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ABSTRACT

Time-lapse geophysical dataat geothermal reservoirs are an important tool for monitoring physical properties important in the production
and life of thesystem;the most commonly used are repeat precision gravity and levelling surveys, and microearthquake (M EQ) receiver
networks. The MEQ receiver locations are seldom permanent, however, and with the naturally changing MEQ event locations, the
continuously changing seismic ray path coverage complicates the analysis of the time-lapse M EQ data. Standard methods of inverting
time-lapse data fall short when faced with simultaneously analyzing both time-lapse microearthquake and time-lapse gravity data. We
have therefore developed a new approach for inverting data collected at two different time periods for a baseline model and the changes
to that model over the intervening period. Our approach is easily extended to the case of joint inversion of both time-lap se microearthquake
and time-lapse gravity data using a cross-gradient link to constrain the model differences. We demonstrate our method on a realistic
synthetic dataset.

1. INTRODUCTION

A variety of geophysical methods are routinely deployed to explore and develop volcanic-hosted, high enthalpy, geothermal fields
including magnetotellurics (M T), gravity, and microearthquake (M EQ) data (Vp and Vs first arrival times). M T is the primary geophysical
exploration method since the subsurface resistivity is dependent on primary lithology, secondary (hydrothermal) alteration grade and
intensity, temperature, porosity and pore fluid salinity (Ussher et al., 2000; Cumming, 2009). Ground gravity responds to lateral density
contrasts such as significant fault systems, vertically oriented intrusive bodies, and/or propylitic-altered density anomalies. During
production and development phases, repeat precision gravity and levelling surveys and continuously recording MEQ arrays are
increasingly deployed to map time variations in density and seismic velocity (and seismic event distributions) because these reflect
rock/fluid interactions, pressure/stress changes, fluid saturation changes, and production versus recharge balances. High enthalpy
geothermal systems aretypically not exploited using closed-loop binary systems, and so there is a net steam/fluid reduction in rock which
is imp ortant to monitor with time.

Time-lapse tomography applications include electrical resistivity tomography (ERT, e.g., Van et al, 1991; Hayley et al, 2011; Karaoulis
et al, 2013; Lesparre et al, 2017) and seismic tomography (e.g., Vesnaver et al, 2003; Julian and Folger, 2010; Qian et al, 2018). When
the data measurement system is permanently installed over the course of the experiment, then it is straightforward to image time variations
by tomographic inversion of the differences in observed data between different time periods, as is often done in the case of time-lapse
ERT (see for example, Hayley et al, 2011).

If, however, the data measurement systemis not permanently installed and the locations of the sources and receivers change with time,
then the problem of imaging property variations over time is much more difficult. This is typically the case for geophysical data collected
at geothermal fields, such as M EQ data, where seismic receivers are moved depending on where active injection and production is being
carried out,and the sources, which are microearthquakes caused by injection. This is the problem we consider in this work, that is, how
to image the time variations of physical properties in a geothermal reservoir by tomographic analysis of data collected at different times
(baseline and monitoring data) and where receivers are moved around and the source field (in the case of M EQs) changes.

2. METHOD

The standard approach to solving nonlinear geophysical inverse problems is by regularized least-squares, in which the solution is taken
tobe the minimum of an objective function of the form

w(m) = (d —Fm) W(d — F(m)) + A(m—mg)TK(m — my), (1)

where d is the observed data vector, F is the forward modeling function, m is the unknown model vector, I is a weighting matrix (usually
the inverse variance or covariance), A is the regularization parameter, K is a discrete form of a stabilizing smoothing function, and m,, is
an (optional) a priorimodel. There are many ways to solve the numerical (and nonlinear) optimization problem described by equation (1)
such as Gauss-Newton and nonlinear conjugate gradients (Rodi and M ackie, 2001).

The simplest approach to analyzing time-lapse data is to carry out an inversion for each dataset collected at different times and then
difference the models. However, this approach is prone to be problematic because noise in different data sets can be propagated into the
individual inversion results and thus contaminate the difference models (Hayley et al, 2011). A slightly more sophisticated approach is
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called thecascaded time-lapse inversion approach (Miller et al, 2008) in which the result of inverting the data at the starting time is used
as the starting and a priori models for the subsequent data. This basically is solving for the variations away from the a priori model that
fit the data at the subsequent time period and thus strives to keep the two models close.

In the case where the measurement system does not change (that is, the sources and receivers are fixed in a permanent installation), then
one can use the same inversion algorithm used to solve equation (1) by simply changing the residual vector from (d — F(m)) to
[(d, — dy) — (F(m,) — F(m,))] and solving directly for the model variations between the models over the intervening time period. This
is called a difference inversion algorithm by LaBrecque and Yang (2000) and requires solving first for the background model m, using
the data d at the initial state. Further approaches are discussed in Haley et al (2011), for example.

We are particularly interested, however, in the situation where a permanent monitoring installation is not available and instead
measurements (and sources) are moved between data acquisitions. One can follow the simplest approach mentioned above and carry out
a tomographic analysis of the data from each time period separately and compare the results with the assumption that all changes arise
from time variations in the velocity. Foulger et al (1997) carried out such analysis for a permanent network to analyze the temporal
variations from data collected at the Geysers geothermal field from 1991 and 1994. With temporal changes in the seismic network in
addition to the variability of M EQs and therefore increased changes in the seismic ray distribution, this approach is more problematic.

Julian and Foulger (2010) proposed a different approach whereby data from two different time periods are inverted simultaneously with
an additional constraint added to the objective function to minimize the differences between the two models. In our tests on synthetic and
real data, we found this method worked reasonably well, although it takes some trial and error to determine the optimal regularization
parameter that weights the similarity of the two models.

Our work herein was motivated by the desire to jointly invert both M EQ data and gravity data and solve for the model differences while
simultaneously constraining the velocity and density changes to be structurally similar using the cross-gradient approach of Gallardo and
Meju (2003). We therefore propose anew algorithm in which data from two different time periods are inverted simultaneously, but instead
of inverting for two models (m, and m,) with acloseness constraint (or some variation thereof), we invert directly for m, and the changes
in the model Am, namely,

d, = F(my), (2a)
d, = F(m,, Am), (2b)
m, =my + Am. (2¢)

The objective function in equation (1) is expanded to include misfits for d, and d,, as well as regularization terms for m; and Am. For
convenience, let 7 = (d — F(im)), and ignoring dependence on an a priori model, then we can write the expanded objective function as

W(my,Am) = rfWyry +rIWyr, + A,miKymy + A,AmTK, Am, 3)

where 7; and 7, are the residuals in the data at two different time periods and regularization (smoothing) is applied to both m; and Am.
There are many advantages to setting up the inversion this way to solve directly for the initial model and the changes to that model: (1)
data from both time periods logically determine the background model while only the data from the second time period determines the
temporal changes, (2) there are no assumptions about model geometry or distribution of sources/receivers, (3) parameterizing the inversion
directly in terms of Am immediately allows joint inversion with time-lapse gravity data for density variations and the ability to constrain
the velocity and density changes to be structurally similar by inclusion of a cross-gradient constraint (Soyer et al, 2018). In this case, we
can write the objective function as, where now we make explicit that we are inverting for v;, Av,Ap,

¥ (vy, Av,Ap) = r{Wiry + 17 Wyr, + rgT% ry + MoKy + LA Ky Av + A30p K3 Ap + Axg <p£g, 4)

where r; and r, are theresiduals in seismic baseline and monitoring data, v; is the baseline velocity model, Av is the change in velocity,
Ap is the change in density, 7, is the gravity residual, and where we have added an additional smoothing regularization term for density
changes Ap and we have added a cross-gradient constraint between Av and Ap. The numerical example shown in thenext sectionis based
on the solution of this minimization problem.

3. EXAMPLE

The concept was tested on a synthetic setup, inspired by a real geothermal monitoring case in terms of receiver and event locations and
available P/S travel time picks. About 2,600 and 3,000 events are available respectively forepoch 1 and 2 (baseline and monitoring data),
measured at a total of 18 receiver locations with only partially overlap between epochs, and where not all receivers are active throughout
the respective time period. The M EQ events are recorded at only 4 to 12 receivers, and fewer S than P wave travel times are available
(85% and 50% for epoch 1 and 2, respectively). In addition to the seismic monitoring, gravity time-lapse data are simulated at ~70
benchmark locations.

Forward data were calculated for synthetic models using a finite difference solution of the eikonal equation based on Noble et al (2014).
The synthetic models were derived from a background 3D velocity model with a predominantly vertical gradient plus minor lateral
variations, and where the velocity inside a defined “reservoir” zone was a) raised by 5% above background in epoch 1 and b) lowered by
5% below background in epoch 2, both for Vp and Vs, thus generating a 10% change between the two epochs within the reservoir (Figure
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1). Density was modelled as a decrease between epochs by -0.01g/cc inside the reservoir zone (not illustrated). These property changes
are considered illustrative, rather than necessarily representative of a real case. A Gaussian error with a mean of 25 (*1.65) msec was
added to the synthetic P (S) travel times, and a mean 150m random error was added in each dimension to the M EQ hypocenter locations,
which besides the precise time of an event is another unknown for real data M EQ tomography. Likewise, a mean 0.015mGal random error
was added to the synthetic gravity data.

The inversion results presented here (Figures 2 to 5) are from a joint inversion for several model parameters: (1, 2) Vp and Vs for both
epochs, (3) MEQ event location updates, and (4) the density property change — all estimated here from a single inversion run. Inversions
started from the background velocity models and zero density (= no change). Cross-gradient structural similarity constraints were used
between Avy, & Av, and also between Av, & density and Av; & density, using different weights. The a priori model for Av is taken to

be zero, thus imposing the condition to make the variations as small as possible.
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Figure 1: Slice through velocity models used in the synthetic setup. Both Vp and Vs were raised (center) and lowered (right) by
5% with respect to the 3D background model (1eft).

The inverted property volumes recover the input volumes fairly well, and the inversion model responses reproduce the input data with a
root mean square (RMS) of 0.97-0.98 (traveltimes) and 1.38 (gravity). The higher gravity misfit is due to a relatively high structural
(smoothing) constraint on density, to avoid a shallower concentration of modelled density changes that are typical of density inversions.
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Figure 2. Slices through the velocity models recovered by the joint inversion: Vp (top) and Vs (bottom), epochs 1 (left) and 2
(right). Only cells with sufficient 3D illumination are shown.
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Figure 3: Relative velocity changes, from division of the epoch velocity models (2/1), for both Vp (top) and Vs (bottom), and
inverted density change (right). Density change contours are also shown in black on the velocity changes. Only cells with
sufficient 3D illumination are shown.

i

§ E B

L L EOURRNARRRRREN S
g

6848

Figure 5: 3D view of the modelledrelative Vp change between epochs (half volume) and the absolute density change (single slice).
The closedreservoir surface is shown in transparent orange. Only cells with sufficient 3D illumination are shown. Color
scale as in previous figures.
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4. CONCLUSIONS

We have implemented a new algorithm for inverting time-lapse geophysical data, which is parameterized in terms of the initial background
model and the changes in the model property (m, and Am). The many advantages over previous approaches include parameterization
directly in terms of the model changes with no assumptions about the data geometry at different time periods. It is suited particularly well,
therefore, to inverting time-lapse MEQ data from changing seismic receiver arrays as well as the varying M EQ source locations.
Furthermore, this approach facilitates simultaneous joint inversion of the M EQ data with other time lapse datasets such as repeat precision
gravity and levelling surveys, using a cross-gradient constraint to impose structural similarity between changes in properties. We have
applied the algorithm to synthetic datausing realistic model and data geometries, inspired by the issues raised in a real data case.

While the algorithm works well for non-static seismic receiver arrays, we should stress that for such sparse seismic networks a permanent
installed network has tremendous advantages in the analysis of velocity variations from time-lapse M EQ data.
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