export to CSV files, which were in some cases split into more manageable time periods. This
format includes a datetime index in ascending order down the vertical axis, and feature names as column headers.

The GOOM L Data Curation software suite is currently designed to work for three raw data formats including the Ormat historian’s curated
format, the slightly modified PI system export format in which unnecessary metadata are deleted by hand, and the raw TIBCO export
format. This software suite is built in a way that allows extensibility to other formats as well, with only minor modifications required.

4.1.1 M cGinness Hills Data Transformation

The M cGinness Hills data transformation process consisted of stitching data from multiple sheets within multiple Microsoft Excel files
together into a single Pandas DataFrame, and then assigning machine-readable and standardized feature names. A “data dictionary” was
created concurrently which includes each feature name, each feature’s description, and each data feature’s associated units of
measurement. The data dictionary is useful for efficient data feature lookup. The data were then ready for the QA and QC process and for
subsequent export toa CSV file.

4.1.2 Kawerau Data Transformation

Transformation of the Kawerau data included an initial step done by the power plant operators, which included dropping the unnecessary
metadata columns from the data prior to acquisition by the GOOM L team. Once received, the data were transformed by taking the feature
descriptions and units of measurement rows out of the dataset and placing them into a data dictionary, along with the feature names. The
data was then split into more manageable temporal chunks. Simply removing these additional rows and splitting the data into temporal
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chunks was sufficient to transform the data into the standardized GOOM UL format prior to the QA and QC process and for subsequent
export to CSV files.

4.1.3 Wairakei Data Transformation

The Wairakei data were the most complex to transform. The data were received in a format where a row exists for every unique
combination of feature name and datetime index, with additional rows existing for every possible swinging and non-swinging well
configuration and condition, and for updates made to the data following initial measurement. The raw data also included additional
columns of metadata that were not relevant to GOOM L. The first step was to remove the irrelevant metadata columns to reduce the size
of the data. Within this dataset, updates made by power plant operators were included as additional rows and outdated rows of data were
removed.

Next, the well condition data were parsed so that only the well condition valid for the largest portion of each time period was kept in the
data. The feature value was updated to the text value for that condition rather than the percentage of time period that the condition was
valid. A datadictionary was created including feature names, feature descriptions, and units of measurement. Then the data features used
only for interpreting the datetime index (“applies from datetime” and “applies to datetime”), for parsing the well condition data
(“expression”), and for creating the data dictionary (“unit of measure”) were dropped as they were no longer relevant. After that, a function
was applied to the data that dropped rows that had both a duplicated combination of datetime index and feature name, and a “not a
number,” or NaN, feature value. The function then dropped additional duplicated combinations of datetime index and feature name,
keeping the first instance of the duplicated rows. This was done to make sure that NaN instances are not being kept over the actual correct
values in places where duplicate rows exist, accounting for possible updates made to data following sensor malfunction or planned sensor
outages.

At this point, the data exist in a slightly simplified version of the original format, where there exists a row for each unique combination
of feature name and datetime index, and there exists one column each for datetime index, feature name, and feature value. The next step
was to “unstack” the data or reformat it so that feature names exist as column headers and datetime indices exist as row headers, removing
duplicative information. This format is much more condensed and more efficiently machine-readable.

An optional additional step is included that allows users to join additional files that are already in this more condensed and machine-
readable format into the transformed dataset. This step was developed to account for supplemental data that are pulled directly from the
PIsystemrather than from the TIBCO server. This additional data is also summarized in terms of feature names, feature descriptions, and
units of measure and is appended to the data dictionary. The data were then split into temp oral chunks ready for the QA and Q C process
and subsequent export to CSV files.

4.2 GOOML Data Transformation Lessons Learned

From the GOOML data transformation process, it was observed that there are significant benefits to object-oriented programming, or
more specifically, building extensible blocks that can be assembled into a modular data pip eline as opposed to creating data transformation
functions on an ad-hoc basis. The most obvious benefit is the reduction in duplicated effort by allowing users to recycle functions that
have already been implemented when building a new data pipeline for a new data format. This methodology is similar to the classic
Strategy Design Pattern which is a general way to enable algorithm selection at runtime (Gamma, et al., 1994).

Another benefit to the GOOM L approach is that it improves readability and reproducibility. When data transformation scripts are written
on an as-needed basis without focus on extensibility, they are often not well-documented or easy-to-understand by any one other than the
person who wrote them. This makes it more difficult for others to reproduce data transformation methods, which can either lead to
improper implementation or require the user to go through the whole process from the beginning rather than building from what has
already been done. Lastly, this approach makes debugging more efficient, as the code is broken into functions for individual tasks (Half,
2021). These are benefits not only to the GOOML team internally, but also to anyone wanting to reproduce the GOOML data
transformation methods.

5. QUALITY ASSURANCE AND QUALITY CONTROL

The terms QA and QC are often used interchangeably, but they represent separate concepts. QA relates to preventing the production of
defective or problematic data, while QC refers to detecting and addressing problematic data (USGS, 2010).

Most of the QA measures surrounding geothermal power plant operational data are handled by power plant operators. Additional QA can
be done during the curation process as a means of ensuring that the process itself is not introducing issues in the data. This can take the
form of plotting select data intermittently throughout the data curation process as a way of validating curation methods.

QC processes include measures to identify and address missing, anomalous, and erroneous measurements within the data. Issues in the
data can be identified by using plots to visually inspect the data, calculating statistics to describe the data, or using physical relationships
to validate dataand ensuring that outputs are physically possible. Any identified issues can berepaired by droppingproblematic data from
the dataset, by supplementing with data collected from human-observation, or through the introduction of plausible synthetic data
produced from trends or physical relationships in the data.

5.1 GOOML Data Quality Assurance and Quality Control

The GOOML QA process includes a series of visual inspections ofthe data either as Pandas DataFrame objects, Pandas Series objects, or
plots of data values versus time to ensure that data transformation and QC processes have only the intended impacts on the data. The
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majority of QA for power plant operational data applies to ensuring sensors are not malfunctioning, and therefore is usually handled by
the power plant operators themselves, thus reducing the time required for QA by the GOOM L data team.

Like data transformation, a GOOMUL QC software suite was built. The QC software suite includes functions to convert data from non-
International System of Units (SI) units to SI units, round values to eliminate unrealistic precisions introduced by calculations, replace
erroneous string values with NaN, update specific data values based on user-inputted mappings, clean up feature names to remove spaces
or other problematic characters, and handle NaN values. It also provides functions to produce supplemental data from the original data.
These supplemental data include condition data for turbines, separators, and wells reflecting whether these components are in service,
shut, or being bypassed for maintenance (e.g., well workovers) or other reasons such as plant reconfigurations. These supplemental data
are used to more easily and accurately model each power plant.

The GOOML QC process also includes functionality to map data features to real world componentry through building configuration files
that reflect relationships between components and their associated data. These configuration files also pull in additional data related to
separator dimensions, well tracer flow testing data, and other informative quantities that provide physical guidance, and are input into the
GOOM L historical model which produces a graph relational structure of the plant and steamfield comp onents.

The GOOM L historical model, discussed in more detail in Buster, et al., 2021 (a), includes more complex data QC functionality, including
considerations for physical laws, such as conservation of mass and energy. In addition, plots of the data may be produced from the
GOOML historical model and used to compare different measurements associated with a given component as a means of identifying
apparent anomalies. For example, if a separator has a positive measured steam flow but a zero liquid flow, there is likely a problem with
the liquid mass flow measurement. A similar process may be applied comparing data describing downstream components to data
describing upstream components to identify apparent anomalies. For instance, if a steam turbine that only has one upstream separator
appears to be producing zero power even though the separator has a significant positive mass flow, there may be an error in the power
generation data. It is much easier to identify these relationships when the data is related by component, as is done by the GOOM L model
network graph structure.

Correction of problems in the data identified by the QC process begins with discussion with power plant operators and engineers to
ascertain the sources of the problems, during which the best ways to resolve these issues is determined and additional data needs are
identified. The QC process did not vary significantly by power plant; therefore, plant-specific methods are not described.

5.2 GOOML Data Quality Assurance and Quality Control Lessons Learned

Frequent QA is essential when constructing data transformation and QC processes for curation of a specific dataset. Without QA, functions
applied to the data can have unintended consequences, producing problems in the data. Use of a standardized and functionalized data
curation library can reduce this, as their methods are proven to have the intended outcomes on the data.

It was observed that the application of mass and energy conservation equations led to much higher quality two-phase well production
data. Without asserting conservation of mass and energy relationships, there were no clear relationships in the production and two-phase
separation data. However, after asserting these invariances by scaling two-phase flow estimates based on more reliable single-phase flow
measurements, models could be reliably trained to extract high-quality relationships from the data. This union of physical laws and data-
centric philosophy is apowerful tool when applyingmachine learning methods to power plants and should be prioritized.

The GOOML QA and QC process also demonstrated the benefits of the graph relational structure for complex systems such as large
geothermal power installations. A relational structure allows an analy st to quality -control data using the relationships between comp onents
in the actual steamfield instead of examining the data in isolation. With the GOOM L graph relational structure, one can query the single -
phase flow out of a separator in relation to the estimated two-phase flow input, or quickly find any measurements from components that
are physically downstream from the separator. Without a graph relational structure, an analyst has the onerous task of cross-checking
systemdiagrams and looking up data feature names. It is much more intuitive to request a software to “give me the downstream comp onent
and its associated data”.

Lastly, as discussed in previous sections of this paper, regular and open communication with data providers is key to success. Without
this, and the accompaniment of detailed documentation, it is likely that sources of problems in the data would be misinterpreted, the lay out
of and changes over time to systems would be misunderstood, and additional data needs would not be addressed.

6. DATA USE IN MACHINE LEARNING MODELS

As discussed previously, within the data-centric ap proach to machine learning, the model is held relatively static while the data is improved
iteratively in order to improve model performance until desired criteria are obtained. Some minor tweaks may be made to the model so
that it better suits the data, but the focus is largely on making improvements to the data. Through preliminary modeling results, additional
data needs are identified, and the data curation process is cycled through again.

6.1 GOOML Data Use in Machine Learning Models

Within the GOOML project, when the data were adequately prepared for use in machine learning models, they were organized into a
graph relational data structure described previously and passed into machine learning hindcast and forecast models. Some additional QC
was undertaken, specifically relating to the machine learning modeling outputs. This helped identify additional data needs. The process
of using the data in machine learning models did not vary by power plant in any noteworthy ways, therefore plant-specific methods are
not discussed.
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6.2 GOOML Data Use in Machine Learning Models Lessons Learned

The GOOML project demonstrates that the graph structure is an efficient way to represent geothermal power plant operational data for
use in machine learning models. This is due to the creation of a digital twin that maps components not only to their associated data, but
also to other related components. This data structure choice allows efficient application of machine learning to the data and streamlines
the identification of additional data needs.

The way data were used in GOOML reiterates the benefits of the data-centric approach to machine learning. Significant improvements
were observed in the machine learning modeling results as improvements were made to the data. In experiments where the data were held
static and more focus was placed on tuning model parameters, considerable overfitting was seen, models were less extensible, and results
were generally less meaningful.

7. ITERATION THROUGH THE PRIOR DATA CURATION STEPS

Ideally, the data curation process described in this paper would only be carried out once. However, due to the exploratory nature of
machine learning, it is inevitable that additional data needs are identified during the development of models. The number of repetitions
required for this process depends on the complexity and quality of the data (i.e., more complex and lower quality data requires more
repetition).

Additional data needs may require acquiring supplementary data to fully constrain the system, fulfilling a need by updating QC
requirements, or simply addressing a newly identified or previously inadequately addressed data issue. Regardless, the need torepeat the
data curation process is usually a result of an incomplete initial understanding of the data or the sy stem, which is unavoidable when dealing
with any real-world system and its associated real-world data. Therefore, we refer to the data curation process as an iterative and
exp loratory process that continues until understanding of the data, system, and model reaches a point where the desired machine learning
model performance is obtained.

7.1 GOOML Iteration through the Prior Data Curation Steps

Several iterations of the GOOML models were required for all three plants. The best demonstration of the need for multiple ongoing
iterations is found in the Wairakei model. This is due to the complexity of the Wairakei Geothermal Power Plant operation and the sheer
quantity of data associated with it. This complexity was the reason Wairakei was selected as the first target, whereby the initial data
curation process was developed from the Wairakei data and then expanded and applied to the Kawerau and M cGinness Hills operat ional
data.

8. DISSEMINATION OF DATA AND RESULTS

Limitations caused by IP provisions are an unfortunate but frequent reality when acquiring data from industry partners. Whilst IP is
important to scientific progress and commercial processes, keeping data proprietary paradoxically limits scientific advancement. Open
data is a key enabler in the advancement of research and scientific innovation.

Access to open dataprovides large volumes of dataand information necessary for not only M L projects, but virtually all modern scientific
research projects. When open data is available, the financial and time burden related to the procurement of that data is greatly reduced.
This encourages interoperability, knowledge sharing, communication, and application of research outputs not only within the scientific
and academic groups but also wider industry and community. As a part of this process, standardized minimum requirements are imposed
for metadata in order to ensure that the data are presented in a meaningful way (Weers, et al., 2017, Taverna, et al., 2021).

Whilst open access to all data would be considered a perfect scenario, it is recognized that without the required investment in the
procurement and ongoing maintenance of data, many high-quality datasets would not exist. This is because the scientific community alone
often cannot bear the resource burden, in terms of infrastructure, people, and financial costs associated with data procurement and
maintenance ofhigh-quality datasets. Despite IP-related limitations, the tools that scientific research can provide industry and communities
can be transformative. As demonstrated by the GOOM L project, government support can facilitate the navigation between open and
closed data access and enable tools such as GOOM L to be created.

8.1 Dissemination of Data and Results from GOOML

Whilst commercially sensitive power plant operational datasets are unable to be released, an anonymized dataset was produced which
includes all of the same features as a real-world geothermal power plant operational dataset, with artificial labels, values, and noise. Big
Kahuna is an artificial geothermal power plant created for this purpose, consistingof single- and two-phase production wells, separators,
and steam turbine, each with fictional yet realistic dimensions and data. This was included in the GOOM L Geothermal Data Repository
(GDR) submission (Buster, et al., 2021 (b)) to provide an example use case along with a releasable experimental dataset.



Taverna et al.

9. OVERALL BEST PRACTICES AND DISCUSSION

The GOOM L project has identified the following best practices for data curation applied to any geothermal machine learning project:

e  Frequent and open communication between the data science team and commercial partners is critical to a successful machine
learning project.

e Data acquisition should include oversight measures, to ensure that data are not lost as a result of network failures or other
problems and should be automated if dealing with a large amount of data in real-time.

e  Comprehensive datadigestion as early on as possible will provide detailed understanding of the data that helps to avoid improper
interpretation of data which can skew results.

e  Datatransformation using extensible code blocks that can be assembled into a modular data pipelineis better than creating data
transformation functions on an ad-hoc basis.

. QA measures should be undertaken regardless of source of data.

e QC is best carried out in a standardized way using a software suite consisting of extensible blocks or functions that can be
assembled into a modular data pipeline (e.g., a strategy design pattern).

e  For complex projects, graph data structures can be a useful way to represent the physical arrangement and corresponding
relationships between data features.

e  The data-centric approach to machine learning produces more meaningful and extensible results than the traditional model-
centric approach.

e  Enforcing realistic physical invariances (e.g, conservation of mass and energy) and identifying physical symptoms of
anomalous data (e.g., a separator with steam flow but no liquid flow) are powerful physics-based methods for improving the
quality of data in a data-centric workflow.

e Data curation is an ongoing and iterative process throughout the life of a project.

e  Successful and useful machine learning models and their results should be shared.

e Where possible, input datashould be made available with machine learning models and results; when IP sensitivity is a concern,
data can often be cleansed or anonymized.

The points above are intended to support the standardization of data curation p rocesses within the geothermal scientific community for
all data types, not solely for geothermal power plant operational data.

Data quality has always been a core issue in the geothermal industry. Key investment and operational decisions are made using scientific
data daily and globally. Realizing the significant gains that could be had from machine learning tools requires a renewed and greater focus
on not only the collection of new data but also improving the quality ofthe data already at our disposal. This highlights the importance of
a shift towards data-centric philosophies for machine learning within the geothermal industry.

10. CONCLUSIONS

As is apparent through the contents of this paper, data curation is a core component in determining the quality of machine learning results
and the applicability of machine learning to real-world problems. Due to the exploratory nature of machine learning, data curation is an
essential and iterative process throughout the life of a project. Frequent and open communication with project partners is key to this
process. Modular data pipelines and standardization of processes and practices support the move to data-centric machine learning
workflows, a welcome move by the geothermal community.

The GOOML project demonstrates the benefit of combining commercial partnerships and underpinning government support to foster
scientific excellence and deliver real world gains. Standardized practices for geothermal data curation are essential to ensuring that this
process is carried out in a successful manner. This concept plays into the movement surrounding data-centric Al, demonstrating the need
for a greater focus on data work throughout the geothermal industry in order to provide a more favorable value-to-effort ratio in real-
world applications of machine learning outcomes.
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