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ABSTRACT

Data-driven approaches are key for modeling and optimizing the operation of geothermal wells. However, data collected at different
drilling sites are usually not standardized and contain missing or erroneous values which hinder the development of reliable models that
can be used across a broad range of conditions and geological contexts. In this work, we present an end-to-end workflow for analyzing,
modeling, and optimizing geothermal drilling based on probabilistic methods to account for data uncertainty and heterogeneity. The
components of the workflow include: 1) self-organizing maps to visualize well operation data and process trajectories, 2) process mining
to analyze drilling event logs and discover process models, 3) Bayesian models to predict relevant operation and performance metrics
from incomplete and uncertain drilling data, and 4) algorithms to optimize well drilling under specific operational constraints. The
workflow has been implemented as a web-based tool that facilitates geothermal drilling planning and operation tasks. M odels used in the
workflow have been trained and tested on the database of 113 geothermal wells representing various geological settings which was built
in the framework of the EDGE project.

1. INTRODUCTION

The cost per foot in geothermal drilling is more expensive than the cost of onshore oil and gas drilling. Relative tooil and gas drilling, the
main factors driving geothermal cost include harsh downhole conditions that shorten equipment’s life, the use of larger hole diameters
that require more expensive casing, and indirect costs due to fluid re-injection. Accordingly, reducing drilling cost and the risk of well
failure are key for cost reduction in geothermal energy, particularly for Enhanced Geothermal Systems (EGS), where 60-80% of the tota
cost is in the wellfield.

The EDGE project (Carbonari et al., 2021), funded by the U.S. Department of Energy (DOE) Geothermal Technologies Office, is an
international research coordination network aimed at developing machine learning strategies to improve geothermal drilling efficiency,
including cost reduction and early well failure identification. The EDGE research team includes three U.S. Universities, a DOE National
Laboratory and four Geothermal and Oil and Gas companies from several countries (Iceland, Norway, USA). The aim of the project is to
use data from different geothermal fields to develop a continuous optimization framework for geothermal drilling. The resulting
optimization scheme will be able to continuously improve as new data are ingested into the database. The project is structured in two
yearlong phases with specific tasks focusing on data collection and management, model development and drilling optimization, and
identification and mitigation of well failures.

During the first year, the project team focused on collecting data from more than 100 wells from different companies and geothermal
fields and developing a curated data repository including data, computational codes, analysis workflows and models. Exploratory data
analysis (EDA) was used to assess both the quality and the structure of the data (missing data, outliers, errors, correlations). After
preprocessing, a subset of data was used to identify suitable machine learning approaches for developing predictive models.

The second year of the project focuses on developing and validating models to predict well operation parameters, non-productive time,
and drilling cost. M odels are integrated into a multi-objective optimization framework that enables the identification of optimal operation
parameters to minimize cost and non-productive time. Inaddition, drilling data and machine learning techniques are being used to identify
main causes of well failure and to develop mitigation strategies aimed at reducing the impact of such failures.

At theend of the project. the main deliverables will include the EDGE Data Repository that will provide access to all public data products
developed during the project, and the EDGE Dashboard that will provide a common interface to access the models and the multi-objective
optimization framework. This paper provides an overview of diverse elements of the geothermal well optimization framework, including
exp loratory data analysis and visualization with self-organizing maps, process model discovery from drilling logs, probabilistic Bayesian
models to estimate key features of the drilling process, and drilling process optimization. The workflow has been implemented as a web-
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based tool that facilitates planning and operation tasks. Models included in the dashboard have been trained and tested on a database of
113 geothermal wells representing various geological settings.

2. DATA AND METHODS

2.1 Drilling Data

Data gathered in the EDGE project includes both proprietary and public well data. Proprietary information on well operation has been
provided by EDGE project’s industrial partners - AltaRock (USA), Cyrq Energy (USA), Equinor (Norway), Iceland GeoSurvey-ISOR
(Iceland)-, while the public data come from the Utah FORGE and Fallon project. Raw data and curated datasets, containing information
related to drilling operations at different temporal scales, were annotated with geological information to facilitate data analytics and
machine learning tasks.

2.2 Self-Organizing Map Analysis

The Self-Organizing Map (SOM) algorithm performs a topology preserving mapping from a high-dimensional input space onto a low
dimensional output space formed by a regular grid of map units (Kohonen, 1990). From a functional point-of-view, SOM resembles
Vector Quantization which approximates, in an unsupervised way, the probability density functions of high-dimensional input data with
a finite set of reference vectors that describe class borders with a nearest-neighbor rule. In contrast, SOM units are organized over the
space spanned by a regular grid where the adaptation process affects a predefined topological neighborhood producing both, a vector
quantizationand a low-dimensional ordered representation of the original high-dimensional input data. In addition, since each SOM unit
has well-defined low-dimensional coordinates over the map grid, the SOM can also be used as a dimensional reduction algorithm.
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Figure 1: SOM structure. Horizontal layers correspond to projections of a single variable whereas vertical rows represent
individual components of the codebook vector for each SOM unit.

The SOM algorithm is based on unsupervised competitive learning. The training process is entirely data-driven and SOM units compete
to become specific detectors of certain features in data. Map units are represented by a n-dimensional weight vector, with n equal tothe
input data dimension. As in vector quantization, every reference vector describing a class is named a codebook. Each SOM unit has a
topological neighborhood determined by the shape and structure of the SOM lattice which can be either rectangular or hexagonal. The
number of SOM units and their topological relations are defined during algorithm initialization. The size of the map will ultimately
determine its accuracy and generalization capabilities.

SOM s are used to extract and visualize relationships among data in high dimensional spaces. There exist a variety of SOM -based
visualization techniques that exploit its ability to project datain two dimensions. Figure 1 shows the layered organization ofa SOM, where
every unit provides a partial view of thewhole data set for each variable at the corresponding horizontal layers. Codebook vectors can be
visualized using the component planes (or c-planes), i.e., horizontal layers in Figure 1. In this representation, the SOM is considered as a
set of stacked layers in which each component plane forms a horizontal layer in this structure while each codebook vector corresponds to
column. Component planes are visualized by taking the values of the respective components from the codebook vectors and plottingthem
with a color code over the SOM grid. This representation provides valuable information on the distribution of each feature in the dataset.
By visualizing several component planes simultaneously, it is possible to infer relationships between features.

Clusters are formed by groups of units with similar codebook vectors. The clustering structure of the input space can be visualized over
the SOM grid by displaying the distances between neighboring units. The visualization of these clusters could be enhanced by labeling
the map with auxiliary data. Since it is difficult to detect and quantify clusters just by visual inspection, SOM ’s reference vectors can, in
turn, be clustered to detect coherent sets of units with similar structural characteristics by using simpler clustering algorithms such as K-
means.

New data samples can be projected over the SOM grid by mappingto their corresponding unit. Dynamic processes (i.e., time-dependent)
can also be analyzed and visualized by the SOM. The procedure to study the behavior of a transient process uses the locations of the units

2



Rallo et al.

corresponding to a sequence of system states over the process dynamics. The evolution of a dynamical system can be then characterized
as a trajectory corresponding to a sequence of systemstates displayed on the SOM. Labeling of the SOM permits the characterization of
these trajectories and the identification of interesting regimes in the evolution of a dynamical system (process).

2.3 Analysis of Process Operation

Relevant information on the drilling process and geothermal well operation is collected by plant operators in the form of discrete event
logs that include sequential information related to relevant events (Table 1) and their precise timestamps. The analysis of these events
allows inferring process models that can be used to identify deviations with respect to normal operation parameters that can serve as early
warning of potential faults.

Traditionally, event logs have been analyzed using probabilistic approaches such as Markov chain models. A Markov chain model is a
transition probability matrix where each (i,j) element represents the probability that a drilling operation transitions to state j from state i.
Using this formalism, the system is modeled as a sequence of states and, as time goes by, it moves in between states with a specific
probability. Thetransitions between states are conditioned, or dependent, on the state you are in before the transition occurs.

More recently, process mining (Aalst et al., 2004; Aalst, 2016) has emerged as a promising approach for the analysis of operational
processes from event logs. Process mining represents a collection of methods, algorithms, and tools to gain a better understanding of the
execution of a process, by means of analyzing operational execution data (i.e., event logs). This approach can be used for process
discovery, conformance checking, and performance analysis. Discovery is the process of automatically generating a model from event
logs that can explain the logs themselves without any prior knowledge. There are several algorithms that can be used for this discovery
process including alpha, heuristic and inductive miners. Conformance checking compares an event log with a given process model and
identifies discrepancies (anomalies and faults) that can result in degraded performance. Finally, process models can be annotated with
additional data (e.g., cost, time) to detect bottlenecks and inefficiencies.

Table 1: Operation and Operation Group Codes included in the EDGE Data Repository

Code Description OpsGroup Code Description OpsGroup
CUTC Cut and Pull Casing CASE Running Casing

PLUG Plugging Operations ABAND DPIPE Driving Pipe CASING
BOPND | BOP Nipple Down CMTD Drilling Cement/Shoe

BOPNU | BOP NippleUp BOPOPS CMTP Primary Cement Operations

BOPO Other BOP Operations CMTPL Cement Plug Operations CEMENT
COOL Circulate and Cool Well CMTS Secondary Cement Operations

GRAV Gravel Packing FRPLUG [ FRPLUG

PERF Perforating COMPLETE || wOC Waiting On Cement

STIM Stimulation CIRC Circulate/Condition Mud

TUBG Running Production Tubing CLCM Clean out cement

CORE Coring CLEANO | Clean Out

EVAL Well Evaluation DIR Directional Work

FIT Leak Off Test DRIL Drilling Ahead w/ Connections

LDTOOL | LDTOOL DRILR Drilling - Rotating

LOG Wireline Logging EVALUATE | DRILS Drilling - Sliding

PTEST PTEST FLOW Flow Check

SLK LN | Slick line operations MAGFLX | Magna Flux Pipe

SLWL SLWL MIX Mud Mixing DRILL
TEST Testing Operations, DST MIXMUD | MixMud

INJ Injection, Water INJ MUBHA | Make Up Bottom Hole Assembly

COCMT | Clean out cement LOST OPEN Opening Hole

ANCH Anchoring Operations PUMP Pumping Drilling Fluids

JDN Jacking Down Operations RDFREQ | RDFREQ

JUP Jacking Up Operations REAM Reaming/Underreaming

MOB M ob/Demob RUFREQ | RUFREQ

MOVE Move Rig MOB SURV Running Survey Tools

PRELD Pre-loading Rig WASH Washing Down

RIGD Rigging Down ACID ACID

RIGU Rigging Up ALIFT ALIFT

SKID Skid Rig BW Blow Well

FISH Fishing Operations CUT Slip and cut drilling line

KILL Well Kill Operations CUTDL Cut and Slip Drill Line OTHER
LOST LosingCirc./Pumping LCM DP PU/LD Drill Pipe

MILL | Milling PROBLM  IM5rE Well idle

POHREP | Trip Out for Repairs Maintn Non Down Time Repairs

REGS Regulatory Problems OTHER Other Activity
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REPR Rig Repairs RIGMOV | Rig Move
REPS Service Company Repairs SAFE Safety Meeting
RIHREP | Trip In following Repairs SERV Rig Service
STUCK Stuck Pipe Operations SSEA Sub Sea Operations
STUK Stuck Pipe Operations ST.BY Stand by
WOE Waiting on Equipment WELD Welding Operations
WOO Waiting on Orders BHAOP BHA Operations
WOW Waiting on Weather POH Pull Out of Hole
SFTYMT | Safety meeting SAFE RIH Run In Hole
TEST1 TEST1 TEST TOOLS P/U--L/D TOOLS TRIP
MAG Magna Glow BHA TOOL TRP Trippingpipe

TRPI Trippingin

TRPO TrippingOut

WIPE Wiper Trip

2.4 Bayesian Models and Optimization

A Bayesian network (BN) is a probabilistic graphical model for representing knowledge about an uncertain domain where each node
corresponds to a random variable and each edge represents the conditional probability for the corresponding random variables (Pearl,
1988). Due to dependencies and conditional probabilities, a BN corresponds to a directed acyclic graph (DAG) without loops or self-
connections. One of the key steps while developing a Bayesian network is using the proper representation of the causal structure of the
modeled domain. The domain representation is embedded in the relationships between nodes in the model. There exist four main
algorithmic approaches to learn the structure of a Bayesian network from data:

e  Constraint-based algorithms, which use conditional independence tests to learn conditional independence constraints from data.
The constraints in turn are used to learn the structure of the Bayesian network under the assumption that conditional
independence implies graphical separation (so, two variables that are independent cannot be connected by an edge).

e  Score-based algorithms, which are general-purpose optimization algorithms (e.g., hill-climbing, tabu search) that rank network
structures with respect to a specific goodness-of-fit score.

e  Hybrid algorithms that combine aspects of both constraint-based and score-based algorithms, as they use conditional
independence tests (usually to reduce the search space) and network scores (to find the optimal network in the reduced space)
at the same time.

e  Pairwise Mutual Information algorithms, that learn approximate network structures using only pairwise mutual information.

Once trained, the Bayesian network can be used to estimate the posterior probability distribution of a set of query variables given an
observed event represented by the values of a set of evidence variables. Given its computation complexity, exact inference becomes an
intractable problem and is only feasible in small and simple networks. For large and more complex networks, approximate inference
methods are commonly used to obtain reasonable estimates of the posterior probabilities. The accuracy of these stochastic app roximation
techniques largely depends on the number of samples generated. In this work we use likelihood weighting which is an approximate
inference algorithm based on Monte Carlo sampling. Examples of queries that can be answered by a Bayesian network developed from
geothermal drilling data include:

o  What is the most probable ROP given a WOB of 20,000 Ibs. when drilling at a depth of 4000 ft in a geothermal well located in
a metasedimentary reservoir?

e  Whatis the probability of having a drilling cost in the range of $500/ft to $750/ft when drilling at an ROP of 15 ft/hr and with
a mud flow average of 200 gal/min in an extended crust geological regime?

Multiparameter and multi-objective optimization approaches combined with process models provide a framework to assess the effects of
several variables on the minimization of a given cost function. In this work we have used the built-in R function optim coupled with
various process models to optimize relevant geothermal drilling operation parameters such as rate of penetration (ROP). Some of the
parameters that impact the ROP include bit properties (e.g., bit type, bit tooth wear, bit hy draulics), weight on bit (WOB), rotational speed
(RPM), and the geological context. Multiparameter optimization can be applied for example to identify the optimum WOB and RPM that
maximize ROP for a given geological context.

Complex cost functions, involving more than one optimization variable, require using multi-objective optimization techniques. Multi-
objective optimization has been applied in fields where optimal decisions need to be taken in the presence of trade-offs between two or
more conflicting objectives. Typically, outputs (or objectives) are conflicting and unique solutions where all objectives are minimized at
once don’t exist. In this situation, the goal is to identify a set of optimal solutions know as Pareto set. M ulti-objective optimization has
been implemented using the GPareto package in R (Binois and Picheny, 2019) which provides Gaussian-Process based sequential
strategies to solve this ty pe of optimization problems.
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3. RESULTS AND DISCUSSION

3.1 Exploratory Analysis of Drilling Data using Self-Organizing Maps (SOM)

We illustrate the use of the SOM methodology with data provided by ISOR corresponding to the operation of drilling wells located in
different locations across Iceland. The data collected for these wells includes the drilling features listed in Figure 2. After a data
preprocessing stage that included filtering erroneous and incomplete data followed by normalization and scaling, the set of 17 features
were used to train a self-organizing map using a hexagonal lattice without periodic boundary conditions. The SOM analysis is based on a
Matlab imp lementation (SOM Toolbox, http://www.cis.hut.fi/somtoolbox).
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Figure 2: Self-Organizing Map Analysis of ISORdrilling data. (Left) Featuresincluded in the analysis. (Right) Visualization of
SOMcluster structure (U-matrix) and component planes.

The analysis of the component planes (c-planes) facilitates the identification of relationships among the drilling process features. The c-
planes in the last row of figure 2 that correspond to outer diameter, inner diameter and the size of the drill bit provide a simple example
that illustrates how SOMs can be used as a visual analytics tool to discover relationships among features. The component plane
corresponding to depth of the well highlights the presence of three main operation regimes (Figure 3). Theinspection of the c-planes also
highlights the dependency of the temperatures (temp. down and temp. ret.) with depth.

SOM projections were also used to analyze the operation trajectories of individual wells. The analysis reveals that wells operating in
different geologic contexts have different operation patterns that produce diverse operation trajectories. The SOM, trained with data from
all wells in the dataset, provides acommon framework for the comparative analysis and visualization of individual operation. Figure 4
depicts the operation trajectories of a single well where each point in the trajectory corresponds to a given operation state and lines connect
the sequence of individual states. Trajectories can be overlapped with relevant operation features to understand specific details of well
operation. For instance, during the initial drilling stages of the well analyzed in Figure 4 (shallow deep) the well operates at low ROP. As
depthincreases, operation regions move for a short period of time to an area characterized by very high ROP (>40 m/h). As the drilling
progresses and depth continues increasing the operation transitions to lower ROP ranges (~10 -15 m/h).
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Figure 5: SOM clustering and projection of the operation trajectories corresponding to three wells locatedin different geological
contexts. Each color patch corresponds to one of the ten operating regimes identified by the clustering process

Clustering and labeling the SOM improves the interpretability of the map and facilitates the identification of operation regimes. We used
k-means clustering with k=10to generate 10 partitions corresponding to distinct operation regimes. Figure 5 depicts the clustering results
(where each colored region corresponds to a k-means cluster) and the operation trajectories of three wells located in different geothermal
fields. Thevisual inspection of the trajectories highlights the different drilling patterns in each well. All trajectories originate in a shallow
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operation regime (i.e., beginning of the drilling process) but exhibit different dynamics as depth increases. Once clustered and labeled,
the SOM can be used to identify abnormal operation regimes linked to well failures that may result in non-productive time or equipment
damage. When used with real time data, the SOM can provide operators with an early detection mechanism of well failures allowing the
implementation of mitigation actions.

3.2. Analysis of Process Operation

The analysis of sequences of operation data provides information on the probability of transitioning from a given drilling operation state
to an operation leading to non-productive time. For this analysis we have used a dataset provided by AltaRock-Cyrq that includes a
sequence of timestamped operation codes that describe the different states of the drilling process. The dataset also contains a flag that
indicates whether or not the operation sequence has resulted in non-productive time (NPT). The operation codes are classified in 16
groups, including the ‘PROBLM’ category that corresponds to operation codes that resulted in problems during the drilling process (see
Table 1). Figure 6 summarizes the number of instances of operations in the PROBLM category that are present in the dataset and that
caused non-productive times. Equipment failures (i.e., rig repairs) and fishing operations resulting from the recovery of downhole
equipment after a stuck pipe are the main causes of non-productive time. Recovering from these failure conditions has significant impact
on the overall process cost. For instance, it is estimated that operation costs while fishing can increase up to 75%.
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Figure 6: Distribution of the operation codes corresponding to the class “PROBLM’ (see Table 1) that resultedin non-productive
times.

We have used the process mining techniques implemented in the PM 4Py (https://pm4py.fit.fraunhofer.de/) python package to analyze the
drilling logs and to generate process models that can help monitor and optimize well operation. Figure 7 depicts the process model obtained
from the operation data of a single well exhibiting low incidence of non-productive time events. The process model provides a state
transition diagram that relates all types of operation observed during the drilling process. In this specific case, the only non-productive
time observed is due to waiting (WOO) between tripping in/out (TRPI/TRPO) operations. The sequence of drilling ahead (DRIL), rig
service (SERV) and other generic activities (OTHER) are the most frequent observed operation states in this well and describe the expected
normal operation. Process models provide an integrated view of the well operation and can be helpful to identify desired (i.e., cost-
effective) and undesired (i.e., non-productive time) operation patterns that can provide relevant information to develop strategies to
decrease drilling time (actual drilling and tripping) and reduce total costs.

The same approach can be usedto integrate all the event log data in a geothermal field. Using combined data, the process model provides
a holistic view of the operations across the whole field. Figure 8 presents the process model obtained after the integration of all well data.
This model captures different well dynamics and therefore is more complex than the single well model discussed in figure 7. The most
frequent categories of operations in this model include DRILLING, REPAIRS and TRIPPING.

Developing specific process models for individual wells facilitates the identification of common patterns of operation and allows the
categorization of well operation regimes. The use of conformance checking algorithms allows the direct comparison of well operations
and facilitates the identification of deviations with respect to expected/optimal behaviors.
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3.3. Bayesian Models, Optimization, andthe EDGE Dashboard

Probabilistic modeling using Bayesian networks allows capturing the details of the drilling operation while accounting for uncertainty and
missing data. Since data corresponding to geothermal drilling includes a combination of discrete/categorical variables (e.g., geological
context), and continuous features (e.g., operational parameters), Bayesian networks need to incorporate data heterogeneity . In this work
we use a hybrid Bayesian network model that learns different types of conditional probability distributions for discrete and for continuous
variables. The model used is implemented in the R package bnlearn (Scutari, 2010).

During structure learning and the parameterization of the Bayesian model for drilling, we have developed a secondary data resource that
includes the full reconstruction of the missing data present in the EDGE datasets. We used the R package mice (van Buuren and Groothuis-
Oudshoorn, 2011) for multivariate missing data imputation. A set of random forest models were trained to capture the interrelationships
among all operation parameters, and then used to impute missing values. The new dataset has been included in the EDGE data repository
to support additional model development efforts. Figure 9 compares the data distributions corresponding to observed and imputed data
for each variable containing missing information.
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Figure 10: Learned Bayesian network from geothermal operation data. The set of features used for adjusting the model include
a combination of continuous anddiscrete variables.

Figure 10 depicts the structure of the Bayesian model learned from the well data in the EDGE data repository. In addition to setting the
basis for probabilistic predictive modeling, the structure of the Bayesian network provides unvaluable information regarding the most
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influential drilling parameters that drive operation cost and performance. Although the relationships that stem from a Bayesian network
cannot be interpreted directly as causal relations, it is interesting to note that based on the data, casing and cementing cost are mostly
dependent on features related to the geological context. Similarly, the drilling costs are mainly driven by the well type (geothermal,
injection, etc), non-productive time, and depth. Other variables that are also indirectly related to drilling cost include ROP and WOB.
Non-productivetime (NPT)is mostly influenced by the depth (which also accounts for the effects of other operation variables) and the
geothermal field (which integrates information on the geological context).

Many of the costs attributed to drilling are time-dependent, therefore anything that speeds up the hole advance without compromising
safety, hole stability, or directional path is beneficial. Increasing ROP contributes to reduce drilling time, however increased ROP may
result in more trips and shorter equipment life. Bit performance is an important factor to increase drilling speed and extend equipment
life. However, optimizingdrilling performance is complex and requires historical data for similar geological formations and well operation
regimes.

The Bayesian models have been integrated in the EDGE dashboard, which is designed as a web-based application that provides integrated
access to all the tools and models developed in the project. Figure 11 shows details of the current prototype that integrates predictive
models developed in R and Python.

EDGE Das

Daily Cost Estimates and Non Productive Time

Geological context Driling params.
Field name: Well type: Well status: Geologic regime:
Unknown A Geothermal - Unknown A Unknown -
Reservoir type: Reservoir regime: Overburden depth: Stress regime:
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» Costand NPT Open fracture density: Open fracture aperture:
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49094
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Figure 11: Web interface of the Bayesian model to estimate drilling cost and non-productive time

Input information for the Bayesian network includes information on the geological context and the drilling operation parameters. The
main advantage of the Bayesian approach is that provides implicit support for uncertainty on the input data, providing predictions when
some of the parameters are missing or in the presence of uncertainties (e.g., 15000<WOB Average<19000). Bayesian models can also be
used for more complex queries, including sampling from the distributions encoded in the Bay esian model to provide uncertainty estimates.

Figure 11 shows the web interface of a Bayesian network to estimate cost and non-productive time. Operators can provide the incomplete
information and the Bayesian network will provide cost estimates based on the provided evidence and the drilling dataused to parameterize
the network. In this example, the only information provided is the well and reservoir types. With only this information the model estimates
a drilling cost/ft of $1,084. As we add more evidence, for instance a WOB average of 20,000 Ibs. and a WOB maximum of 30,000 Ibs.,
the cost estimate is recomputed resulting in a lower value of $806/ft.

The same Bayesian network structure can be used to develop ROP models. Using the same initial evidence as before, the model provides
an initial estimate for ROP average of 12.5 ft/hr and ROP maximum of 26 ft/hr. After adding information on the WOB, the new estimates
for ROP average and maximum are of 15 ft/hr and 36 ft/hr, respectively. Figure 12 displays the form used in the ROP model to provide
information on the drilling parameters to be used to generate the estimates. As with the geological context, model users are not required
to provide information for all the parameters in the model. This flexibility of Bayesian models facilitates the exploration of scenarios in
the presence of uncertain information.
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Rate of Penetration Estimates

Geological context Drilling params

From depth (ft): To depth (ft): Mud flow average (gal/min): Mud flow max (gal/min):
3000 50000
ROP average (ft/hr): ROP max (ft/hr): WOB average (Ibs): WOB max (Ibs):
19000 25000
RPM average (1/min): RPM max (1/min): Torque average (Ibf ft): Torque max (Ibf ft):
100
Pump PSI average (psi): Annular velocity DG (ft/sec): Annular velocity DP (ft/sec):

D

Figure 12: ROP model for different geological contexts anddrilling operation parameters

Models included in the EDGE dashboard can be used by the optimization modules to find a set of optimal parameters that minimize or
maximize a specific cost function. For instance, we can use the optimization included in the EDGE Dashboard to fine tune the values of
WOB average and RPM average to maximize ROP for a geothermal well. After running the optimization, and providing as sole evidence
the well type, we obtain an optimal WOB of 19928 Ibs. and RPM of 60.42 to yield an ROP of 12.5 ft/hr. It is important to note that the
optimization process requires a good initial estimate that is then fine-tuned based on the estimates provided by the Bayesian network.

Table 2: Elements of the Pareto Set duringthe optimization of ROP and Cost

WOB (Ibs.) RPM (L/min) ROP (ft/hr) Cost/it
30000 101.42 12.84 $1038.1
30000 198.21 12.85 $1038.3
30000 197.52 12.83 $1034.2

For multi-objective optimization problems, the solution is not unique, and we obtain a collection of optimal values known as the Pareto
set. In the context of geothermal drilling, multi-objective optimization can be used to select the optimal combination of values to optimize
a set of cost functions. For instance, Table 2 shows the set of optimal WOB and RPM values that maximize ROP and minimize cost/ft in
a generic geothermal well.

4. CONCLUSIONS

Data-driven methods constitute a promising approach to optimize geothermal drilling and for the early identification and mitigation of
well failures. In the past twoyears, the EDGE project has assembled a data repository that contains operation and performance data for
more than 100 geothermal wells located in different geological contexts. After a preliminary data analysis, the project has developed
several data-driven approaches to predict relevant drilling operation parameters including ROP, non-productive time, and drilling cost.
The models and analysis developed in the project are being integrated in a web-based platform (EDGE Dashboard) implemented in R
using the Shiny framework. M odels developed in Python are integrated using the R package reticulate.

In this paper we have presented several of the elements that compose the EDGE Dashboard and provided examples of use of these
techniques in the context of analysis, modeling, and optimization of geothermal drilling. The components of the dashboard include: 1)
self-organizing maps to visualize well operation dataand process trajectories, 2) process mining to analyze drilling event logs and discover
process models, 3) Bayesian models to predict relevant operation and performance metrics from incomplete and uncertain drilling data,
and 4) algorithms to optimize well drilling under specific operational constraints.

Ongoing work is focused on using drilling data and machine learning techniques to identify main causes of well failure and to develop
mitigation strategies aimed at reducing the impact of such failures. Drill bit failure was identified as a reason for frequent BHA trips —
which in turn led to higher drilling costs. In a previous study (Witt-Doerring et al., 2021), it was found that when drilling hard formations
with PDC bits, if a bit was damaged beyond repair (DBR) such as being rung out, subsequent bit runs in the same well performed worse
than in cases where the previous bit was pulled before substantial damage. A similar study is being conducted here on the geothermal well
dataset, the main difference being that roller cone hits (as opposed to PDC hits) were used in the wells being investigated. Additionally,
the dataset is also being used to develop a methodology to determine bit pull criterion, such that drilling and tripping decisions can be
optimized. Tool failure due to the higher-than-normal temperature is also an issue when drilling geothermal wells. Such failures occur
when the mud temperature exceeds therated temperature limits of the tools. Towards that end, we are developing models that can be used
to predict downhole temperatures, such that the downhole heat can be properly managed during drilling operations.
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