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ABSTRACT

The availability of freshwater and low-cost electricity are limiting factors for sustainable living in Hawaii. This raises the question: Can
technology be developed to locate and characterize freshwater and geothermal resources simultaneously? We present a multimodal
machine learning (MML) workflow to characterize the 3D distribution of features (physical and geochemical properties and state
variables) along a groundwater-geothermal continuum. The success of this MML workflow is based on the availability and assimilation
of mutual information to: (1) identify latent features using neural network proposals in a genetic algorithm with feature constraints, (2)
organize related information across a hypersurface by competitive learning, (3) predict regionally continuous features by minimizing the
quantization and topological errors with competitive learning, and (4) group statistically meaningful features based on the mode of
stochastic k-means clusters. The proposed MML workflow is applied to a subset of the Hawaii Play Fairway data for Lana‘i, Hawaii.
These data include direct point measurements, such as borehole water level, geology, temperature, chloride concentration, isotopes, and
specific conductivity; and derived 3D volume properties (numerically inverted), such as specific capacity, density, and electrical
resistivity. Despite field data characteristics (disparate, scale dependent, spatially limited, sparse, and uncertain), the M M L workflow
yields a single 3D transdisciplinary data product whose voxels each contain statistical summaries of model features. Five-fold cross-
validation (e.g, five randomly shuffled stratified split sets, each split with 80% training and 20% testing) reveals moderate
generalizability of the MML model to independent data. Preliminary interpretation of continuous features reveals hidden freshwater
(low temperature and low chloride concentration water) and geothermal (high temperature and brackish water) resources. In addition to
integrating machine learning expertise and practices into the Play Fairway project outcomes, this study provides new capabilities for
characterizing continuous subsurface hydrogeologic and geothermal features in the Hawaiian Islands for sustainable living (including
Hawai‘i Island as part of the new Island Heat project sponsored by the Department of Energy) and at other geothermal sites worldwide.

1. INTRODUCTION

The availability of freshwater and low-cost electricity are limiting factors for sustainable living in Hawaii. This raises the question: Can
technology be developed to locate and characterize freshwater and geothermal resources simultaneously? The Hawaii Play Fairway
project, funded by the Geothermal Technologies Office (GTO), U.S. Department of Energy (DOE), produced a statistical methodology
to integrate existing geologic, groundwater, and geophysical datasets relevant to subsurface heat, fluid, and permeability into a statewide
resource probability map (Lautze et al., 2020, Lautze et al., 2022). The combined probabilities for heat, fluid, and permeability indicated
the likelihood of a geothermal resource in the caldera region of Lana‘i Island. This area, known as the Palawai Basin, exhibits the co-
location of a high gravity signature and reduced resistivities at depth with elevated groundwater temperature. In Phase 3 of the Play
Fairway project, drilling just outside the Palawai Basin confirmed increasing water temperature to a depth >1 km (Lautze and Thomas,
2021). Current trends in geothermal energy focus on the use of Machine/Deep Learning (ML) for industry problem-solution and
decision-making (Smith et al., 2022).

In general, the ML applications fall into three classes: data-driven ML, physics-informed M L, and multimodal M L. According to Qin et
al. (2022), data-driven ML models suffer from three limitations: 1) extensive data requirements, 2) lack of physical plausibility and
interpretability, and 3) poor generalizability beyond training data. Physics-informed ML can overcome these shortcomings by either 1)
embedding mass and/or energy balance equations into the ML algorithm, or 2) informing the ML algorithm using properties derived
following the inversion of (multi)physics-based equations. In the (multi)physics-informed ML approach, the incorporation of physics
into the ML algorithm typically relies on using simplified set of mass and/or energy balance equations (He et al., 2020; Qin et al., 2022)
along with the addition of a physics-guided loss function to regularize training of the associated parameter types. In an alternative
approach, a completed set of explicitly coupled water-heat-solute transport equations were used together with supervised M L algorithms
that stochastically sampled different types of field measurements to reduce the computational burden and improve the parameter
estimates (Friedel, 2020). In this study, we present the multimodal ML (MM L) approach, which affords the possibility to incorporate
any number of estimated property types (using traditional (multi)physics-based numerical model mass and/or energy calibrations and
geophysical inversions, data-driven ML, and (multi)physics-informed ML) along with any number of point field measurements to
inform the process.

The aim of this study is to demonstrate the efficacy in using an unsupervised MML workflow for constructing continuous
transdisciplinary set of subsurface Geothermal Stratigraphic Units (GSUs). Conceptually, the GSUs reflect a single data product that is
spatially characterized by a collection of continuous multiparameter voxels with individual parameters and their univariate statistics. We
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hypothesize that the hydrogeologic, geothermal, and geophysical data collected across monitoring networks provide mutual information
(measure of entropy describing mutual dependence among random variables) suitable for their assimilation, discovery, and prediction of
continuous features when using the MM L workflow. To test this hypothesis, we evaluate the ability of an unsupervised MM L to achieve
the following objectives: 1) develop open community datasets, 2) identify data acquisition targets with high value for future work, 3)
identify new signatures to detect hidden groundwater and geothermal resources, and 4) foster new capabilities for characterizing
subsurface temperature and permeability. This study extends the work of Friedel (2016) who applied an unsupervised MM L workflow
to construct a continuous set of hydrostratigraphic units (HSU) for characterizing shallow (<200m) groundwater systems, and
Vesselinov et al. (2020) who used an unsupervised ML methodology to discover hidden signals in field data and extract their dominant
attributes in a shallow (<200m) hydrothermal sy stem.

2. METHODS

The MML workflow used to determine GSUs involves the following steps: (1) feature selection, (2) feature prediction, and (3) feature
clustering,

2.1 Feature Selection

The identification of suitable features (variables) for building the MML model is undertaken using the nonlinear wrapper approach
called learn heuristics with feature constraints. The wrapper model requires one predetermined learning algorithm in feature selection
and uses its performance to evaluate and determine which features are selected (Yu and Liu, 2003). In this regard, the learn heuristics
reflect the ML algorithm that is introduced into the M etaheuristics algorithm (Buscema et al., 2013). The ML algorithm is generalized
for which multiple learning algorithms are evaluated, for example, Backpropagation, K-Nearest Neighbor, or Naive Bayes, inside a
genetic algorithm (GA) (metaheuristic). Constraints on the learn heuristic approach typically involve features such as one or more
response variables. Given that the GA converges to a global minimum surface (not a single vector), the process is randomly reinitiated
and run until the subset of optimal features can be identified based on their mode of values.

2.2 Feature Prediction

The Modified Self-Organizing Map (M SOM) procedure is used to predict feature vectors at unsampled locations. The prediction
method is sufficiently robust to cope with feature vagaries due to sample size and extreme data insufficiency, even when >80% of the
data are missing (Friedel and Daughney, 2016). The M SOM procedure involves the sequential application of competitive learning (self-
organizing map) and estimation (minimization of objective function by competitive learning). The architecture of M SOM involves an
input layer (signals from the environment) and an output layer (competitive feedback to the environment). The input layer comprises a
set of nodes (neurons) that are connected one to another through a rectangular topology. The connections between inputs (data vectors)
and nodes have weights, so a set of weights corresponds to each node.

In implementing the MSOM procedure, the competitive learning process iteratively modifies weights during the training phase so that
the self-organized output pattern becomes consistent, meaning that the input pattern will produce the same self-organized output pattern.
In doing so, the SOM iteratively maps each data sample as a vector (each variable is characterized as a cloud of data vectors) across a
hypersurface on which data vectors closer to each other are more related (self-similar) than data vectors farther away. The learning
algorithm may be summarized as follows (Kohonen, 2001):

1. Generate initial values including weights, radius, and learning parameter values

2. Select input vector from data set

3. Identify winning node, which is the closest node to the input vector using the Euclidean distance metric
4. Identify the neighborhood with the given radius using a Gaussian function

5. Update the weights for the winning node and all the nodes in the same neighborhood

6. Repeat steps 2 to 6 until the weight vectors reach a con-verged state

7. The estimation of missing values (sometimes referred to as imputation) is done simultaneously for all variables across
the hypersurface (Kalteh et al., 2008).

Feature prediction is undertaken with the best-matching unit vectors supplied as initial values at locations of interest (Wang, 2003) that
are iteratively perturbed while minimizing topographical and quantization error vectors during the competitive learning process (Kalteh
et al. 2008).

Training and testing of the M SOM model are carried out using a stratified split-sample validation approach. In this approach, the data
records are randomly shuffled and split with 80% set aside for training and 20% set aside for testing. In total, the original data set is split
using this procedure N times. Each split characterizes a fold used in the N-fold cross-validation statistics to assess the generalizability of
the unsupervised ML algorithm when presented independent field data. The metrics used to evaluate model performance include R-
squared (a statistical measure representing the proportion of variance for the observed variable that is explained by the estimated
variable) and mean squared error (predictive success) for continuous features; and accuracy (predictive success) and Cohen’s Kappa
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(comparison between the observed accuracy and the agreement expected due to chance) for binary (present or absent) features. Cohen
1960) suggested the Kappa result be interpreted as follows: values < 0 as indicating no agreement and 0.01-0.20 as none to slight, 0.21—
0.40 as fair, 0.41— 0.60 as moderate, 0.61-0.80 as substantial, and 0.81-1.00 as almost perfect agreement.

2.3 Feature Clustering

Grouping statistically meaningful features across the self-organized hypersurface is undertaken by k-means clustering (Vesanto and
Alhoniemi 2000). The best partitioning for each number of clusters is determined based on the Euclidian distance criterion and
interesting merges defined using the Davies-Bouldin index (Davies and Bouldin 1979). In this study, the optimal number of clusters is
determined from repeating the k-means process to avoid convergence at local minima. The Davies-Bouldin validity index is selected as
a matter of convenience, but other validity measures could be used.

3. CASESTUDY

3.1 Study Region

The MML study includes the Island of Lana‘i (Lana‘i) and adjacent Pacific Ocean located about 96 km southeast of Honolulu, Oahu
(Figure 1). Lana‘i is a cashew-shaped island with a maximum width of 29 km in the longest direction. The highest point on Lana‘i is
1026 m with a land area of 364 km?”. The geology of Lana‘i is described as an eroded extinct basaltic volcano that developed during one
period of activity (Stearns, 1940). Structurally, the island has three primary rift zones (Northwest Rift zone, Southwest Rift zone, and
South Rift zone) and caldera located in the Palawai Basin (Figure 2). The summit plateau resulted from collapse along the northwest rift
zone. Lana‘i island has fault breccias and dike complexes that lie in the rift zones radiating from the Palawai Basin. Relatively low
permeability dikes often enclose porous lavas of relatively high permeability forming local compartmentalized reservoirs
(Stearns,1940). Basaltic rocks exposed along the west coast are thinly bedded and considered the most permeable rocks due to cavities
and fractures within and between lava flows and thought to permit the landward intrusion of sea water. Groundwater temp eratures
measured in a well on the rim of the Palawai Basin during Play Fairway Phase 3 vary from about 21C at the land surface to about 65C at
a depth of 1km. Little is known about the subsurface groundwater-geothermal system below this depth, although temperatures at the
Moho (about 13 km depth) are likely in the range of 444 C to 892 C (Schutt et al., 2018). Therefore, understanding the occurrence of
groundwater and geothermal resources requires knowledge of the distribution and characteristics of these basalt-dike sy stems.

Figurel. Study map showing: (left) proximity of Lana‘i to the Hawaiian Islands, and (right) Lana‘i cross-section for which
MML results are extracted (from the surface to 14.75 km) for evaluation and construction of the conceptual model.

3.2 Field Data

The field data used in this study reflects a subset of those data assembled and/or collected during The Hawaii Play Fairway p roject,
funded by the DOE’s GTO. This data set includes geologic, groundwater, and geophysical observations relevant to subsurface heat,
fluid, and permeability for collected at the island of Lana‘i (Lautze et al., 2020). For example, the geologic data includes information on
basalt and dike rocks identified at the surface and in drill cores. Groundwater data collected in boreholes include physical properties
(water level and specific capacity), aqueous chemistry (major ions, nutrients, and metals), environmental tracers (isotopes), and aqueous
parameters (dissolved oxygen, specific conductivity, and temperature). These datasets reflect field sampling from the surface to a
maximum borehole depth of about 1 km (Figure 2). To connect this sample region to greater depths, uncollated surface gravity and
magnetotelluric measurements were collected and deterministically inverted to estimate 3D distribution of density and electrical
resistivity values across Lana‘i to depths of more than 14 km (Lautzeet al., 2020).
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Figure 2. Study map showing Lana‘i coastal boundaries at sea level (brown) at 15km depth (gray); left panel includes primary
rift zones: north (green) and south (yellow); caldera, borehole/well locations (shown as dots with color indicating
temperature); middle and right panels show location of borehole/well locations with respect to elevation.

4. RESULTS AND DISCUSSION

4.1 Feature Selection

Of the original predictor variables (N = 54), the learn-heuristic based feature-selection process identified an optimal global set of
variables (N = 27) suitable for predicting features beneath Lanai (Table 1). These variables are used in building of the unsupervised
learning-based models. Important predictors that appear common to all three state variables include Water: Ocean, Geology : basalt and
dike, Physical properties: density, resistivity, specific capacity; Aqueous properties: specific conductivity, oxy gen reduction potential,
and pH; Aqueous chemistry: HCO3, NO3, PO3, SO4, 1, F, F, K, Na, Si, Sr, and Ca/M gratio; Stable isotopes: oxy gen and hydrogen; and
isotopicratios including Ar, He, and Ne.
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Table 1. Summary of features determined to be informative using the learn heuristics approach constrained to the state
variables of head (m), temperature (C), and chloride concentration (mg/l). Physical properties: resistivity (ohm-m),
specific capacity (m3/d/m); Aqueous properties: specific conductance, uM/s, oxygen reduction potential (mv); Aqueous
chemistry: Br = bromide, (mg/l) F = Flouride (mg/l), Fe = iron (mg/l1), HCO3 = bicarbonate (mg/l), K= potassium (mg/1),
Na = sodium (mg/1), NO3 =nitrate (mg/l), PO4 = phosphate (mg/l), Si=silica (mg/l), S O4=sulfate (mg/l), Sr=strontium
(mg/1), Ca/Mg = calcium -magnesium ratio; Isotopes: abs 180 = absolute value of stable oxygen isotope, absolute value of
Deuterium, absolute carbon isotope, Isotopic ratios: 4He20Ne = helium —neon ratio, 40Ar36Ar = agon ratio, 38Ar36Ar =
Argon ratio.

4.2 Feature Prediction

Prior to training of the M SOM, features (field variables) were normalized by their data variance and randomly assigned (presenting the
input vectors to the map sequentially using a randomly sorted database) as an initial set of map weight vectors. Application of the
MSOM network to training data is done using a single fixed number of neurons and topological relations. The selected neural map
shape (148 rows by 140 columns) is a toroid (wraps from top to bottom and side to side) with hexagonal neurons. Training of the map
was conducted using both rough and fine phases. The rough training phase involved 20 iterations using a Gaussian neighborhood with
an initial and final radius of 204 units and 51 units; and the fine training involved 400 iterations using a Gaussian neighborhood with an
initial and final radius of 51 units and 1 unit. The initial and final learning rates of 0.5 and 0.05 decayed linearly down to 107°, and the
Gaussian neighborhood function decreased exponentially from a decay rate of 10™" iteration to 107, providing reasonable convergence
evidenced by similarity in their low quantization (qe=0.073) and topographic (te=0.076) errors.
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Testing and validation of the trained M SOM model are reflective of the five split sets previously discussed. The cross-validation
statistics further reveal that the MSOM model has a moderate ability (kappa values > 0.53) to predict dikes and basalt with strong
prediction accuracies (accuracy values > 0.99). For the sake of brevity, summary statistics and scatter plots are presented for
independent observations and predictions of selected features that include temperature, chloride concentration, resistivity, and density.
Note that the metrics for temperature predictions are reflective of those measured in the upper 1 km, because the magnitude of
increasing temperatures at greater depths is unknown. In general, the cross-validation statistics (table 2) reveal similar observed to
predicted values (minimum, average median and maximum) with reasonable prediction accuracies (standard deviation / square root of
count): resistivity = 0.32 ohm-m, density = 1.2 kg/m3, temperature = 0.002 C, chloride concentration = 1.16 mg/. The associated scatter
plots (Figure 3) of observed versus predicted values for these features have reasonable R-squared values (resistivity, ohm-m = 89.9%;
density, kgm3 = 99.9%, chloride, mg/l = 68.8%; temperature, C = 92.8%) albeit with some bias at smallest values. The bias at small
values for density, conductivity, and chloride concentration is attributed to challenges in predicting these features at the ocean-basalt
interface given the large voxels used during deterministic inversions and moderate ability to predict the presence or absence of basalt.
Future studies may benefit by introducing higher frequency audiomagnetotelluric measurements to improve near surface estimates of
resistivity at the coastal boundary and shallow depths. Likewise, the prediction of small density values may be reflective of the inability
of MSOM toresolve density at the ocean-coastal boundary due to grid resolution.
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Figure. 3. Scatter plots showing observed versus predicted values for selected features with fitted line and R-squared values:
resistivity, density, chloride concentration and temperature.

Table 2. Summary statistics for observed and predicted features: temperature (C), chloride concentration (mg/l), resistivity
(ohm-m), and density (kg/m3). Note that statistics for the temperature are confined to those measuredin the upper 1 km
given that temperatures at the Moho are assumed to be about 758C (S chutt et al., 2018).

Temperature, C Chioride, mg/|

Observed, Predicted,  Error, Observed, Predicted,  Error,
Statistic C [ C Statistic mgfl mgfl mgfl
Minimum 4,00 4.00 0.00 Minimum 23.0 23.0 0.0
Average s 234 0.34 Average 17999 12956 13
Median 22.4 234 0.03 Median 18000 18000 0.0
Maximum 61.4 613 30.4 Maximum 18000 18002 17670
Standard deviation ~ 4.69 8.19 1.22 Standard deviation  157.7 7974 533.3
Count 213824 1044532 213824 Count 212919 1044530 212919
Resistivity, chm-m Density, kgfm3

Observed, Predicted,  Error, Observed, Predicted,  Error,
Statistic ohm-m  ohm-m  ohm-m Statistic kg/m3 kg/m3 kg/m3
Minimum 0.10 0.14 -86.5 Minimum 1020 1020 000
Average 516 a5 130 Average 1129 2016 21.9
Median 100 35.1 254 Median 1020 2617 0.00
Maximum 8066 5470 7181 Maximum 3055 3037 2029
Standard deviation 940 786 288 Standard deviation 420,56 862.4 1826
Count TOO430 1044530 790480 Count 227176 1044530 227176

A natural outcome of using the trained MSOM model is the simultaneous prediction all model features. Given the large number of
available features, a reduced number of features is selected for presentation that include state variables (temperature, chloride
concentration), physical properties (specific capacity — a surrogate for permeability), geology (basalt and dike), and Geothermal
Stratigraphic Units (GSU). Each of these features represent predicted values extracted from the 3D data cube along the cross-section A-
B. The cross-section A-B trends SW-NE along a profile that begins at the Pacific Ocean on the west, crosses the caldera dike system,
point of highest elevation, and ends at the Pacific Ocean on the east. Collectively, these figures reveal a heterogeneous groundwater —
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geothermal system from which information can be useful in developing a conceptual model. Testing reveals that the p rediction process
preserves reasonable population statistics for the geologic, hydrogeologic and geophysical features, but the individual feature
predictions reflect a random process (statistics change for different split sets). For this study, the cross-validation statistics demonstrate
the ability of the MSOM to generalize when estimating continuous features from sparse field data characterizing the different support
volumes.

This section presents a subset of features predicted while using the trained M SOM and 5 sets of independent observations. For examp le,
the 3D density and resistivity predictions are presented in Figure 4. Some general spatial observations are that both density and
resistivity are heterogeneous through the region. Some density features include minimum values associated with the ocean and greatest
density inland at the caldera and to depth of about 15 km. The predicted resistivity also appears heterogenous through the region with
features at sea level displaying more resistive character at and below the region of greatest elevation and conductive features similar in
magnitude to the ocean but decreasing landward in areas located at the northern most point and southwestern point (toward point A on
the cross section). Another slightly deeper region of high conductivity (low resistivity) appears at the eastern boundary of the island
(toward point B on the cross section). These areas suggest regions landward intrusion of sea water with decreasing gradients over about
5 km. In the area of maximum elevation, the resistivities are greatest possibly due in part to groundwater recharge of freshwater. Below
about 1 km, the anomalies appearto be vertically oriented as rectangular regions of alternating medium to high resistivity values.

Figure. 4. Inverted 3D geophysical property distributions sliced horizontally atsealevel and vertically along A-B: (left) density,
kg/m3 (density > 2500 kg/m3), and (right) log resistivity, ohm-m.

The predicted spatial occurrence of basalt (left) and dike (right) as predicted using M SOM are shown in Figure 5. The general character
of the predicted basalt is the prominence from surface to depths as great as about 10 km. One characteristic that the basalt appears to be
draped over the region indicated as not basalt. The not basalt region appears as dike material with several interesting features. In fact,
the dike material in the region of not basalt is interpreted as a domed shape pluton with roots below the M oho located at about 12.5 km
depth. The change in character from the pluton at depth is interpreted as the possible location of the M oho. Other vertical features are
interpreted as rising dike swarms to the west side of the pluton (between 5 and 8 km depth) and at the top of the pluton below the
caldera region (between sea level to about 1 km depth). The later dike swarms correspond to the region denoted as a pipe zone by
Malahoff and Woollard (1966) based on airborne total field magnetic anomalies. Lastly, the western dike swarm rose vertically to a
depth of about 5 km below the surface where they terminate forming what appears to be a sill.

Figure 5. Predicted 3D geology distribution (probability) sliced horizontally at sea level and vertically along A-B: basalt (left)
and dike (right). Dike image includes likely dike swarms, sill, pluton, and Moho (about 12.5 km). Location of shallow
dike swarms correspond to airborne dipole magnetic anomalies (Malahoff and Woollard, 1966).
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The predicted spatial occurrence of the ocean (left) and specific capacity (right) are shown in Figure 6. The character of the ocean
appears correctly located adjacent to the island and increasing at depth to the western and eastern boundary. That said, the ocean at the
western edge appears to extend to the bottom of the model domain. In fact, the actual ocean depth in this region is known to be about 6
km thereby revealing the apparent lack of resolution in resistivity and gravity information to inform the M SOM model. Improvements in
predictions for this region of the model would likely require the addition of related properties derived from shipborne and/or ocean
bottom geophysical measurements. The specific capacity predictions in this study represent the analog to permeability. In general, there
is a trend characterized by low specific capacity at the eastern boundary increasing toward the west. This trend follows from an earlier
discussion indicating that the most permeable basaltic rocks are located at the western edge of Lana‘i. Also, the western dike swarm
(between 5 and 8 km depth) is characterized as medium specific capacity, whereas the adjacent region to the east is characterized as low
specific capacity.

Figure 6. Predicted features sliced horizontally atsea level and vertically along A-B: (left) 3D ocean character (present/absent),
(right) specific capacity (permeability analog) This figure reveals a trend where low specific capacity at the eastern
boundary increases toward the west. This trend follows from an earlier discussion indicating that the most permeable
basalticrocks are located at the western edge of Lana‘i . Well locations are black dots.

The predicted spatial distribution of temperature is over therange of 5°C to 758°C as shown in Figure 7. The upper left panel reveals the
plan view temperature distribution at sea level with the digital elevation model overlying the island. The deep ocean at the model
boundary reveals the coldest temperatures of about 5°C. Theupperright panel reveals the plan view temperature distribution at sea level
with no digital elevation model. Noteworthy are the cool temperatures near 20°C (blue) in the region of highest elevation and warm
temperatures near 65°C (orange) in and around the caldera region. The lower left panel has interpreted regions of downward
groundwater recharge from the region of highest elevation and cool temperatures and likely upward convective transport from the 758C
source at the Moho through the interpreted dike swarm and sill region of medium specific capacity (surrogate for permeability ) toward
the warm 65C region of in the vicinity of the deepest well. The region directly below this well and adjacent to the interpreted region of
convective transport is predicted to have the no specific capacity (no permeability) thereby supporting plausible convective transport
through the more permeable region with conductive heat transfer away from the convective heat transport pathway. The lower right
panel identified two geothermal prospects. The first geothermal prospect has predicted temperatures of about 65°C to 108°C and is
located between 1 and 2 km depth in the vicinity of the caldera. The second and preferred geothermal prospect has predicted
temperatures of about 149°Cto 275°C located between 3 to 6 km depths in the vicinity of the western dike swarm and sill.
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Figure 7. Predicted temperature over the range of 20C to 758C. Upper left: plan view temperature distribution at sealevel with
the digital elevation model. Upper right: plan view temperature distribution at sealevel with no digital elevation model
(lower left). Noteworthy are the cool temperatures (blue) attributed to recharge at high elevation and warm
temperatures in and around the caldera region. Lower left: interpretedregions of groundwater recharge from the region
of highest elevation and hydrothermal transport from the region below the Moho. Lower right: two geothermal
prospects; first is about 65°C to 107°C between 1 and 2 km depth in the vicinity of the caldera, second is about 149°C to
275°C between 3 to 6km in the vicinity of the western dike swarm and sill.

The predicted spatial distribution of chloride concentration sliced horizontally at sea level and vertically along A -B is shown in Figure
8. The left linear concentration plot spans 23 mg/l (freshwater or no water) to 18000 mg/l (ocean water). The right log chloride
concentration plot reveals heterogeneous water types that include freshwater, brackish water, and saline water. Two potential freshwater
resource zones are indicated with circles. These freshwater resource zones have similar specific capacity but the zone to the west (closer
to the caldera) has elevated temperatures, whereas the zone to the east has cooler temperatures. A conceptual groundwater system is
constructed based on chloride concentration, geology, and temperature predictions (figure 9).
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Figure 8. Predicted chloride concentration sliced horizontally at sea level and vertically along A-B. (left) linear concentration
plot (23 mg/l (freshwater or no water) to 18000 mg/l (ocean water); (right) log chloride concentration plot showing
heterogeneous water types that include freshwater, brackish water, and saline water. Two potential freshwaterresource
zones are present. The resources have similar permeability but zone to the west (closer to the caldera) has elevated
temperatures, whereas the zone to the east has cooler temperatures.

brackish water ' fresh water
irrigation recharge —h recharge

caldera dike

Figure 9. Conceptual model produced by Lautze and Thomas (unpublished) which agrees with MML predictions of continuous
features along cross-section A-B

4.3 Feature Clustering

The joint interpretation of information across the M SOM network is undertaken by application of stochastic k-means clustering. In this
case, the mode of k-means clusters is interpreted as the most likely and used to aggregate information. The clustering of similar
information at various locations characterizes the variability of parameters associated with these Geothermal Stratigraphic Units (GSU).
The distribution of GSUs mapped along the cross-section A-B on Lana‘i reveal five basic groups shown in Figure 10: 1. Ocean. 2.
Salinized basalt. 3. Basalt. 4. Basalt-dike transition. 5. Dike. Each GSU is characterized by univariate and spatial statistics that describe
the physical and chemical properties comprising the geothermal model (Table 3). Other interpreted features include a pluton, batholith,
depth to underplating/oceanic crust and M oho (Lahey et al., 2010).
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Figure 10. Predicted 3D Geothermal S tratigraphic Units sliced horizontally at sealevel and vertically along A-B reveal five basic
groups: 1. Ocean (purple), 2. salinized basalt (blue), 3. Basalt (green), 4. basalt-dike transition (orange), and 5. Dike (red).
Each GSU is characterized by univariate and spatial statistics describing all the physical and chemical properties
comprising the model (Table X). Well locations appear as black dots. Other interpreted features include a pluton,
batholith, depth to underplating/oceanic crust and Moho (Lahey etal.,2010).

Table 3. Summary statistics for selected properties associated with Geothermal S tratigraphic Units. Location; Elev=elevation
(m); State variables: Head = hydraulic head (m), cl = chloride concentration (mg/l), Temp = temperature (C); Physical
properties: Res = electrical resistivity (ohm-m), SpecCap = specific capacity, (m3/d/m); Aqueous properties: Cond
(specific conductance, uM/s, ORP = oxygen reduction potential (mv); Aqueous chemistry: Br = bromide, F = Flouride, Fe
= iron, HCO3 = bicarbonate (mg/l), K = potassium, Na = sodium, NO3 = nitrate (mg/l), PO4 = phosphate (mg/l), Si =

silica, S04 = sulfate, Sr = strontium, Ca/Mg = calcium -magnesium ratio.
Group Summary Location Water Geology State Variables Physical properties Aqueous properties
Res,
Easting, Northing, Elev, Head, Temp, Cl, SpeCap, Density, ohm- Cond, ORP,
GSU Description | Statistic m m m Ocean Dike Basalt m C mg/l m3/d/m kg/m3 m  uM/s mv pH
1 Ocean minimum 658886 86203 -1474: TOU U00 000 iae) U 16593 VA TOZ0 UT 1Y) 519 300
average 712723 2300699 -2042 1.00 0.00 0.00 0.0 58.0 17999 0.0 1325 119 47961 1113 8.00
median 709822 2299658 -319 1.00 0.00 0.00 0.0 24.4 18000 0.0 1020 0 48000 885 8.00
maximum 730986 2318303 2055 1.00 0.01 0.01 0.1 7580 18000 0.0 2960 3628 48000 283.1 8.00

Standard deviation | 10501 10412 3955 000 0.00 000 00 1570 21 0.0 645 353 1267 55.0 0.00

Salanized basalf]

2 and dikes minimum 700086 2286803 -14745 0.00 0.00 000 0.0 19.8 164 0.0 1020 0.1 0 52.1 7.95
average 713052 2306872 -1822 0.45 0.29 025 106 49.9 17611 0.0 2062 60 46523 112.3 8.00
median 711256 2309303 -945 036 0.03 000 00 26.8 18000 0.0 2515 2 48000 885 8.00
maximum 730986 2318303 2055 0.98 1.00 1.00 465.1 758.0 18000 7.3 2948 3818 48000 2831 8.00
Standard deviation | 8740 8012 3216 0.39 0.35 038 59.6 130.0 2102 0.3 716 319 7339 589 0.00
3 Basalt minimum 700756 2287403 -11445 0.00 0.00 0.01 00 18.9 23 0.9 2478 4 0 521 7.14
average 714600 2300283 -3573 0.00 0.01 099 429 295 5901 19.6 2717 445 1365 1509 7.87
median 713886 2298203 -2145 0.00 0.00 100 0.9 28.1 708 20.0 2703 233 166 196.2 7.90
maximum 730986 2318303 855 0.00 0.99 1.00 4842 73.0 18000 41.0 3011 4424 48000 283.1 8.00
Standard deviation | 7806 7622 3165 0.00 0.10 010 954 101 8072 133 96 516 6207 548 0.13
Dikes and
4 Basalt minimum 702786 2290103 -10245 0.00 0.00 000 00 18.9 31 14 2014 3 0 521 7.14
average 723764 2298945 -3448 0.00 0.53 047 263.8 28.1 7623 251 2769 244 856 1517 7.86
median 724986 2298803 -2445 0.00 0.57 043 2240 245 400 29.0 2747 34 167 1962 791
maximum 730986 2318303 306 0.25 0.99 099 4843 46.0 18000 41.0 3048 4933 22370 2274 8.00
Standard deviation | 5428 5197 2537 0.02 0.41 041 1727 9.2 8823  14.9 92 603 1558 58.2 0.20
5 Dikes minimum 698886 2286503 -14745 0.00 0.00 0.00 0.0 18.9 23 0.0 1020 0.1 0 52.1 7.14
average 717025 2304238 -7022 0.00 0.83 017 229.3 1823 6416 4.7 2768 748 14322 153.7 1.79
median 717186 2304259 -7245 0.00 1.00 0.00 246.3 26.8 543 0.0 2807 237 2036 1353 8.00
maximum 730986 2318303 2055 0.80 1.00 1.00 485.6 758.0 18000 41.0 3055 8066 48000 283.1 8.00

Standard deviation | 7819 8007 4903 0.01 0.37 037 179.8 297.8 8376 8.9 262 1166 20843 58.2 0.34
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Group Summary Location Water Geology Agueous chemistry
Easting Northing Elev, HCO3, NO3, PO4, S04, F, Fe, Na, Si, Sr,
GsU Description  Statistic m m m  Ocean Dike Basaff mg/l mg/l mg/l mg/l Br.mg/l mgfl mg/l Kmgll mg/l meg/l mg/ll Ca/Mg
1 Ocean minimum 698886 2286203 -14745 1.00 000 000 1390 0.7/0 0.10 2.65 60.9/ 138 0.02 35/.1 9200 10 002 0.31
average 712723 2300699 -2042 1.00 000 0.00 1400 0.70 0.10 2.65 64.00 140 0.02 380.0 10000 10 1.04 031
median 709822 2299659 -319 1.00 000 0.00 1400 0.70 0.10 2.65 64.00 1.40 0.02 380.0 10000 1.0 0.38 0.31
maximum 730986 2318303 2055 100 001 0.01 1400 0.70 0.12 2.67 64.00 140 002 380.0 10000 11 266 0.32
Standard deviation 10501 10412 3955 0.00 000 0.00 0.0 0.00  0.00 0.00 0.04 0.00 _0.00 0.3 11 0.0 1.11  0.00
Salanized basalt
2 and dikes minimum 700086 2286803 -14745 0.00 000 0.00 1036 0.62 0.10 2.65 7.51 058 0.01 274 311 10 004 031
average 713052 2306872 -1822 0.45 029 025 1398 0.70 0.10 2.65 63.19 140 0.02 376.8 98%6 10 074 032
median 711256 2309303 -945 036 003 000 1400 0.70 0.10 2.65 64.00 140 0.02 380.0 10000 10 0.34 0.31
maximum 730986 2318303 2055 098 100 100 1400 0.72 131 3.81 64.00 140 002 380.0 10000 27.9 2.60 0.67
Standard deviation 8740 8012 3216 0.39 039 0.38 1.7 0.00  0.05 0.05 470 0.04 000 22.8 713 0.9 0.84  0.01
3 Basalt minimum 700756 2287403 -11445 0.00 000 0.01 525 0.48 0.00 2.65 0.06 0.00 0.00 19 16 10 004 031
average 714600 2300283 -3573 0.00 001 099 849 1.69 225 2711 3.78 0.11 017 226 526 1078 0.21 1.05
median 713886 2298203 -2145 0.00 000 1.00 830 0.64 2.58 6.40 0.14 0.04 0.00 2.7 23 80 0.06 113
maximum 730986 2318303 855 0.00 0.99 1.00 1464 4.24 4.84 15120 64.00 140 078 380.0 10000 1650 0.74 1.22
Standard deviation 7806 7622 3165 0.00 0.10 0.10 259 1.63 2.12 3357 1369 030 0.31 8038 2135 418 0.17 0.21
Dikesand
4 Basalt minimum 702786 2290103 -10245 0.00 000 000 525 0.48 0.00 2.65 0.06 0.00 0.00 19 16 10 004 031
average 723764 2298945 -3448 0.00 053 047 715 0.90 2.05 1149 0.65 0.04 0.06 47 74 1037 0.23 1.08
median 724986 2298803 -2445 0.00 057 043 830 0.64 2.58 7.20 0.14 0.04 0.00 2.1 22 1130 0.38 113
maximum 730986 2318303 306 0.25 099 099 1428 4.26 3.87 76.00 6400 140 078 380.0 10000 1650 0.74 1.22
Standard deviation 5428 5197 2537  0.02 041 041 169 0.97 1.76  18.53 4.49 0.11 021 26.0 677 259.4 0.16 0.15
5 Dikes minimum 698886 2286503 -14745 0.00 000 000 525 0.48 0.00 2.65 0.06 0.00 0.00 19 16 10 004 031
average 717025 2304238 -7022 0.00 083 017 1222 2.19 1.64 2637 2425 071 007 18.0 4842 645 0.57 0.66
median 717186 2304259 -7245 0.00 1.00 000 1400 0.70 0.10 6.40 188 0.13 0.02 12.7 127 842 0.38 0.84
maximum 730986 2318303 2055 0.80 100 100 1464 7.59 58 15120 6400 140 073 380.0 10000 1650 2.61 1.22

Standard deviation 7819 8007 4903  0.01 037 037 265 2.56 2.31 3814 2935 067 020 18.8 4%1 654 0.79 0.35

5. SUMMARY

In this study, a multimodal machine learning (MML) workflow was proposed, features selected, and modified self-organizing map
(M SOM) model trained and tested using the Lanai subset of the Hawaii Play Fairway hydrogeologic, geothermal, and geophysical data.
The Lanai MSOM model generalized to independent test data (five random 80/20 splits) despite data being characterized as sparse,
spatially limited with different support volumes, and uncertain. The trained Lanai model was then used to predict continuous 3D
features from which interesting merges of clusters characterized five 3D Geothermal Stratigraphic Units. The predicted features include
state variables (such as hydraulic head, temperature, chloride concentration), physical properties (such as density, resistivity, specific
capacity — permeability surrogate), geology (basalt and dike — generalized for plutonic and dike material), aqueous chemistry (major
ions, metals, isotopes), and aqueous properties (pH, specific conductance, dissolved oxygen). Inspection of the predicted features
revealed possible geologic attributes, such as basalt, dike swarms, sill, pluton, batholith, and M oho; possible groundwater attributes,
such as downward groundwater recharge, saltwater intrusion, heterogenous chloride concentration, such as zones of freshwater,
brackish water, and saline water; and geothermal attributes, such as upward convective hy drothermal transport along a gradient from the
very hot Moho (758°C) to the near surface heterogeneous temperature distribution ranging from warm (65°C) to cool (20°C). Based on
this information, two freshwater resources were identified from the surface to below 1 km depth: a warm water (50-65°C) region with
intermediate specific capacity, low chloride concentration (<50 mg/1), and a cool water (about 20C) region with low specific capacity,
low chloride concentration (<300 mgl). Two geothermal resources were identified: one in the vicinity of the caldera where there is a
warm (65°C) water at or near to the surface warmer down to 1 km depth, and a very hot hydrothermal plume being transported upward
from the Moho (about 750°C) to commercially viable drilling depths of about 2.0 km to 6 km depth with temperatures of about 107°C
to 275°C. The ability to determine Geothermal Stratigraphic Units (GSUs) from independent set of hydrogeologic, geothermal and
geophysical measurements support their potential use in simultaneous characterization of combined groundwater and geothermal
resources. Further, this novel approach affords the possibility for direct assignment of GSUs and their features to numerical model cells
(or nodes), thereby minimizing ambiguity in the conceptualization to numerical modeling process including initial starting parameter
values, boundary conditions, and geostatistical constraints in support of the calibration process. The MM L workflow techniques used
herein are recognized as novel in this application and their initial success warrants further research. The performance metrics in the
Lana‘i case study provide encouragement to continue this line of groundwater-geothermal research as part of the new Island Heat
project funded by DOE’s GTO.
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