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ABSTRACT 

Data-driven predictive models have recently been developed and applied to predict energy production from geothermal reservoirs. 

Traditional physics-based simulation models that are often used for predicting the performance of geothermal reservoirs require detailed 
descriptions of reservoir conditions and properties, in-depth technical knowledge, and extensive computational efforts. Data-driven 

models, on the other hand, extract complex statistical patterns from representative training data and use them for prediction. Deep learning-

based architectures offer powerful and fast prediction models that are amenable to flexible implementation and convenient dep loyment 

and application. Despite their efficiency, data-driven models suffer from three main limitations: 1) extensive data requirements, 2) lack 

of physical plausibility and interpretability, and 3) poor generalizability beyond training data. These limitations undermine the use of data-

driven models for applications in complex science and engineering problems.  

We develop a novel physics-informed machine learning approach that integrates physics-based representations into recurrent neural 

network (RNN) models. A typical approach for enabling the incorporation of physics is to regularize the learning of trainable parameters 

by adding a physics-constrained loss function as a regularization term. In this framework, the architecture of the deep learning model is 

designed based on the governing equations as well as expert knowledge of the physical system. We present a variant of the RNN as a 
physics-guided deep-learning model for predicting the dynamical responses of geothermal reservoirs. Inspired by the lumped-parameter 

modelling, the architecture of the predictive model is designed based on simplified governing equations (i.e., conservation of energy). 

Different components of heat-transfer terms are incorporated into the architecture of the physics-constrained RNN to approximately 

represent the behavior of the underlying dynamics. We present the physics-constrained RNN approach in detail and demonstrate its 

prediction performance by applying it to data from a field-scale geothermal reservoir model.  

1. INTRODUCTION 

Prediction of production behavior from geothermal reservoirs using numerical simulation is traditionally used to facilitate field 

development and management strategies. Traditional physics-based reservoir simulation approaches leverage the physics of energy and 

mass transport and provide reliable predictions of the responses of geothermal reservoirs to alternative development/operation plans. 

However, a simulation model requires detailed description of reservoir conditions and properties and therefore is not trivial to develop. 
On the other hand, data-driven predictive models learn complex statistical patterns from training data and use them for fast prediction. An 

important limitation of purely data-driven models that work as “black box” is that they are prone to generate physically inconsistent 

predictions and often fail to extrapolate beyond the training samples.  

One of the major challenges for geothermal reservoir engineering is the lack of an efficient and reliable method that can accurately make 

predictions of production performance based on historical data. The conventional predictive methods based on historical information from 
geothermal reservoirs include (1) numerical reservoir simulation, (2) lumped-parameter models, and (3) decline curve analysis (Ciriaco 

et al., 2020). Similar to numerical simulation, lumped-parameter models are built based on governing equations but are much less 

discretized and more simplified. Compared with numerical models that consist of many (>100-106) grid blocks, the lumped parameter 

model of a geothermal system contains only a small number of homogeneous blocks and mainly focuses on well blocks (Sarak et al.,  

2005). Similarly, in lumped parameter models, a fully implicit Newton-Raphson procedure is used to solve the nonlinear differential 
equations for each time step (Tureyen and Akyapı, 2011). The iterative nature of the Newton-Raphson method leads to slow runtime, 

especially with an increasing number of wells. While decline curve analysis is used for the prediction of geothermal reservoirs with faster 

runtime, this approach does not consider the dynamic production behavior. 

Deep learning-based predictive models have been increasingly applied to the prediction of production in subsurface flow systems in recent 

years. The recurrent neural networks (RNNs), as variants of neural networks (NN), are commonly used for predicting sequences of 
dynamical time-series data. RNNs have been applied in the geothermal domain for permanent downhole gauge data prediction (Tian and 

Horne, 2017), tracer concentration prediction (Gudmundsdottir and Horne, 2020), and production performance prediction (Jiang et al., 

2021; Shi et al., 2021). As an efficient and powerful alternative, deep learning-based models are amenable to flexible implementation and 

convenient deployment and application.  

One major drawback of data-driven models is their inability to extrapolate beyond the training data (Karniadakis et al., 2021; Willard et 
al., 2021). Novel methodologies are introduced to solve these issues by integrating physical principles and expert knowledge with data-
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driven models. A common approach for incorporation of physics is to introduce the governing equations and/or expert knowledge into 
the loss function during training (Gao et al., 2021; Raissi et al., 2019; Ranade et al., 2021; Sirignano and Spiliopoulos, 2018). The physics-

based loss functions work as a regularization term and penalize the data-driven model for physically inconsistent predictions. Another 

typical approach is to design specialized NN architectures that implicitly embed physical knowledge by specifying node connections. The 

resulting physics-based architectures capture physical dependencies among variables and, therefore, make the data-driven model 

interpretable. Recent studies have designed architectures of RNNs based on physics or expert knowledge in other applications, including 
seismic inverse problems (Sun et al., 2020) and modeling lake temperature (Daw et al., 2020). Another approach is to combine physics-

based proxy models with purely data-driven models. An example of a hybrid approach is presented in (Long et al., 2018) by including the 

fluid dynamical system and heat convection-diffusion system.  

In this paper, we present a hybrid predictive model that combines Gated Recurrent Unit (GRU) with a physics -based proxy model to 

predict the dynamical production data from a geothermal reservoir. In our example, we use data from a field-scale geothermal reservoir 
simulation model to enable validation. Similar to the lumped parameter method, the physics-based proxy model is designed based on 

simplified physics that describes the geothermal reservoir system. The proxy model, however, relies on several more approximations that 

allow it to be represented as an RNN unit. Within the hybrid model, the GRU layer and the proxy are designed to predict the bottom-hole 

pressure (BHP) and brine temperature, respectively. The GRU layer is fed with rate control and predicts the BHP of production and 

injection wells. The rate control and predicted BHP are then sent to the proxy model as input, where the mapping between inputs and 
outputs is designed to mimic different components of energy conservation. Compared with lumped parameter model, the physics-guided 

hybrid approach decouples two primary variables (pressure and temperature) and circumvents the Newton-Raphson iterations. In the 

remainder of this paper, we present the physics-informed RNN approach in detail and demonstrate its prediction performance by applying 

it to simulated dataset from a field-scale geothermal reservoir model. 

2. METHODOLOGY 

2.1 Governing Equation 

The most common approach for predicting the performance of a geothermal reservoir is numerical simulation. The development of 

geothermal reservoir numerical simulation is based on governing equations, material properties, boundary conditions, initial conditions, 

and discretization. In this section, only a brief introduction to governing equations of the reservoir will be provided. A more detailed 

description of geothermal reservoir modeling can be found in (Jung et al., 2018) and (Vinsome and Shook, 1993). The mathematical 
representation of the lumped parameter method resembles that of the numerical simulation method, with the addition of several 

simplifications. A detailed discussion of lumped parameter method can be found in (Tureyen and Akyapı, 2011). 

In this work, the studied geothermal reservoir model is a single-component and single-phase system. A general form of mass- and energy-

balance equations for non-isothermal flow in the geothermal reservoir can be written as 

𝜕

𝜕𝑡
𝑀𝜅 = −∇ 𝐅𝜅 + 𝑞𝑘                                                                                     (1) 

where 𝑀𝜅 represents the mass or energy component 𝜅 per volume within an arbitrary subdomain. The energy term is treated as a pseudo 

component. The left-hand side represents the mass or energy accumulation term. The notation 𝐅 𝜅 denotes mass or heat flux term, and 𝑞𝑘 

is sink/source term, which is the mass flow rate for the mass-balance equation, and the energy flow rate for the energy-balance equation. 

The notation ∇ is the divergence of a vector field. 

The accumulation terms for mass- and energy-balance for component 𝜅 are written as 

𝑀𝜅 = 𝜙𝜌𝑓                                                                                              (2) 

𝑀𝜅 = (1 − 𝜙)𝜌𝑟𝑐𝑟𝑇 + 𝜙𝜌𝑓𝑐𝑓𝑇                                                                         (3) 

where 𝜙 is the porosity, 𝜌𝑓 is the fluid density, 𝜌𝑟 is the rock grain density, 𝑐𝑟 is the specific heat of rock grains, T is temperature, and 𝑐𝑓 

is the specific heat of fluid. 

For mass-balance equation, advective mass flux term can be defined by Darcy’s law: 

𝐅 = 𝜌𝑓𝐮 = −𝑘
𝜌𝑓

𝜇
(∇𝑃 − 𝜌𝑓𝐠)                                                                           (4) 

where 𝐮 is the Darcy velocity, 𝑘 is the absolute permeability, 𝜇 is the dynamic viscosity, 𝑃 is pressure, and 𝐠 is the vector of gravitational 

acceleration. 

In the energy balance equation, the heat flux term includes conductive, convective, and radiative components. By ignoring the radiative 

component, the heat flux is written as 

𝐅 𝜅 = −𝜆∇𝑇 + ℎ𝑓𝐅                                                                                     (5) 

where 𝜆 is thermal conductivity, and ℎ𝑓 is the specific enthalpy for fluid. 
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2.2 Architecture of the Predictive Model 

The schematic of the hybrid predictive model is shown in Figure 1 and consists of two stacked layers. The first layer of the model contains 

two main components: a convolution neural network (CNN) and an RNN. The CNN-RNN layer is implemented with the open-source 

deep learning framework TensorFlow (Ababi et al., 2016). The second layer is a physics-based proxy model designed to approximate the 

energy-balance equation. The detailed structures of the two layers are depicted in Figures 2~4. 

 

Figure 1: Schematic of the physics-guided predictive model. 

The type of CNN used in the first layer is the one-dimension (1D) convolution operation (denoted as conv1D and shown in Figure 2), 

which can be applied to the time-series data (Goodfellow et al., 2016). In the proposed model, the 1D-convolution network is fed with a 

short sequence of historical data (𝐱, 𝐲𝑃 ) and maps it to a low-dimensional latent space, 𝐳 ∈ 𝑅1×𝑁𝑧. The latent variable 𝐳 from the conv1d 

layer is then sent to the RNN layer as the initial state. The historical data includes the control variable, 𝐱 ∈ 𝑅𝑁𝑡0×𝑁𝑥, and BHP response 

data, 𝐲𝑃 ∈ 𝑅𝑁𝑡0×𝑁𝑃, where subscript 𝑃 denotes pressure. The superscripts 𝑁𝑡0, 𝑁𝑥, and 𝑁𝑃 denote the historical data timesteps, input 

feature dimension, and BHP data feature dimension, respectively . More specifically, 𝐱 and 𝐲𝑃  are the rate control and BHP of all active 

wells (production and injection), respectively. Therefore, the values of 𝑁𝑥 and 𝑁𝑃 equal to the number of wells from the geothermal 

reservoir under study.  

Two common variants of RNN models are the long short -term memory (LSTM) and the gated recurrent unit (GRU). Both LSTM 

(Hochreiter and Schmidhuber, 1997) and GRU (Cho et al., 2014) leverage gate mechanisms to regulate the flow of information and 

enhance the dependency on previous states over a long period. The GRU unit (Figure 3) is used in the proposed model since it has a 

similar performance to the LSTM but has fewer weights to train. The RNN layer is fed with future control, 𝐱 ∈ 𝑅𝑁𝑡1×𝑁𝑥, as input and 

latent variable 𝐳 as the initial state. The output from the RNN layer is the predicted BHP response, 𝐲𝑃 ∈ 𝑅𝑁𝑡1×𝑁𝑃. The superscript 𝑁𝑡1 is 

the future control timesteps.  

The inputs to the physics-based proxy model are the future control 𝐱 and predicted BHP 𝐲𝑃 . The output is the predicted production 

temperature 𝐲𝑇 ∈ 𝑅𝑁𝑡1×𝑁𝑇, where 𝑇 and 𝑁𝑇 denote production temperature and the dimension of the temperature input feature. To be 

consistent with physical properties inside the proxy, variables 𝐱, 𝐲𝑃, and 𝐲𝑇  are re-written as production mass rate 𝑚𝑝
𝑘, predicted BHP 𝑃 𝑘, 

and predicted production temperature 𝑇̂𝑝
𝑘 for the 𝑘𝑡ℎ time step, respectively. Only the production rate is used here since the proxy model 

only predicts the production temperature. Therefore, the injection rate in 𝐱 is disregarded by the proxy model. The proxy model has three 

components to approximate the heat conduction term, the sink term, and the heat convection term (Figure 4). In the heat conduction term, 

the temperature of rock grains 𝑇𝑅  is assumed to be constant. In the sink term, the extracted enthalpy is the product of mass flow rate and 

specific enthalpy. The specific enthalpy is simplified to be proportional to brine temperature. In the convection term, the energy flux 

between a production well 𝑖 and an injection well 𝑗 is simplified based on the relation from Tureyen and Akyapı (2011), which is written 

as 

𝑞𝑖𝑗 = 𝑎𝑖𝑗ℎ𝑗(𝑡) (𝑃𝑖(𝑡) − 𝑃𝑗(𝑡))                                                                                     (6) 

where 𝑞𝑖𝑗 is the energy flow between a production well 𝑖 and an injection well 𝑗, 𝑎𝑖𝑗 is recharge index constant or conductance (Li et al., 

2017), derived from Darcy’s law; ℎ𝑗 is the specific enthalpy for injection well 𝑗, which is assumed constant. Another assumption is that 
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the processing of the temperature variable is in an explicit form since temperature change over each time step is typically small. Based on 
these assumptions, the calculation of temperature decline consists of a series of algebraic operations and is amenable to implementation 

as a neural network.  

The CNN-RNN layer and the physics-based proxy model are connected and jointly trained using the following loss function:  

ℒ(𝜃) = ∑‖𝐲𝑃 − 𝐲𝑃 ‖2
2

𝑁

+ ∑‖𝐲𝑇 − 𝐲𝑇 ‖2
2

𝑁

                                                                     (7) 

where 𝜃 is the weight of the predictive model. To train the resulting architectures, the Adam optimizer is used (Kingma and Ba, 2017).  

 

Figure 2: Schematic of 1D convolution operation. 

 

Figure 3. The structure of GRU cell and its mathematical representation. 

 

Figure 4. The structure of the physics-based proxy model. 
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3. NUMERICAL EXPERIMENT 

In this experiment, the proposed predictive model is trained and tested using simulated data. The purely data-driven model suffers from 

three main issues: 1) extensive data requirements, 2) lack of physical plausibility and interpretability, and 3) poor generalizability beyond 

training data (Willard et al., 2021). Since the interpretability is handled by the proposed model itself, we only focus on the other two issues 

in this work. Therefore, we classify the data based on data quantity and the range of training samples to better define the problem statement 

(Figure 5). The lengths of training samples 𝑁 for training the predictive model are 400, 500, and 600, where the length is the number of 

data timesteps used for training. Another direction in the quad chart is the consistency of input range between the training and test data. 

The training samples are then divided into six cases: consistent range with N = 600, 500, 400 (denoted as A1, A2, and A3) and inconsistent 

range with 𝑁 = 600, 500, 400 (B1, B2, and B3). Four training samples are randomly generated for the examples with consistent range. 
Six training samples with different control patterns are generated for the quadrants with inconsistent ranges, of which the total production 

rates for different patterns are shown in Figure 6. The simulated samples are generated over 20 years (from 2013/11/01 to 2034/01/06) 

with a total length of 1054 timesteps and a time interval of seven days. 

 

Figure 5. Classifications of input features based on consistency of sample range (A for consistent range and B for inconsistent 

range) and data quantity (N=400, 500, and 600). 

 

Figure 6. Total production rate for six control patterns with inconsistent range between training and testing set.  

Two purely data-driven models are applied in the experiments for comparison with the proposed model: a standard GRU model and a 
variant of the GRU model. The GRU variant is designed to overcome the extrapolation issue by removing the multiplication weight  
(1 − 𝑧𝑡) from the last step within the unit. This change is to convert the last step of calculation within the standard GRU from a weighted 

average between ℎ𝑡−1 and ℎ̃𝑡 to a cumulative sum of ℎ𝑡−1 and ℎ̃𝑡 (See Appendix A). The GRU variant is referred to as “Cumsum GRU”, 

which represents the cumulative sum. Three predictive models are then trained with simulated training samples with different data amounts 

and ranges. Each predictive model is trained five times to get the average performance for each sample. 

Figure 7 shows the prediction results for four samples with a consistent range from three models trained with the first 600 timesteps. The 

values on the y-axis are the normalized production temperature of six production wells. Wells 88-19, 77A-19 and 77-19 have obvious 
temperature decline, while Wells 21-28, 78-20 and 21-19 remain stable over 20 years. It is observed that predictions from the proposed 

model capture the future trends for four samples. The Cumsum GRU captures some of the trends, but shows instability in its performance, 

while the prediction for Wells 88-19, 77A-19 and 77-19 from the standard GRU flattens. Figure 8 shows the prediction results for six 
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samples with an inconsistent control range. The trends in the temperature features change since controls go out of range. The proposed 
predictive model captures the trends for all six control patterns, even when the control values go out of range. The standard GRU model 

fails to make accurate predictions for most examples. The Cumsum GRU works well for the control patterns “a”, “e”, and “f”, but fails to 

provide correct prediction for “b” and “d”.  

 

Figure 7. Results for example A1: samples with 600 steps and consistent range. “Proxy” refers to the proposed predictive model.  

 

Figure 8. Results for example B1: samples with 600 steps and inconsistent range. 
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Figure 9. Summary of average RMSE losses for four consistent samples and six inconsistent samples. 

Figure 9 summarizes the average root mean square error (RMSE) losses for different examples with the three models. The proposed 

physics-embedded model outperforms the purely data-driven models in almost all examples. The Cumsum GRU has a similar performance 

to that of the physics-guided model on the consistent samples but fails to provide correct predictions when the controls during training 

and test cases are inconsistent. On the other hand, training the models with only 400 timesteps (samples) of data degrades the quality of 

the physics-guided predictive model, which shows overall higher RMSE losses for 𝑁 = 400. The detailed results for 𝑁 = 400 and 500 

are shown in Appendix B. 

4. DISCUSSION AND CONCLUSION 

Effective development of a geothermal reservoir requires a reliable and efficient predictive model. A fast data-driven model facilitates the 

implementation of control optimization and other complex iterative workflows (e.g., inverse modelling and uncertainty quantification) 

that entail high runtime for physics-based simulation models. The main challenges of data-driven models are limited ability to extrapolate 

beyond training data and extensive data requirement. The prediction of production temperature versus time leads to an extrapolation 
problem since the temperature keeps declining with a continuous injection of cold water. Moreover, the control optimization 

implementation with data-driven models typically leads to control strategies that are likely to fall beyond the training samples (Yu and 

Jafarpour, 2021). On the other hand, data-driven models that are trained with insufficient samples are not likely to provide accurate 

predictions of future responses. These challenges motivate the need to develop novel architectures that integrate domain knowledge into 

data-driven models. 

In this paper, the proposed deep learning model is augmented by simplified physics to predict future responses for different control 

patterns. The model consists of a purely data-driven component (i.e., the CNN-RNN layer) and a physics-based proxy. The data-driven 

layer captures the relationship between the control and the BHP response, while the physics-based proxy reliably approximates the heat 

flux and the sink term for predicting the temperature decline. The model is trained using simulated data from a field-scale model and is 

used to predict the BHP and temperature simultaneously. The proposed hybrid model for predicting simulated data outperforms t he purely 
data-driven models. When the control inputs during prediction are out of range (i.e., inconsistent with those from training), the hybrid 

model shows promising extrapolation capability. 

Compared with physics-based models, the proposed model decouples the interaction between temperature and pressure in the governing 

equations and circumvents the time-consuming Newton-Raphson iterations needed in numerical computation. Compared with data-driven 

models, the hybrid predictive model learns the mapping between inputs and outputs more efficiently and is constrained by the approximate 
physics that governs the system. Even though several simplifications are made, the hybrid predictive model is able to present the general 

correlations and trends for unseen ranges of inputs. Future studies on hybrid physics-guided predictive models include fine-tuning of the 

model and implementations of integrating physics in different ways.  
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APPENDIX 

Appendix A. GRU Variant 

 

Figure A-1. The structure of the variant of the GRU cell and its mathematical representation. 

Appendix B. Results for N = 400 and N = 500 

 

Figure B-1. Results for example A2: samples with 500 steps and consistent range. 

 

Figure B-2. Results for example A3: samples with 400 steps and consistent range. 
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Figure B-3. Results for example B2: samples with 500 steps and inconsistent range. 

 

Figure B-4. Results for example B3: samples with 400 steps and inconsistent range. 


