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ABSTRACT 

Data-driven approaches are key for modeling and optimizing the operation of geothermal wells. However, data collected at different  

drilling sites are usually not standardized and contain missing or erroneous values which hinder the development of reliable models that 

can be used across a broad range of conditions and geological contexts. In this work, we present an end-to-end workflow for analyzing, 

modeling, and optimizing geothermal drilling based on probabilistic methods to account for data uncertainty and heterogeneity. The 
components of the workflow include: 1) self-organizing maps to visualize well operation data and process trajectories, 2) process mining 

to analyze drilling event logs and discover process models, 3) Bayesian models to predict relevant operation and performance metrics 

from incomplete and uncertain drilling data, and 4) algorithms to optimize well drilling under specific operational constraints. The 

workflow has been implemented as a web-based tool that facilitates geothermal drilling planning and operation tasks. Models used in the 

workflow have been trained and tested on the database of 113 geothermal wells representing various geological settings which was built 

in the framework of the EDGE project. 

1. INTRODUCTION 

The cost per foot in geothermal drilling is more expensive than the cost of onshore oil and gas drilling. Relative to oil and gas drilling, the 

main factors driving geothermal cost include harsh downhole conditions that shorten equipment’s life, the use of larger hole diameters  

that require more expensive casing, and indirect costs due to fluid re-injection. Accordingly, reducing drilling cost and the risk of well 
failure are key for cost reduction in geothermal energy, particularly for Enhanced Geothermal Systems (EGS), where 60-80% of the total 

cost is in the wellfield. 

The EDGE project (Carbonari et al., 2021), funded by the U.S. Department of Energy (DOE) Geothermal Technologies Office, is an 

international research coordination network aimed at developing machine learning strategies to improve geothermal drilling efficiency, 

including cost reduction and early well failure identification. The EDGE research team includes three U.S. Universities, a DOE National 
Laboratory and four Geothermal and Oil and Gas companies from several countries (Iceland, Norway, USA). The aim of the project is to 

use data from different geothermal fields to develop a continuous optimization framework for geothermal drilling. The resulting 

optimization scheme will be able to continuously improve as new data are ingested into the database. The project is structured in two 

yearlong phases with specific tasks focusing on data collection and management, model development and drilling optimization, and 

identification and mitigation of well failures.  

During the first year, the project team focused on collecting data from more than 100 wells from different companies and geothermal 

fields and developing a curated data repository including data, computational codes, analysis workflows and models. Exploratory data 

analysis (EDA) was used to assess both the quality and the structure of the data (missing data, outliers, errors, correlations). After 

preprocessing, a subset of data was used to identify suitable machine learning approaches for developing predictive models.  

The second year of the project focuses on developing and validating models to predict well operation parameters, non-productive time, 
and drilling cost. Models are integrated into a multi-objective optimization framework that enables the identification of optimal operation 

parameters to minimize cost and non-productive time. In addition, drilling data and machine learning techniques are being used to identify 

main causes of well failure and to develop mitigation strategies aimed at reducing the impact of such failures.  

At the end of the project. the main deliverables will include the EDGE Data Repository that will provide access to all public data products 

developed during the project, and the EDGE Dashboard that will provide a common interface to access the models and the multi-objective 
optimization framework. This paper provides an overview of diverse elements of the geothermal well optimization framework, including 

exploratory data analysis and visualization with self-organizing maps, process model discovery from drilling logs, probabilistic Bayesian 

models to estimate key features of the drilling process, and drilling process optimization. The workflow has been implemented as a web-
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based tool that facilitates planning and operation tasks. Models included in the dashboard have been trained and tested on a database of 

113 geothermal wells representing various geological settings.     

2. DATA AND METHODS 

2.1 Drilling Data 

Data gathered in the EDGE project includes both proprietary and public well data. Proprietary information on well operation has been 

provided by EDGE project’s industrial partners - AltaRock (USA), Cyrq Energy (USA), Equinor (Norway), Iceland GeoSurvey -ISOR 
(Iceland)-, while the public data come from the Utah FORGE and Fallon project. Raw data and curated datasets, containing information 

related to drilling operations at different temporal scales, were annotated with geological information to facilitate data analytics and 

machine learning tasks.   

2.2 Self-Organizing Map Analysis 

The Self-Organizing Map (SOM) algorithm performs a topology preserving mapping from a high-dimensional input space onto a low 
dimensional output space formed by a regular grid of map units (Kohonen, 1990). From a functional point-of-view, SOM resembles  

Vector Quantization which approximates, in an unsupervised way, the probability density functions of high-dimensional input data with 

a finite set of reference vectors that describe class borders with a nearest -neighbor rule. In contrast, SOM units are organized over the 

space spanned by a regular grid where the adaptation process affects a predefined topological neighborhood producing both, a vector 

quantization and a low-dimensional ordered representation of the original high-dimensional input data. In addition, since each SOM unit 

has well-defined low-dimensional coordinates over the map grid, the SOM can also be used as a dimensional reduction algorithm. 

 

Figure 1: SOM structure. Horizontal layers correspond to projections of a single variable whereas vertical rows represent 

individual components of the codebook vector for each SOM unit. 

The SOM algorithm is based on unsupervised competitive learning. The training process is entirely data-driven and SOM units compete 

to become specific detectors of certain features in data. Map units are represented by a n-dimensional weight vector, with n equal to the 
input data dimension. As in vector quantization, every reference vector describing a class is named a codebook. Each SOM unit has a 

topological neighborhood determined by the shape and structure of the SOM lattice which can be either rectangular or hexagonal. The 

number of SOM units and their topological relations are defined during algorithm initialization. The size of the map will ultimately 

determine its accuracy and generalization capabilities. 

SOMs are used to extract and visualize relationships among data in high dimensional spaces. There exist a variety of SOM -based 
visualization techniques that exploit its ability to project data in two dimensions. Figure 1 shows the layered organization of a SOM, where 

every unit provides a partial view of the whole data set for each variable at the corresponding horizontal layers. Codebook vectors can be 

visualized using the component planes (or c-planes), i.e., horizontal layers in Figure 1. In this representation, the SOM is considered as a 

set of stacked layers in which each component plane forms a horizontal layer in this structure while each codebook vector corresponds to 

column. Component planes are visualized by taking the values of the respective components from the codebook vectors and plott ing them 
with a color code over the SOM grid. This representation provides valuable information on the distribution of each feature in the dataset. 

By visualizing several component planes simultaneously, it is possible to infer relationships between features. 

Clusters are formed by groups of units with similar codebook vectors. The clustering structure of the input space can be visualized over 

the SOM grid by displaying the distances between neighboring units. The visualization of these clusters could be enhanced by labeling 

the map with auxiliary data. Since it is difficult to detect and quantify clusters just by visual inspection, SOM’s reference vectors can, in 
turn, be clustered to detect coherent sets of units with similar structural characteristics by using simpler clustering algorithms such as K-

means. 

New data samples can be projected over the SOM grid by mapping to their corresponding unit. Dynamic processes (i.e., time-dependent) 

can also be analyzed and visualized by the SOM. The procedure to study the behavior of a transient process uses the locations of the units 
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corresponding to a sequence of system states over the process dynamics. The evolution of a dynamical system can be then characterized 
as a trajectory corresponding to a sequence of system states displayed on the SOM. Labeling of the SOM permits the characterization of 

these trajectories and the identification of interesting regimes in the evolution of a dynamical system (process). 

2.3 Analysis of Process Operation 

Relevant information on the drilling process and geothermal well op eration is collected by plant operators in the form of discrete event 

logs that include sequential information related to relevant events (Table 1) and their precise timestamps. The analysis of these events 
allows inferring process models that can be used to identify deviations with respect to normal operation parameters that can serve as early 

warning of potential faults.  

Traditionally, event logs have been analyzed using probabilistic approaches such as Markov chain models. A Markov chain model is a 

transition probability matrix where each (i,j) element represents the probability that a drilling operation transitions to state j from state i. 

Using this formalism, the system is modeled as a sequence of states and, as time goes by, it moves in between states with a specific 

probability. The transitions between states are conditioned, or dependent, on the state you are in before the transition occurs.  

More recently, process mining (Aalst et al., 2004; Aalst, 2016) has emerged as a promising approach for the analysis of operational 

processes from event logs. Process mining represents a collection of methods, algorithms, and tools to gain a better understanding of the 

execution of a process, by means of analyzing operational execution data (i.e., event logs). This approach can be used for process 

discovery, conformance checking, and performance analysis. Discovery is the process of automatically generating a model from event 
logs that can explain the logs themselves without any prior knowledge. There are several algorithms that can be used for this discovery 

process including alpha, heuristic and inductive miners. Conformance checking compares an event log with a given process model and 

identifies discrepancies (anomalies and faults) that can result in degraded performance. Finally, process models can be annotated with 

additional data (e.g., cost, time) to detect bottlenecks and inefficiencies.    

Table 1: Operation and Operation Group Codes included in the EDGE Data Repository 

Code Description OpsGroup Code Description OpsGroup 

CUTC Cut and Pull Casing 
ABAND 

CASE Running Casing 
CASING 

PLUG Plugging Operations DPIPE Driving Pipe 

BOPND BOP Nipple Down 

BOPOPS 

CMTD Drilling Cement/Shoe 

CEMENT 

BOPNU BOP Nipple Up CMTP Primary Cement Operations 

BOPO Other BOP Operations CMTPL Cement Plug Operations 

COOL Circulate and Cool Well 

COMPLETE 

CMTS Secondary Cement Operations 

GRAV Gravel Packing FRPLUG FRPLUG 

PERF Perforating WOC Waiting On Cement 

STIM Stimulation CIRC Circulate/Condition Mud 

DRILL 

TUBG Running Production Tubing CLCM Clean out cement 

CORE Coring 

EVALUATE 

CLEANO Clean Out 

EVAL Well Evaluation DIR Directional Work 

FIT Leak Off Test DRIL Drilling Ahead w/ Connections 

LDTOOL LDTOOL DRILR Drilling - Rotating 

LOG Wireline Logging DRILS Drilling - Sliding 

PTEST PTEST FLOW Flow Check 

SLK LN Slick line operations MAGFLX Magna Flux Pipe 

SLWL SLWL MIX Mud Mixing 

TEST Testing Operations, DST  MIXMUD Mix Mud 

INJ Injection, Water INJ MUBHA Make Up Bottom Hole Assembly 

COCMT Clean out cement LOST OPEN Opening Hole 

ANCH Anchoring Operations 

MOB 

PUMP Pumping Drilling Fluids 

JDN Jacking Down Operations RDFREQ RDFREQ 

JUP Jacking Up Operations REAM Reaming/Underreaming 

MOB Mob/Demob RUFREQ RUFREQ 

MOVE Move Rig SURV Running Survey Tools 

PRELD Pre-loading Rig WASH Washing Down 

RIGD Rigging Down ACID ACID 

OTHER 

RIGU Rigging Up ALIFT ALIFT 

SKID Skid Rig BW Blow Well 

FISH Fishing Operations 

PROBLM 

CUT Slip and cut drilling line 

KILL Well Kill Operations CUTDL Cut and Slip Drill Line 

LOST LosingCirc./Pumping LCM  DP PU/LD Drill Pipe 

MILL Milling IDLE Well idle 

POHREP Trip Out for Repairs Maintn Non  Down Time Repairs 

REGS Regulatory Problems OTHER Other Activity 



Rallo et al. 

 4 

REPR Rig Repairs RIGMOV Rig Move 

REPS Service Company Repairs SAFE Safety Meeting 

RIHREP Trip In following Repairs SERV Rig Service 

STUCK Stuck Pipe Operations SSEA Sub Sea Operations 

STUK Stuck Pipe Operations ST.BY Stand by 

WOE Waiting on Equipment WELD Welding Operations 

WOO Waiting on Orders BHAOP BHA Operations 

TRIP 

WOW Waiting on Weather POH Pull Out of Hole 

SFTYMT Safety meeting SAFE RIH Run In Hole 

TEST1 TEST1 TEST TOOLS P/U--L/D TOOLS 

MAG Magna Glow BHA TOOL TRP Tripping pipe 

   TRPI Tripping in 

   TRPO Tripping Out 

   WIPE Wiper Trip 

2.4 Bayesian Models and Optimization 

A Bayesian network (BN) is a probabilistic graphical model for representing knowledge about an uncertain domain where each node 
corresponds to a random variable and each edge represents the conditional probability for the corresponding random variables (Pearl,  

1988). Due to dependencies and conditional probabilities, a BN corresponds to a directed acyclic graph (DAG) without loops or self-

connections. One of the key steps while developing a Bayesian network is using the proper representation of the causal structure of the 

modeled domain. The domain representation is embedded in the relationships between nodes in the model. There exist four main 

algorithmic approaches to learn the structure of a Bayesian network from data:  

 Constraint-based algorithms, which use conditional independence tests to learn conditional independence constraints from data. 

The constraints in turn are used to learn the structure of the Bayesian network under the assumption that conditional 

independence implies graphical separation (so, two variables that are independent cannot be connected by an edge). 

 Score-based algorithms, which are general-purpose optimization algorithms (e.g., hill-climbing, tabu search) that rank network 

structures with respect to a specific goodness-of-fit score. 

 Hybrid algorithms that combine aspects of both constraint -based and score-based algorithms, as they use conditional 

independence tests (usually to reduce the search space) and network scores (to find the optimal network in the reduced space) 

at the same time. 

 Pairwise Mutual Information algorithms, that learn approximate network structures using only pairwise mutual information. 

Once trained, the Bayesian network can be used to estimate the posterior probability distribution of a set of query variables given an 

observed event represented by the values of a set of evidence variables. Given its computation complexity, exact inference becomes an 

intractable problem and is only feasible in small and simple networks. For large and more complex networks, approximate inference 
methods are commonly used to obtain reasonable estimates of the posterior probabilities. The accuracy of these stochastic app roximation 

techniques largely depends on the number of samples generated. In this work we use likelihood weighting which is an approximate 

inference algorithm based on Monte Carlo sampling. Examples of queries that can be answered by a Bayesian network developed from 

geothermal drilling data include: 

 What is the most probable ROP given a WOB of 20,000 lbs. when drilling at a depth of 4000 ft in a geothermal well located in 

a metasedimentary reservoir? 

 What is the probability of having a drilling cost in the range of $500/ft to $750/ft when drilling at an ROP of 15 ft/hr and with 

a mud flow average of 200 gal/min in an extended crust geological regime? 

Multiparameter and multi-objective optimization approaches combined with process models provide a framework to assess the effects of 
several variables on the minimization of a given cost function. In this work we have used the built-in R function optim coupled with 

various process models to optimize relevant geothermal drilling operation parameters such as rate of penetration (ROP). Some of the 

parameters that impact the ROP include bit properties (e.g., bit type, bit tooth wear, bit hydraulics), weight on bit (WOB), rotational speed 

(RPM), and the geological context. Multiparameter optimization can be applied for example to identify the optimum WOB and RPM that 

maximize ROP for a given geological context.  

Complex cost functions, involving more than one optimization variable, require using multi-objective optimization techniques. Multi-

objective optimization has been applied in fields where optimal decisions need to be taken in the presence of trade-offs between two or 

more conflicting objectives. Typically, outputs (or objectives) are conflicting and unique solutions where all objectives are minimized at 

once don’t exist. In this situation, the goal is to identify a set of optimal solutions know as Pareto set. Multi-objective optimization has 

been implemented using the GPareto package in R (Binois and Picheny, 2019) which provides Gaussian-Process based sequential 

strategies to solve this type of optimization problems.  
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3. RESULTS AND DISCUSSION 

3.1 Exploratory Analysis of Drilling Data using Self-Organizing Maps (SOM) 

We illustrate the use of the SOM methodology with data provided by ISOR corresponding to the operation of drilling wells located in 

different locations across Iceland. The data collected for these wells includes the drilling features listed in Figure 2. After a data 

preprocessing stage that included filtering erroneous and incomplete data followed by normalization and scaling, the set of 17 features 

were used to train a self-organizing map using a hexagonal lattice without periodic boundary conditions. The SOM analysis is based on a 

Matlab implementation (SOM Toolbox, http://www.cis.hut.fi/somtoolbox). 

 

Figure 2:  Self-Organizing Map Analysis of ISOR drilling data. (Left) Features included in the analysis. (Right) Visualization of 

SOM cluster structure (U-matrix) and component planes. 

The analysis of the component planes (c-planes) facilitates the identification of relationships among the drilling process features. The c-

planes in the last row of figure 2 that correspond to outer diameter, inner diameter and the size of the drill bit provide a simple example 

that illustrates how SOMs can be used as a visual analytics tool to discover relationships among features. The component plane 

corresponding to depth of the well highlights the presence of three main operation regimes (Figure 3). The inspection of the c-planes also 

highlights the dependency of the temperatures (temp. down and temp. ret.) with depth. 

SOM projections were also used to analyze the operation trajectories of individual wells. The analysis reveals that wells operating in 

different geologic contexts have different operation patterns that produce diverse operation trajectories. The SOM, trained with data from 

all wells in the dataset, provides a common framework for the comparative analysis and visualization of individual operation. Figure 4 

depicts the operation trajectories of a single well where each point in the trajectory corresponds to a given operation state and lines connect 
the sequence of individual states. Trajectories can be overlapped with relevant operation features to understand specific details of well 

operation. For instance, during the initial drilling stages of the well analyzed in Figure 4 (shallow deep) the well operates at low ROP. As 

depth increases, operation regions move for a short period of time to an area characterized by very high ROP (>40 m/h). As the drilling 

progresses and depth continues increasing the operation transitions to lower ROP ranges (~10 -15 m/h). 

Feature Units

Depth m

ROP m/h

WOB ton

TDH m

RPM rpm

Torque daNm

tot. rpm rpm

SPP bar

tot. pump l/s

temp.down °C

temp. ret. °C

diff.temp °C

Kill-line bar

Drill_Time hrs

Outer_Diam inches

Inner_Diam inches

Drill_bit_mm mm

http://www.cis.hut.fi/somtoolbox
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Figure 3: Drilling operation regimes based on depth. 

 

 

Figure 4: Projection of the operation trajectories over the SOM U-matrix and on top of the depth and ROP c-planes.  

 

 

Figure 5: SOM clustering and projection of the operation trajectories corresponding to three well s located in different geological 

contexts. Each color patch corresponds to one of the ten operating regimes identified by the clustering process  

Clustering and labeling the SOM improves the interpretability of the map and facilitates the identification of operation regimes. We used 

k-means clustering with k=10 to generate 10 partitions corresponding to distinct operation regimes. Figure 5 depicts the clustering results 

(where each colored region corresponds to a k-means cluster) and the operation trajectories of three wells located in different geothermal 

fields. The visual inspection of the trajectories highlights the different drilling patterns in each well. All trajectories originate in a shallow 
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operation regime (i.e., beginning of the drilling process) but exhibit different dynamics as depth increases. Once clustered and labeled, 
the SOM can be used to identify abnormal operation regimes linked to well failures that may result in non-productive time or equipment 

damage. When used with real time data, the SOM can provide operators with an early detection mechanism of well failures allowing the 

implementation of mitigation actions.   

3.2. Analysis of Process Operation 

The analysis of sequences of operation data provides information on the probability of transitioning from a given drilling operation state 
to an operation leading to non-productive time. For this analysis we have used a dataset provided by AltaRock-Cyrq that includes a 

sequence of timestamped operation codes that describe the different states of the drilling process. The dataset also contains a flag that 

indicates whether or not the operation sequence has resulted in non-productive time (NPT). The operation codes are classified in 16 

groups, including the ‘PROBLM’ category that corresponds to operation codes that resulted in problems during the drilling process (see 

Table 1). Figure 6 summarizes the number of instances of operations in the PROBLM category that are present in the dataset and that 
caused non-productive times. Equipment failures (i.e., rig repairs) and fishing operations resulting from the recovery of downhole 

equipment after a stuck pipe are the main causes of non-productive time. Recovering from these failure conditions has significant impact 

on the overall process cost. For instance, it is estimated that operation costs while fishing can increase up to 75%. 

 

Figure 6: Distribution of the operation codes corresponding to the class ‘PROBLM’ (see Table 1) that resulted in non-productive 

times. 

We have used the process mining techniques implemented in the PM4Py(https://pm4py.fit.fraunhofer.de/) python package to analyze the 

drilling logs and to generate process models that can help monitor and optimize well operation. Figure 7 depicts the process model obtained 
from the operation data of a single well exhibiting low incidence of non-productive time events. The process model provides a state 

transition diagram that relates all types of operation observed during the drilling process. In this specific case, the only non-productive 

time observed is due to waiting (WOO) between tripping in/out (TRPI/TRPO) operations. The sequence of drilling ahead (DRIL), rig 

service (SERV) and other generic activities (OTHER) are the most frequent observed operation states in this well and describe the expected 

normal operation. Process models provide an integrated view of the well operation and can be helpful to identify desired (i.e., cost-
effective) and undesired (i.e., non-productive time) operation patterns that can provide relevant information to develop strategies to 

decrease drilling time (actual drilling and tripping) and reduce total costs. 

The same approach can be used to integrate all the event log data in a geothermal field. Using combined data, the process model provides 

a holistic view of the operations across the whole field. Figure 8 presents the process model obtained after the integration of all well data. 

This model captures different well dynamics and therefore is more complex than the single well model discussed in figure 7. The most 

frequent categories of operations in this model include DRILLING, REPAIRS and TRIPPING.  

Developing specific process models for individual wells facilitates the identification of common patterns of operation and allows the 

categorization of well operation regimes. The use of conformance checking algorithms allows the direct comparison of well operations 

and facilitates the identification of deviations with respect to expected/optimal behaviors. 
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Figure 7: Process model corresponding to a geothermal well with very low incidence of non-productive time 

 

 

Figure 8: Model process for all the wells in a geothermal field. States marked in red correspond to the PROBLM category whereas 

the ones in green represent normal drilling operations (see Table 1). 
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3.3. Bayesian Models, Optimization, and the EDGE Dashboard 

Probabilistic modeling using Bayesian networks allows capturing the details of the drilling operation while accounting for uncertainty and 

missing data. Since data corresponding to geothermal drilling includes a combination of discrete/categorical variables (e.g., geological 

context), and continuous features (e.g., operational parameters), Bayesian networks need to incorporate data heterogeneity . In this work 

we use a hybrid Bayesian network model that learns different types of conditional probability distributions for discrete and for continuous 

variables. The model used is implemented in the R package bnlearn (Scutari, 2010).   

During structure learning and the parameterization of the Bayesian model for drilling, we have developed a secondary data resource that 

includes the full reconstruction of the missing data present in the EDGE datasets. We used the R package mice (van Buuren and Groothuis-

Oudshoorn, 2011) for multivariate missing data imputation. A set of random forest models were trained to capture the interrelationships 

among all operation parameters, and then used to impute missing values. The new dataset has been included in the EDGE data repository 

to support additional model development efforts. Figure 9 compares the data distributions corresponding to observed and imputed data 

for each variable containing missing information. 

 

Figure 9: Missing data reconstruction. Blue lines represent the density of the observed data whereas the magenta lines represent 

imputed data. 

 

 

Figure 10: Learned Bayesian network from geothermal operation data. The set of features used for adjusting the model include 

a combination of continuous and discrete variables. 

Figure 10 depicts the structure of the Bayesian model learned from the well data in the EDGE data repository. In addition to setting the 

basis for probabilistic predictive modeling, the structure of the Bayesian network provides unvaluable information regarding the most 
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influential drilling parameters that drive operation cost and performance. Although the relationships that stem from a Bayesian network 
cannot be interpreted directly as causal relations, it is interesting to note that based on the data, casing and cementing cost are mostly 

dependent on features related to the geological context. Similarly, the drilling costs are mainly driven by the well type (geothermal, 

injection, etc), non-productive time, and depth. Other variables that are also indirectly related to drilling cost include ROP and WOB. 

Non-productive time (NPT) is mostly influenced by the depth (which also accounts for the effects of other operation variables) and the 

geothermal field (which integrates information on the geological context).  

Many of the costs attributed to drilling are time-dependent, therefore anything that speeds up the hole advance without compromising 

safety, hole stability, or directional path is beneficial. Increasing ROP contributes to reduce drilling time, however increased ROP may 

result in more trips and shorter equipment life. Bit performance is an important factor to increase drilling speed and extend equipment 

life. However, optimizing drilling performance is complex and requires historical data for similar geological formations and well operation 

regimes.   

The Bayesian models have been integrated in the EDGE dashboard, which is designed as a web-based application that provides integrated 

access to all the tools and models developed in the project. Figure 11 shows details of the current prototype that integrates predictive 

models developed in R and Python.  

 

Figure 11: Web interface of the Bayesian model to estimate drilling cost and non-productive time 

Input information for the Bayesian network includes information on the geological context and the drilling operation parameters. The 
main advantage of the Bayesian approach is that provides implicit support for uncertainty on the input data, providing predictions when 

some of the parameters are missing or in the presence of uncertainties (e.g., 15000WOB Average19000). Bayesian models can also be 

used for more complex queries, including sampling from the distributions encoded in the Bayesian model to provide uncertainty  estimates.   

Figure 11 shows the web interface of a Bayesian network to estimate cost and non-productive time. Operators can provide the incomplete 

information and the Bayesian network will provide cost estimates based on the provided evidence and the drilling data used to parameterize 
the network. In this example, the only information provided is the well and reservoir types. With only this information the model estimates 

a drilling cost/ft of $1,084. As we add more evidence, for instance a WOB average of 20,000 lbs. and a WOB maximum of 30,000 lbs., 

the cost estimate is recomputed resulting in a lower value of $806/ft.  

The same Bayesian network structure can be used to develop ROP models. Using the same initial evidence as before, the model provides 

an initial estimate for ROP average of 12.5 ft/hr and ROP maximum of 26 ft/hr. After adding information on the WOB, the new estimates 
for ROP average and maximum are of 15 ft/hr and 36 ft/hr, respectively. Figure 12 displays the form used in the ROP model to provide 

information on the drilling parameters to be used to generate the estimates. As with the geological context, model users are not required 

to provide information for all the parameters in the model. This flexibility of Bayesian models facilitates the exploration of scenarios in 

the presence of uncertain information.   
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Figure 12: ROP model for different geological contexts and drilling operation parameters 

Models included in the EDGE dashboard can be used by the optimization modules to find a set of optimal parameters that minimize or 

maximize a specific cost function. For instance, we can use the optimization included in the EDGE Dashboard to fine tune the values of 

WOB average and RPM average to maximize ROP for a geothermal well. After running the optimization, and providing as sole evidence 

the well type, we obtain an optimal WOB of 19928 lbs. and RPM of 60.42 to yield an ROP of 12.5 ft/hr. It is important to note that the 

optimization process requires a good initial estimate that is then fine-tuned based on the estimates provided by the Bayesian network. 

Table 2: Elements of the Pareto Set during the optimization of ROP and Cost 

WOB  (lbs.) RPM (1/min) ROP (ft/hr.) Cost/ft 

30000   101.42 12.84   $1038.1 

30000   198.21 12.85 $1038.3 

30000   197.52 12.83 $1034.2 

 

For multi-objective optimization problems, the solution is not unique, and we obtain a collection of optimal values known as the Pareto 

set. In the context of geothermal drilling, multi-objective optimization can be used to select the optimal combination of values to optimize 

a set of cost functions. For instance, Table 2 shows the set of optimal WOB and RPM values that maximize ROP and minimize cost/ft in 

a generic geothermal well.  

4. CONCLUSIONS  

Data-driven methods constitute a promising approach to optimize geothermal drilling and for the early identification and mitigation of 

well failures. In the past two years, the EDGE project has assembled a data repository that contains operation and performance data for 

more than 100 geothermal wells located in different geological contexts. After a preliminary data analysis, the project has developed 
several data-driven approaches to predict relevant drilling operation parameters including ROP, non-productive time, and drilling cost. 

The models and analysis developed in the project are being integrated in a web-based platform (EDGE Dashboard) implemented in R 

using the Shiny framework. Models developed in Python are integrated using the R package reticulate. 

In this paper we have presented several of the elements that compose the EDGE Dashboard and provided examples of use of these 

techniques in the context of analysis, modeling, and optimization of geothermal drilling. The components of the dashboard include: 1) 
self-organizing maps to visualize well operation data and process trajectories, 2) process mining to analyze drilling event logs and discover 

process models, 3) Bayesian models to predict relevant operation and performance metrics from incomplete and uncertain drilling data, 

and 4) algorithms to optimize well drilling under specific operational constraints. 

Ongoing work is focused on using drilling data and machine learning techniques to identify main causes of well failure and to develop 
mitigation strategies aimed at reducing the impact of such failures. Drill bit failure was identified as a reason for frequent BHA trips – 

which in turn led to higher drilling costs. In a previous study (Witt -Doerring et al., 2021), it was found that when drilling hard formations 

with PDC bits, if a bit was damaged beyond repair (DBR) such as being rung out, subsequent bit runs in the same well performed worse 

than in cases where the previous bit was pulled before substantial damage. A similar study is being conducted here on the geothermal well 

dataset, the main difference being that roller cone bits (as opposed to PDC bits) were used in the wells being investigated. Additionally, 
the dataset is also being used to develop a methodology to determine bit pull criterion, such that drilling and tripping decisions can be 

optimized. Tool failure due to the higher-than-normal temperature is also an issue when drilling geothermal wells. Such failures occur 

when the mud temperature exceeds the rated temperature limits of the tools. Towards that end, we are developing models that can be used 

to predict downhole temperatures, such that the downhole heat can be properly managed during drilling operations. 
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