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ABSTRACT  

Real-time monitoring and optimization of geothermal operations require a reliable predictive model that incorporates the thermodynamic 

and thermoeconomic behavior in the power plant. The effect of ambient temperature on an air-cooled binary cycle power plant is complex 

and costly to model using a physics-based predictive model. Fit-for-purpose data-driven predictive models offer a cost-effective and 

efficient alternative to physics-based models for energy production prediction and online optimization. Neural networks offer powerful 
and flexible models that can be readily constructed, trained, and updated using feedback from the real process historical data. We present 

a deep learning-based approach for online prediction and optimization of geothermal operations while accounting for disturbances of 

ambient temperature and brine supply. The model predicts power output and thermal efficiency by propagating the measurement variables 

and by including the influence of control and disturbance variables in the form of a feed-forward neural network. Once trained, the deep 

learning model is used to predict and maximize the predicted power production by automatically adjusting the working fluid circulation 
rate via the pump speed.  We present the workflow in detail and demonstrate its performance using a quasi-dynamic model in the form of 

thermodynamic flowsheet simulation as well as the field data from a binary cycle geothermal power plant. 

1. INTRODUCTION  

Geothermal energy conversion systems extract reservoir fluids from producing wells, utilize the heat to generate electricity in a power 

plant, and then reintroduce the fluids into the reservoir. ORC (Organic Rankine Cycle) systems are sustainable technologies that utilize 
low/medium-temperature heat sources in binary cycle power plants. Air-cooling is useful for the geothermal power plants that are operated 

in arid areas, where water is scarce. However, ambient air temperature significantly affects the power output of air-cooled thermal power 

plants (Varney & Bean, 2012). The automation of geothermal operations by considering the disturbance from the environment can result 

in significant performance and sustainability improvement. Predictive models are traditionally derived from the physics of the problem or 
a reduced version of the underlying governing equations. Recent developments in data science have motivated the development of data-

driven prediction models for industrial applications, including real-time control. 

Wang et al. (2020) present a machine learning-based predictive model for optimization of thermal efficiency with simulation data for off-

design, which provides an efficient tool for choosing the layout, working fluid, and operation condition of the ORC operation. Hu et al.  

(2021) use a similar approach on a solar and geothermal hybrid system to predict and optimize the thermal efficiency of an off-design 
operation. For online control and automation of the geothermal system, Cupeiro Figueroa et al. (2020) present a physics-based model 

predictive control for hybrid geothermal systems. In general, detailed physics-based models are not straightforward to construct, calibrate 

and maintain. Ling et al. (2021) present an online economic MPC algorithm for optimization of ORC units with a dynamic deep neural 

network model of the ORC operation. In this study, we present an efficient workflow for prediction and optimization of air-cooled 

geothermal operations using a quasi-dynamic simulator that is used to predict the operation response of the field.   

2. METHODOLOGY  

2.1 Overview 

We present an efficient prediction and optimization approach for binary geothermal power plants. Figure 1 depicts the overview of the 

workflow. The geothermal power plant provides measured historical data from the operation. Offline historical data are used to train a 

machine learning-based model, without requiring the detailed thermodynamic and other engineering information about the equipment. 
Once the data-driven model has been trained and validated, it can be used to predict the performance of the system under the reference 

control input that has been examined and optimized under physical constraints. To evaluate the proposed framework, we apply it to 

simulated data from a physics-based simulation model of a geothermal field that is operated by Cyrq Energy Inc. 
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Figure 1: The overview of the developed approach. 

2.2 Physics-based simulation  

System description  

The surface power plant part in Figure 1 shows the schematic description of a simplified ORC unit that is operated by Cyrq Energy Inc. 

In this process, the geothermal brine fluid is the heat source for preheating and vaporizing the organic working fluid. The higher-pressure 
working fluid vapor passes through a turbine and rotates the shaft connected to the generator to generate electricity. The turbine exhaust  

vapor then flows into an air-cooled condenser, which is condensed by ambient air. The organic liquid working fluid is then pumped back 

to the preheater to complete and start a new cycle. The physics-based model is developed using the DWSIM software (Daniel Medeiros, 

2021), which is a chemical process open-source simulator. The challenges of building this simulation model are as follow: 

 The design data has a significant discrepancy compared to historical data. While the temperature, pressure, and mass flow rate 

are not fully measured during the operation, the model parameters must be deduced from the available data.   

 The process dynamics is only represented through the available process data, which has been post-processed to average hourly 

data.  

 The system is affected by environmental disturbances, primarily the ambient temperature and brine supply. 

 The air-cooled condenser that influences the turbine exhaust pressure (Kahraman et al., 2019) cannot be explained by the 

existing model.  

 The working fluid R134a frequently operates above its critical pressure. The thermophysical property for some operation regions 

in the database is incomplete. Additionally, when the fluid is treated as the supercritical fluid the key variable of superheat 

temperature is unavailable. 

In light of these challenges, we make the following assumptions: 

 The ORC is modeled as a sequence of steady-state calculations with pump operation and disturbance as inputs. The inertial 

effect is neglected.  

  The parameters in the thermodynamic model are estimated from the operation data.  

 The fluid thermodynamics is based on the Peng-Robinson equation.  

 The adiabatic efficiency of the pumps and the turbines are assumed to be 85% and 90%, respectively. The turbine is operated 

at a constant speed. The pump curve is fitted with a polynomial regression model.  
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 The turbine outlet pressure is determined by a polynomial regression model with ambient temperature input. 

 The pressure drops across the piping and equipment as well as the heat losses are neglected. 

Turbine: 

As described in the above assumptions, the turbine is modeled under isentropic assumption and constant speed required by power grids. 

Figure 2 (a)&(b) depicts field data for ambient temperature, turbine exhaust temperature, and pressure for a month. The historical data 
indicate that ambient temperature has a strong correlation with turbine exhaust pressure. To model this relationship, using Eqs. (1) & 

(2), we fit a polynomial curve to predict the turbine outlet pressure when the ambient temperature 𝑇𝑎𝑚𝑏 ≥ 32 (Figure 2); otherwise, the 

turbine outlet pressure 𝑝𝑡_𝑜𝑢𝑡 is a constant 0.42 𝑀𝑃𝑎 . 

 𝑝𝑡_𝑜𝑢𝑡  = 9.58𝑒−5𝑇𝑎𝑚𝑏
2 + 1.21𝑒−3𝑇𝑎𝑚𝑏 + 2.84𝑒−1  (1) 

 32 °F ≤  𝑇𝑎𝑚𝑏 ≤ 100 °F (2) 

Figure 2(c) shows the range of ambient temperature fluctuations in a year, which serves as input to the polynomial regression model in 

Figure 2(d).  

 

Figure 2: (a) Ambient temperature vs. turbine exhaust temperature (b) Ambient temperature vs. turbine exhaust pressure (c) 
Daily maximum temperature minimum temperature over a year (d) Polynomial regression model for turbine outlet 

pressure. 

Multi-stage centrifugal pump 

Due to the lack of the pump curve, we model the pump discharge pressure 𝑝𝑝𝑜𝑢𝑡
and volumetric flow 𝑞𝑝 𝑜𝑢𝑡

 using a 2nd order polynomial 

regression and linear regression with the pump speed 𝑛 as input. Eqs. (3)&(4) show the exact expression for the pump curve, which is 

generated based on field data.  Figure 3 depicts the pump curve results compared with the field data when it is available.  

 𝑝𝑝𝑜𝑢𝑡
 = 1.16𝑒−6𝑛2 + 2.3𝑒−3𝑛 + 6.52𝑒−1    (3) 

 𝑞𝑝𝑜𝑢𝑡
 = 5𝑒−4𝑛     (4) 
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Figure 3: The simulated multi-stage pump curve of (a) discharge pressure and (b) the volumetric flow.  

Heat exchangers: 

There are three heat exchangers in the process: the preheater, the vaporizer, and the condenser.  The preheater and vaporizer are modeled 

as the countercurrent heat exchangers with the potential phase described by the convection heat equation:  

 𝑄 = 𝑈𝐴Δ𝑇lm                                                                                              (5) 

where 𝑄  is the heat transferred, 𝑈 is the heat transfer coefficient, 𝐴  is the heat transfer area and Δ𝑇𝑙𝑚  is the Logarithmic Mean 

Temperature Difference (LMTD) of the countercurrent flow of brine and R134a.  

The air-cooled condenser condenses the R134a exhaust from the turbine at a pressure that is in equilibrium with the ambient temperature. 

The simulator utilizes two exchangers that separately condense and subcool the working fluid. The first one simply sets the outlet fluid 

phase to liquid, and the second one specifies the subcooled temperature drop correspondingly. Figure 4 displays the simulation model of 

the process in the surface power plant shown in Figure 1. 

 

Figure 4: Diagram of the ORC model in DWSIM. 

3.2 Data-driven model  

Artificial Neural Network 

An artificial neural network (ANN) model is utilized for learning the ORC process dataset. The multilayer structure of the model together 
with the use of nonlinear activation function enables a flexible structure to learn nonlinear patterns from the data. The model parameters 

are estimated by backpropagating the prediction error during training. Figure 5 depicts the ANN structure, which includes an input layer, 

several hidden layers, and an output layer. The inputs layer receives the ambient temperature 𝑇𝑎𝑚𝑏, the brine inlet temperature 𝑇𝑏_𝑖𝑛, 

pressure 𝑝𝑏_𝑖𝑛, volumetric flow rate 𝑞𝑏_𝑜𝑢𝑡 and pump speed 𝑛. The output layer predicts the gross power generation 𝑃𝑔 , the cost of pump 

operation, 𝑃𝑔 , as well as other process variables. Once trained, the model can serve as an input-output model that can be used for 

optimization. 
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Figure 5: The schematic diagram of the ANN. 

Optimization 

In the presented examples, the net power generation is used as the objective function to maximize. This economic objective function is 

described in terms of the gross power generation and the pump operating cost as a function of the ANN model disturbances 𝑤𝑡  and 𝑢𝑡, 

Eq.(6). Since the control input, the pump speed, is constrained to a specific range determined by the physical limits of the pump, the 

related lower and upper bounds are shown in Eq.(7).  

 𝑎𝑟𝑔𝑚𝑎𝑥
𝑢𝑡

 𝑃𝑔(𝑤𝑡 , 𝑢𝑡) − 𝑃𝑐(𝑤𝑡 , 𝑢𝑡)                                                                                   (6) 

subject to:  𝑢𝑚𝑖𝑛 < 𝑢𝑡 < 𝑢𝑚𝑎𝑥                                                                        (7) 

The ANN model is implemented in Pytorch (Paszke et al., 2019), and the optimization is performed using the 'COBYLA' algorithm from 

the Scipy library in Python 3.7 (Virtanen et al., 2020). 

3. RESULT AND DISCUSSION  

3.1 Evaluation of the physics-based simulator  

The next step in the workflow is to evaluate the physics-based simulator by comparing the simulation results with the field data using the 

same historical disturbance and control input sequences. The four disturbance input variables are the ambient temperature, the brine inlet 

pressure, the brine inlet temperature, and the brine outlet volumetric flow rate. The control variable in this example is the pump speed, 

which is used to generate the output measurements. Figure 6 shows the disturbance and control inputs as well as the simulation process 

measurements.  

The brine inputs in the first two subplots in Figure 6 (ordered from left to right and top to bottom) vary in a narrow range compared to the 

ambient temperature, which is considered as the main disturbance of interest during this period of operation. The net power generation 

(second row, first column) is calculated as the power generated by the turbine minus the power consumption by the pump , which shows 

a good agreement with the historical data from the field. The temperatures in the remaining subplots do not provide good agreements , 
especially when the ambient temperature is low.  The discrepancy is likely caused by ignoring the heat losses in the system, which are 

larger when the ambient temperature is low.  
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Figure 6: The simulation model result vs. the field data 

Although the model is based on a steady-state assumption and there is mismatch between the simulated data and historical field data, the 

reproduction of the dominant variable in predicting the power generation ensures the simulator can be treated as a reasonable quasi-

dynamic proxy model for generating the synthetic dataset.  Given the close agreement between the simulation results and the historical 

data, the simulator is used to generate synthetic datasets for training the ANN model for prediction and optimization. A 10,000-hour 
dataset with disturbance and control inputs from the historical operation was generated to enable the training and testing of the ANN 

model.  

3.2 Prediction  

Synthetic dataset 

The synthetic dataset is preprocessed by normalizing the data range between 0 and 1 and dividing it into training set and testing set with 
lengths 7000 and 3000, separately. The model is characterized by an input layer of 5 nodes, two hidden layers with 100 nodes, and rectified 

linear unit (ReLU) activation function. In this example, since there are no extra process variables monitored to address constraints in the 

optimization, the output layer has two nodes that represent the power production and pump operating cost. On each epoch during the 

training stage, the training dataset is randomly partitioned into 70% training and 30% validation. The prediction results are evaluated by 

Root Mean Square Error (RMSE) as shown in Eq. (8). The RMSEs for prediction of power production and pump cost are 0.03 and 0.01, 
respectively. The prediction results (red) are compared to the measured values (blue) in Figure 7, where the outputs from the model closely 

follow the general trend in the data. 

 RMSE = √
1

N
  ∑ (𝑥𝑡 − 𝑥𝑡̂)2𝑁

𝑡=𝑡0
                                                                           (8) 

 

Figure 7: Prediction of power generation and pump operation consumption on the synthetic dataset. 
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Real field dataset 

The same model is trained and tested on the Cryq field dataset to further evaluate the performance of the ANN model. The dataset is 8000 

hours long, with 5000 hours for training and 3000 hours for testing. Figure 8 shows the 3000-hour prediction results for power generation 

and pump cost, given the disturbance and control inputs. The RMSEs for power production and pump cost are 0.069 and 0.044, 

respectively. The prediction performance is acceptable, although it is not as good as that of the performance in the synthetic example. 

Because the optimization performance cannot be evaluated without applying the controls in the field, the optimization is only demonstrated 

for the simulation example. 

 

Figure 8: Prediction of power generation and pump operation consumption on actual field dataset. 

 

3.3 Optimization   

Once the ANN model is trained, the model is used to find the new control policy that maximizes the net power output under the pump 
physical constraints. Table 1 summarizes the average power generation, pump operating cost, and net power generation results for different 

methods. The optimized control inputs result in 180 kW average increase in a 10-megawatt ORC unit compared to the original control 

strategy. With the 0.22 $/kWh residential power price in October 2021 from U.S. Energy Information Administration website(n.d.), the 

28,512$ worth of electricity is generated without extra equipment investment. 

In Figure 9, the first three subplots (from left to right, top to bottom) show the simulation results after applying the new control inputs and 
compares that with the results from the original control. The fourth subplot compares the predicted and realized average output of the 

ANN model. The ANN model slightly overestimates the power generation and underestimates the pump cost, resulting in lower simulated 

net power generation than expected.  

Table 1 Averaged output of the ANN model and simulation 

Control inputs Method Power generation (MW) Pump cost (MW) Net power generation (M W) 

Original control Simulation  10.98 1.52 9.46 

Optimized control Simulation  11.64 2.00 9.64 
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Figure 9: Optimization result  

4. CONCLUSION  

An efficient data-driven prediction and optimization framework is presented to improve the performance of air-cooled geothermal 
operations. The ANN predictive model is built purely from data and is used to predict the power generation and pump cost with a known 

disturbance and control inputs. The optimization results are evaluated using a physics-based simulation model that is parametrized based 

on an actual ORC power plant. Comparison between the data-driven predictive model and physics-based model simulator suggests that 

the physics-based model is challenging to implement when the process and/or engineering information is incomplete or missing, e.g., the 

operation curve of the pressure change equipment, the thermodynamic data on the supercritical fluid, and the system response to key 
disturbances. When the historical data is representative of the physics underlying the process, the data-driven model is a powerful tool for 

optimizing the process by only learning the patterns from the historical data. A promising area for future research is to deploy this approach 

online and gradually update the model with new samples to improve the performance of the predictive model and optimization result.  

Furthermore, the physics-based model is constructed under the steady-state assumption. An interesting avenue for future work is to 

integrate a dynamic simulator with the air-cooled condenser and use the resulting simulated data to train the dynamic neural network. 
However, the transition to the dynamic model requires detailed information about the operation and equation-based process simulator. 

The use of efficient data-driven prediction models in solving optimization problems can enable online automation for complex economic 

objective functions at a higher frequency.  
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