PROCEEDINGS, 47" Workshop on Geothermal Reservoir Engineering
Stanford University, Stanford, California, February 7-9, 2022
SGP-TR-223

Estimation of Statistical Properties of Fracture Networks from Thermal-tracer Experiments

Guofeng Song?, Delphine Roubinet?”, Zitong Zhou3, Xiaoguang Wang#*, Daniel M. Tartakovsky? and Xianzhi Song?!
1 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing, Beijing 102249, China
2 Geosciences M ontpellier, CNRS-M ontpellier University, France
3 Department of Energy Resources Engineering, Stanford University, Stanford, CA 94305, USA
4 College of Energy, Chengdu University of Technology, Chengdu, 610051, China

*Corresponding author: delphine.roubinet@umontpellier.fr

Keywords: Discrete Fracture Network, Properties estimates, Thermal-tracer experiments, Heat transport processes, Bayesian inference,
Neural network surrogate models

ABSTRACT

Atwo-dimensional particle-based heat transfer model is used to train a deep neural network. The latter provides a highly efficient surrogate
that can be used in standard inversion methods, such as grid search algorithms. The resulting inversion strategy is utilized to infer statistical
properties of fracture networks (fracture density and fractal dimension) from synthetic thermal experimental data. The (to-be-estimated)
fracture density is well constrained by this method, whereas the fractal dimension is harder to determine and requires adding prior
information on the fracture network connectivity. The method is tested on several fracture networks and hydraulic conditions.

1. INTRODUCTION

Geothermal energy provides an attractive solution to global warming and the carbon crisis. Efficient exploitation of geothermal resources
is the key to commercial and sustainable geothermal projects. As fractures represent the main flow and heat transfer pathways in
geothermal reservoirs, they play a critical role in heat extraction performance. Hydraulic fracturing techniques are often required to
supplement natural fractures with artificial ones in order to connect the injection and production wells. The operation scheme can be
modified, and heat extraction lifetime can be prolonged, using the updated fracture information provided by thermal experiments.
Therefore, it is of significant importance to collect fracture information before the system exploitation.

Various methods are used to collect and interpret information about a fracture network, including direct observations of outcrops, multi-
scale geoelectrical measurements and hydraulic and tracer experiments in boreholes (Bonnet et al., 2001; Demirel et al., 2018; Dorn et
al., 2012, 2013; Roubinet et al., 2018). The latter characterization methods provide data that are directly related to the hydrogeological
properties controlling flow and transport in fractured systems. For example, pressure data collected in observation boreholes during
hydraulic experiments has been used to characterize the system’s heterogeneity (Lods et al, 2020). This information can be supplemented
with chemical tracer experiments that characterize the fracture network and matrix block properties through the interpretation of
breakthrough curves (Haddad et al., 2014; Roubinet et al., 2013). Heat tracers might provide similar information; they have recently been
deployed to characterize various processes in the natural environment, e.g., to monitor groundwater in large-scale systems, quantify
hydraulic exchanges between surface and subsurface, and study flow channeling at the fracture scale (Saar, 2011; Constantz, 2008;
Bernardie et al., 2018). Heat experiments offer several advantages over chemical tracers. First, distributed temperature sensors can be
deployed along wellbores. Second, heat transfer covers larger areas than solute diffusion. Third, they are largely free from environmental
constraints.

As data collected during thermal experiments contain information about the fracture network properties (Roubinet et al., 2015), inversion
of these data should help in characterizing fractured rock. However, large-scale systems with complex fracture configurations require
sophisticated inversion strategies, which are usually limited to only a few fractures (Fischer et al., 2018; Ringel et al., 2019). This is in
contradiction with statistical fracture network models that are used in geothermal studies; these require the knowledge of large-scale
network properties such as fracture density and fractal dimension (Gisladottir et al., 2016) . Both parameters impact flow and transport in
fractured systems, the former characterizing the quantity of fractures present in the system and the latter the complexity of the fracture
length distribution (Gisladottir et al., 2016). Estimation of such parameters requires repeated computations of the forward model for a
large number of combinations of the fracture density and fractal dimension values that should vary over a wide range. Since this task is
seldom possible with physics-based models, we deploy a neural network surrogate to be able to perform millions of forward simulations
within a reasonable computation budget.

Our recent work demonstrates the potential of this strategy (Zhou et al., 2021). We used a physics-based forward model to train a deep
neural network (DNN) and then used that surrogate for ensemble-based computation to develop an inversion method. This enabled us to
infer the statistical properties of a fracture network from cross-borehole thermal experiments (CBTEs). A two-dimensional particle-
tracking method is employed to solve the physics-based model. The negligible computational cost of the surrogate facilitates the
deployment of a greedy grid search in the parameter space spanned by fracture density C and fractal dimension D. The inversion is done
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via Bayesian update. The inversion with DNN-based surrogate in our approach is four orders of magnitude faster than the equivalent
inversion based on the physics-based model. The study of Zhou et al. (2021) suggests that fracture density is well constrained by data but
fractal dimension is harder to determine. Incorporation of the prior information like fracture connectivity improves the confidence in the
predictions of C and D.

This conclusion is based on a single hydraulic regime, which makes it hard to ascertain its generality and impact of the hydraulic conditions
on inversion performance. Our goal is to analyzethe impact of these conditions, which modify the flow velocities in the fracture networks
and heat transfer in the entire system. As in our previous work, we deploy the following procedure. First, the two-dimensional particle
tracking method is used to solve the flow and heat-transfer equations in Discrete Fracture Networks (DFNs) for different hydraulic
conditions and fracture parameters. Second, these solutions are used to train the DNN-based surrogate models for the three velocity
conditions. Third, the surrogate models are used to compute the posterior distribution of the parameters C and D for the three hydraulic
configurations. Finally, we evaluate the value of various prior information ty pes for improvingthe estimates of these posterior distributions
and compare the results obtained under the various flow velocity regimes. Some conclusions and suggestions about improving inversion
performance are presented in the last section.

2. METHODOLOGY

2.1 Description of the Forward Models

The CBTEs are simulated with the help of three forward models: (i) a model of fracture networks that defines the considered geological
system, (i) a physics-based model for simulating fluid flow and heat transfer in fractured geothermal reservoirs and (iii) a DNN surrogate
model to accurately and quickly predict the relative changes in temperature in the observation borehole.

2.1.1 Model of Fracture Networks

DFNs are generated via the fractal WT (Watanabe and Takahashi, 1995) model, which postulates the following power-law relationship
among fracture parameters:

N, =Cr® 1)
where N, is the number of fractures, and r is the relative length normalized by the smallest fracture length r,. The parameters C and D
denote fracture density and fractal dimension, respectively. Fracture centers are randomly distributed over a 100100 m= domain with the
same aperture of 5x10-+m. The fractures are arranged at two preferred angles, ;= 25°and 6,=145°.

2.1.2 Model of Flow and Heat Transfer in fractured systems

Flow in the fracture networks is modeled by coupling Poiseuille solution for single-phase steady-state laminar flow in individual planar
fractures and flow conservation at the fracture intersections (Gisladottir et al. 2016; Zhou et al., 2021). We assume that the rock matrix is
impervious to fluid and that the fluid is incompressible. The flow velocity u in the fractures and the mass conservation in each fracture
node are expressed as
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where b is fracture aperture (m), J is hydraulic head gradient, and v is fluid’s kinematic viscosity (m/s). Constant hydraulic heads are
enforced in the injection and observation wells, and the top and bottom boundaries are subjected to no flow conditions.

Heat transfer in individual fractures satisfies the advection-dispersion equation (3) and heat transfer in the rock matrix satisfies the
diffusion equation (4) reduced to one-dimensional transversal diffusion (Gisladottir et al. 2016)
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where u is the flow velocity computed with equation (2), D{ and D£ are the longitudinal and transversal dispersion coefficients,

respectively, D]" and DJ"* are the longitudinal and transversal diffusion coefficients, respectively, and the subscripts m and f denote matrix
and fracture, respectively. Heat flux at the fracture-matrix interface is defined as
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The equations are solved via a particle-tracking method, which is significantly faster than mesh-based standard methods (Roubinet et al.,
2010). The cumulative distribution functions (CDFs) of particle arrival times describe the changes in the relative temperature T* observed
at the observation borehole,
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where T, is the initial fluid temperature in the system, and T.and T, are the temperatures at the injection and observation positions,
respectively.

2.1.3 Deep Neural Network M odel

DNN is used to replace the particle-based model to compute the ensemble-based simulations required for numerical inversion. The
surrogate model is defined by

f:(C,D)>Q(p), ICDF:Q(p)=F*(p)=min{xeR:F(x)=p},pe(01) ©)

where Q(p) is the inverse CDF, namely ICDF. We deploy a fully connected neural network (FCNN),
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where m denotes the parameters to be estimated, i.e., C and D. The vector d comprises the output of the physics-based model; d contains
the discretized values of the iICDF computed with the model NN; and ® denotes weights of neurons, which can be obtained by minimizing

the loss function A(di,ai) between di and d, . We quantify the distance between two discrete distributions P=( p,,..., py, ) and P’=
( Py Py, ) in terms of the Hellinger distance (Le Cam, 2012),
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2.2 Description of the Inversion Model

Inversion via Bayesian update is adopted to obtain posterior probability density function (PDF) fyq of the parameter vector m. It is
expressed by

+ fo(d) = [ £, () Fypy (i) o (10)

where d and m are the deterministic outcomes of random variables d and m, respectively; fm is the prior PDF of m; fqm is the likelihood
function; the normalizing factor fq ensures that frjq integrates to 1. The likelihood function has the form

fo (M3d0)= 1 exp[_ll‘H(a'wﬁ))] (11)

This PDF has the standard deviation o, (0.4 in this work) and is centered on the square root of the Hellinger distance between the data

d predicted by the likelihood and the data g (M) provided by the forward model. Additionally, prior information of m to the likelihood
function is considered with the expression

foja (M5 ) oc =Fy, (M) ( f,, (7)) (12)

where 7 is theimpact of the prior information. Two kinds of prior information are considered in this work: one is the correlation between
C and D based on field data (Bonnet et al., 2001), the other is based on fracture connectivity defined by
f (M) NZ (M), N, <[01,..,20], (13)

con

where Ncon is the number of connected fracture networks among 20 random realizations of a DFN characterized by each (C, D).
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3. RESULTS

The impact of hydraulic conditions on the estimation of fracture network properties is studied by considering the fracture network models
used in Gisladottir et al. (2016) and Zhou et al. (2021). The fracture networks are generated with the fractal model of Watanabe and
Takahashi (1995), for which we want to infer the fracture network properties C and D that correspond to the fracture density and fractal
dimension, respectively. The other fracture network properties, as well as the simulation parameters, are the same as in Gisladottir et al.
(2016) and Zhou et al. (2021). The hydraulic condition considered in these studies, which corresponds to the hydraulic gradient J= 0.01,
is defined here as the reference hydraulic condition leading to the reference flow velocity configuration. Lower or higher flow velocities
are defined in the present study by decreasing or increasing the reference hydraulic gradient by one order of magnitude, i.e., by setting J
=0.001 or 0.1, respectively.

For each velocity configuration, the 2D particle tracking model presented in Section 2 is utilized to simulate synthetic data that are
representative of the data collected during cross-borehole thermal experiments (CBTEs). We consider 10* pairs of the parameters C and
D discretized over the ranges of values [2.5,6.5] and [1.0,1.3], respectively, and 20 simulations of fracture networks in order to account
for the randomness of fractured systems. We compute the temperature in an observation borehole for different temperatures in the injection
borehole; the results are reported as cumulative distribution functions (CDFs) that are averaged over the 20 simulations. Table 1 shows
examples of these CDFs for 6 pairs of the parameters C and D and the three different velocity configurations. We also show the
corresponding iCDFs, which are used in the surrogate models. We observe that increasing C results in faster thermal breakthrough curves,
i.e., earlier arrival times, because increasing the fracture density leads to reducing the size of the matrix block distributionand, thus, the
long times spent in the matrix domain. For similar values of C, we also observe that increasing D has the same impact because it increases
the complexity of the fracture network organization and, as before, reduces the size of the matrix blocks. These results have the following
implications for flow velocity. First, larger flow velocity in the system decreases the time over which the changes in temperature are
observed because heat transfers quicker from the injection to the observation borehole. Second, low flow velocity in the systemresults in
CDFsthat are distinct from each other whereas the curves almost overlap for the high velocity configuration. This is due to the impact of
flow velocity in the fractures on heat transfer between fracture and matrix. For high velocities, heat transfer in the matrix is limited to a
small zone around the fractures and is very often not impacted by the size of the matrix blocks or the presence of the neighboring fractures.
For low velocities, heat diffuses in deeper parts of the matrix domain, often reaching the neighboring fractures, and thus being impacted
by the fracture network organization and matrix block size distribution. In other words, under low flow velocity conditions the temperature
curves are more sensitive to the fracture network properties, implying that it might be easier to infer these properties from thermal data.

Table 1: Examples of CDFs and ICDFs for three different flow velocities.
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To verify whether decreasing flow velocity in the systemhelps one to infer the fracture network properties from thermal synthetic data,
we build NN models as described in Section 2. For the three hydraulic configurations considered, the NN models are trained from the
results obtained with the physics-based particle tracking simulations. Thetraining loss of three resulting surrogate models is 0.079, 0.075
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and 0.074, respectively. Figures 1 and 2 demonstrate the good fit between the predicted and reference data for 8 pairs of the parameters
C and D for the low and high flow velocity configurations, respectively. This shows that our surrogate models are reliable to predict the
changes in temperature for a large range of values of fracture network properties and hydraulic conditions.
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Figure 1: Examples of prediction of surrogate model for the low flow velocity configuration.
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Figure 2: Examples of prediction of surrogate model for the high flowvelocity configuration.

Our NN models enable us to conduct a large number of heat transfer simulations in complex fracture networks with reasonable
computational times. They facilitate a detailed description of the posterior PDFs of parameters C and D, which are needed for Bayesian
estimation of the unknown parameters from simple grid search algorithms. Table 2 shows examples of the posterior PDFs of C and D
defined with 107 simulations. This high number of simulations is required to obtain well-defined PDFs and could not be done with (even
the most efficient) physics-based models. The posterior PDFs of C and D are computed for the three hydraulic conditions mentioned
before and considering various information. The results are provided without considering prior information (first row in Table 2) and with
two kinds of prior information (priorl and prior2) and two values of the parameter y that defines the importance given to this prior
information as described in Section 2. Priorl (second and third rows in Table 2) corresponds to a correlation between the parameters C
and D and deduced from field data, while prior2 (fourth and fifth row in Table 2) correspondsto a correlation in terms of connectivity of
the fracture networks. All the details about this prior information and how they are integrated into the resulting posterior PDFs are provided
in Zhouet al. (2021). In Table 2, the posterior PDFs are shown by considering the reference value (3.3602, 1.177075) for the parameter
pair (C, D), which is represented as a blue circle on each figure.

From the results presented in Table 2, we observe that the posterior PDFs computed without prior information are well defined in the
sense that the reference value is located in the highest probability zonethat is represented in black and dark red. When increasing the flow
velocity from the low to high velocity configurations, we observe that the extent of the highest probability zone increases in the horizontal
direction and decreases in the vertical direction, suggesting that parameters C and D are easier to estimate from low and high velocity
configurations, respectively. When adding prior information priorl and prior2 with the parameter y set to 0.5, the reference value is located
in zones of high probability (red zones) but not in the highest probability zone that is represented in dark red. Increasing the value y from
0.5 to 1 results in locating the reference value in zones of smaller probability, especially in the case of high velocity configuration for
which the reference value is located in green to yellow zones. This demonstrates that, for the considered reference values, adding
information on the correlation between parameters C and D that comes from field data and connectivity does not help to define the
posterior PDFs of these parameters, and that this phenomenon is enhanced by increasing the importance of this information in the posterior
PDFs definition.

Table 2: Examples of posterior PDFs of parameters C and D for three flow velocity.

Low velocity configuration Reference velocity configuration High velocity configuration




Song et al.

4641 130 2650 1382
4126 2365 1259
125
3611 2073 1136
3097 120 1794 1013
Without 2582 1508 0890
: 115
prior, 2067 1223 0767
V—O 1553 110 0937 0644
1038 0.652 0521
105
0.523 0.367 0398
0.008 100 0.081 0275
2 5
6255 130 3561 1895
5561 3168 1695
4866 2776 1495
4171 2383 1295
With 3476 1991 1095
pl’lOI’l, 2782 1598 0.895
)’—05 2087 1206 0.695
1392 0813 0495
0.698 0421 0295
0.003 0028 0.094
5
BT65 4811 130 3346
7791 4277 2978
125
6817 3744 2610
5.544 3710 120 2241
With 4870 2677 1873
H 115
pl’lorl, 3896 2143 1505
)/—1 2922 1610 110 1137
1949 1076 0769
105
0975 0543 0401
0001 0010 100 4 0032
2
4017 2164 130 11945
o reference
is72 1933 10924
125
3127 1701 0.9903
2681 1470 120 0.8882
With 2236 1238 0.7860
rior2 e
p ) 1790 1007 06839
)/:0.5 1345 0775 110 05818
0899 0544 0.4797
105
0454 0313 0.3776
0009 0081 100 L 02755
25 35 45 55 65
3478 130 Laso 130 11653
3092 10642
s 1743 125
2707 1535 0.9631
2321 120 1397 120 08620
With 1936 1120 07609
H 115
115
pr|0r2, 1550 p912 0.6598
)/—1 1165 110 0704 110 0.5587
0780 0497 0.4576
105 105
. 0289 0.3565
0.00% 100 0081 100 0.2554
2 5

4. CONCLUSIONS AND DISCUSSION

We analyzed the impact of hydraulic conditions on the inversion performance of fracture network properties. The neural network surrogate
models were built for three flow velocities to accurately predict the changes in relative temperature in an observation borehole. Fracture
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density and fractal dimension were evaluated under different flow velocities and prior information. Our analysis leads to the following
major conclusions.

1. Different surrogate models are obtained by DNN methods for three hydraulic configurations with a training loss of 0.079, 0.075 and
0.074, respectively. These surrogate models provide reliable predictions of the thermal breakthrough curves.

2. Fracture inversion performance of fracture network properties is improved under the lower and larger flow velocities. For the example
that we studied, C is easier to estimate in the case of lower velocity because heat diffuses in deeper regions of the matrix, reaching the
neighboring fractures, and thus being impacted by the fracture network organization and matrix block size distribution. On the other hand,
it seems that D is more accurately inversed in the case of larger velocity, for which the fracture network complexity impacts thermal
breakthrough curves. Therefore, suitable selection of velocity depends on the inversion interest.

3. With the reference values of C and D considered in this paper, adding information on the correlation from field data and fracture
connectivity does not help to define the posterior PDFs of fracture density and fractal dimension. This phenomenon is enhanced by
increasing the importance of this information in the posterior PDFs definition. Several more reference points should be included in future
studies to evaluate therole of these priors.

There are some necessary modifications in future work. When working with new parameter values (other than C and D), the NN surrogates
need to be trained again. This training could be speed up in future work with the use of Transfer Learning. Furthermore, the present study
is conducted on 2D fracture networks to estimate two DFN parameters. The method is equally applicable to complicated 3D problems
with more DFN characteristics, which may be the focus in future work. M ore specific evaluation of reference values should be defined to
quantify the inversion performance of the proposed procedure. In addition, more types of prior information on C and D should be
introduced to see if the inversion accuracy can be enhanced.
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