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ABSTRACT  

The availability of freshwater and low-cost electricity are limiting factors for sustainable living in Hawaii. This raises the question: Can 

technology be developed to locate and characterize freshwater and geothermal resources simultaneously? We present a multimodal 

machine learning (MML) workflow to characterize the 3D distribution of features (physical and geochemical properties and state 
variables) along a groundwater-geothermal continuum. The success of this MML workflow is based on the availability and assimilation 

of mutual information to: (1) identify latent features using neural network proposals in a genetic algorithm with feature constraints, (2) 

organize related information across a hypersurface by competitive learning, (3) predict regionally continuous features by  minimizing the 

quantization and topological errors with competitive learning, and (4) group statistically meaningful features based on the mode of 

stochastic k-means clusters. The proposed MML workflow is applied to a subset of the Hawaii Play Fairway dat a for Lāna‘i, Hawaii. 
These data include direct point measurements, such as borehole water level, geology, temperature, chloride concentration, isotopes, and 

specific conductivity; and derived 3D volume properties (numerically inverted), such as specific capacity, density, and electrical 

resistivity. Despite field data characteristics (disparate, scale dependent, spatially limited, sparse, and uncertain), the M ML workflow 

yields a single 3D transdisciplinary data product whose voxels each contain statistical summaries of model features. Five-fold cross-

validation (e.g., five randomly shuffled stratified split sets, each split with 80% training and 20% testing) reveals moderat e 
generalizability of the MML model to independent data. Preliminary interpretation of continuous features reveals hidden freshwater 

(low temperature and low chloride concentration water) and geothermal (high temperature and brackish water) resources. In addition to 

integrating machine learning expertise and practices into the Play Fairway project outcomes, this study provides new capabilities for 

characterizing continuous subsurface hydrogeologic and geothermal features in the Hawaiian Islands for sustainable living (including 

Hawai‘i Island as part of the new Island Heat project sponsored by the Department of Energy) and at other geothermal sites worldwide. 

1. INTRODUCTION 

The availability of freshwater and low-cost electricity are limiting factors for sustainable living in Hawaii. This raises the question: Can 

technology be developed to locate and characterize freshwater and geothermal resources simultaneously? The Hawaii Play Fairway 

project, funded by the Geothermal Technologies Office (GTO), U.S. Department of Energy (DOE), produced a statistical methodology 
to integrate existing geologic, groundwater, and geophysical datasets relevant to subsurface heat, fluid, and permeability into a statewide 

resource probability map (Lautze et al., 2020, Lautze et al., 2022). The combined probabilities for heat, fluid, and permeability indicated 

the likelihood of a geothermal resource in the caldera region of Lāna‘i Island. This area, known as the Pālāwai Basin, exhibits t he co-

location of a high gravity signature and reduced resistivities at depth with elevated groundwater temperature. In Phase 3 of  the Play 

Fairway project, drilling just outside the Pālāwai Basin confirmed increasing water temperature to a depth >1 km (Lautze and Thomas, 
2021). Current trends in geothermal energy focus on the use of Machine/Deep Learning (ML) for industry problem-solution and 

decision-making (Smith et al., 2022). 

In general, the ML applications fall into three classes: data-driven ML, physics-informed ML, and multimodal ML. According to Qin et 

al. (2022), data-driven ML models suffer from three limitations: 1) extensive data requirements, 2) lack of physical plausibility and 

interpretability, and 3) poor generalizability beyond training data. Physics-informed ML can overcome these shortcomings by either 1) 
embedding mass and/or energy balance equations into the ML algorithm, or 2) informing the ML algorithm using properties derived 

following the inversion of (multi)physics-based equations. In the (multi)physics-informed ML approach, the incorporation of physics 

into the ML algorithm typically relies on using simplified set of mass and/or energy balance equations (He et al., 2020; Qin et al., 2022) 

along with the addition of a physics-guided loss function to regularize training of the associated parameter types. In an alternative 

approach, a completed set of explicitly coupled water-heat-solute transport equations were used together with supervised ML algorithms 
that stochastically sampled different types of field measurements to reduce the computational burden and improve the parameter 

estimates (Friedel, 2020). In this study, we present the multimodal ML (MML) approach, which affords the possibility to incorporate 

any number of estimated property types (using traditional (multi)physics-based numerical model mass and/or energy calibrations and 

geophysical inversions, data-driven ML, and (multi)physics-informed ML) along with any number of point field measurements to 

inform the process.  

The aim of this study is to demonstrate the efficacy in using an unsupervised MML workflow for constructing continuous 

transdisciplinary set of subsurface Geothermal Stratigraphic Units (GSUs). Conceptually, the GSUs reflect a single data product that is 

spatially characterized by a collection of continuous multiparameter voxels with individual parameters and their univariate s tatistics. We 
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hypothesize that the hydrogeologic, geothermal, and geophysical data collected across monitoring networks provide mutual information 
(measure of entropy describing mutual dependence among random variables) suitable for their assimilation, discovery, and prediction of 

continuous features when using the MML workflow. To test this hypothesis, we evaluate the ability of an unsupervised MML to achieve 

the following objectives: 1) develop open community datasets, 2) identify data acquisition targets with high value for future work, 3) 

identify new signatures to detect hidden groundwater and geothermal resources, and 4) foster new capabilities for characteriz ing 

subsurface temperature and permeability. This study extends the work of Friedel (2016) who applied an unsupervised MML workflow 
to construct a continuous set of hydrostratigraphic units (HSU) for characterizing shallow (<200m) groundwater systems, and 

Vesselinov et al. (2020) who used an unsupervised ML methodology to discover hidden signals in field data and extract their dominant 

attributes in a shallow (<200m) hydrothermal system.  

2. METHODS 

The MML workflow used to determine GSUs involves the following steps: (1) feature selection, (2) feature prediction, and (3) feature 

clustering. 

2.1 Feature Selection 

The identification of suitable features (variables) for building the MML model is undertaken using the nonlinear wrapper approach 

called learn heuristics with feature constraints. The wrapper model requires one predetermined learning algorithm in feature selection 

and uses its performance to evaluate and determine which features are selected (Yu and Liu, 2003). In this regard, the learn heuristics 
reflect the ML algorithm that is introduced into the Metaheuristics algorithm (Buscema et al., 2013). The ML algorithm is generalized 

for which multiple learning algorithms are evaluated, for example, Backpropagation, K-Nearest Neighbor, or Naïve Bayes, inside a 

genetic algorithm (GA) (metaheuristic). Constraints on the learn heuristic approach typically involve features such as one or more 

response variables. Given that the GA converges to a global minimum surface (not a single vector), the process is randomly reinitiated 

and run until the subset of optimal features can be identified based on their mode of values. 

2.2 Feature Prediction 

 The Modified Self-Organizing Map (MSOM) procedure is used to predict feature vectors at unsampled locations. The prediction 

method is sufficiently robust to cope with feature vagaries due to sample size and extreme data insufficiency, even when >80% of the 

data are missing (Friedel and Daughney, 2016). The MSOM procedure involves the sequential application of competitive learning (self-

organizing map) and estimation (minimization of objective function by competitive learning). The architecture of MSOM involves an 
input layer (signals from the environment) and an output layer (competitive feedback to the environment). The input layer comprises a 

set of nodes (neurons) that are connected one to another through a rectangular topology. The connections between inputs (data vectors) 

and nodes have weights, so a set of weights corresponds to each node. 

In implementing the MSOM procedure, the competitive learning process iteratively modifies weights during the training phase so that  

the self-organized output pattern becomes consistent, meaning that the input pattern will produce the same self-organized output pattern. 
In doing so, the SOM iteratively maps each data sample as a vector (each variable is characterized as a cloud of data vectors) across a 

hypersurface on which data vectors closer to each other are more related (self-similar) than data vectors farther away. The learning 

algorithm may be summarized as follows (Kohonen, 2001): 

1.  Generate initial values including weights, radius, and learning parameter values 

2.   Select input vector from data set 

3.  Identify winning node, which is the closest node to the input vector using the Euclidean distance metric 

4.  Identify the neighborhood with the given radius using a Gaussian function 

5.  Update the weights for the winning node and all the nodes in the same neighborhood 

6.  Repeat steps 2 to 6 until the weight vectors reach a con-verged state 

7.     The estimation of missing values (sometimes referred to as imputation) is done simultaneously for all variables across 

                 the hypersurface (Kalteh et al., 2008). 

Feature prediction is undertaken with the best-matching unit vectors supplied as initial values at locations of interest (Wang, 2003) that 

are iteratively perturbed while minimizing topographical and quantization error vectors during the competitive learning process (Kalteh 

et al. 2008).  

Training and testing of the MSOM model are carried out using a stratified split-sample validation approach. In this approach, the data 
records are randomly shuffled and split with 80% set aside for training and 20% set aside for testing. In total, the original data set is split 

using this procedure N times. Each split characterizes a fold used in the N-fold cross-validation statistics to assess the generalizability of 

the unsupervised ML algorithm when presented independent field data. The metrics used to evaluate model performance include R-

squared (a statistical measure representing the proportion of variance for the observed variable that is explained by the estimated 

variable) and mean squared error (predictive success) for continuous features; and accuracy (predictive success) and Cohen’s Kappa 
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(comparison between the observed accuracy and the agreement expected due to chance) for binary (present or absent) features. Cohen 
1960) suggested the Kappa result be interpreted as follows: values ≤ 0 as indicating no agreement and 0.01–0.20 as none to slight, 0.21–

0.40 as fair, 0.41– 0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1.00 as almost perfect agreement.  

2.3 Feature Clustering 

Grouping statistically meaningful features across the self-organized hypersurface is undertaken by k-means clustering (Vesanto and 

Alhoniemi 2000). The best partitioning for each number of clusters is determined based on the Euclidian distance criterion and 
interesting merges defined using the Davies-Bouldin index (Davies and Bouldin 1979). In this study, the optimal number of clusters is 

determined from repeating the k-means process to avoid convergence at local minima. The Davies-Bouldin validity index is selected as 

a matter of convenience, but other validity measures could be used. 

3. CASE STUDY 

3.1 Study Region 

The MML study includes the Island of Lāna‘i (Lāna‘i) and adjacent Pacific Ocean located about 96 km southeast of Honolulu, Oahu 

(Figure 1). Lāna‘i is a cashew-shaped island with a maximum width of 29 km in the longest direction. The highest point on Lāna‘i is 

1026 m with a land area of 364 km2. The geology of Lāna‘i is described as an eroded extinct basaltic volcano that developed during one 

period of activity (Stearns, 1940). Structurally, the island has three primary rift zones (Northwest Rift zone, Southwest Rif t zone, and 

South Rift zone) and caldera located in the Pālāwai Basin (Figure 2). The summit plateau resulted from collapse along the northwest rift 
zone. Lāna‘i island has fault breccias and dike complexes that lie in the rift zones radiating from the Pālāwai Basin. Relatively low 

permeability dikes often enclose porous lavas of relatively high permeability forming local compartmentalized reservoirs 

(Stearns,1940). Basaltic rocks exposed along the west coast are thinly bedded and considered the most permeable rocks due to cavities 

and fractures within and between lava flows and thought to permit the landward intrusion of sea water. Groundwater temperatures 

measured in a well on the rim of the Pālāwai Basin during Play Fairway Phase 3 vary from about 21C at the land surface to about 65C at 
a depth of 1km. Little is known about the subsurface groundwater-geothermal system below this depth, although temperatures at the 

Moho (about 13 km depth) are likely in the range of 444 C to 892 C (Schutt et al., 2018). Therefore, understanding the occurrence of 

groundwater and geothermal resources requires knowledge of the distribution and characteristics of these basalt -dike systems. 

 

Figure1. Study map showing: (left) proximity of Lāna‘i to the Hawaiian Islands, and (right) Lāna‘i cross -section for which 

MML results are extracted (from the surface to 14.75 km) for evaluation and construction of the conceptual model.  

3.2 Field Data  

The field data used in this study reflects a subset of those data assembled and/or collected during The Hawaii Play Fairway p roject, 

funded by the DOE’s GTO. This data set includes geologic, groundwater, and geophysical observations relevant to subsurface heat, 

fluid, and permeability for collected at the island of Lāna‘i (Lautze et al., 2020). For example, the geologic data includes information on 

basalt and dike rocks identified at the surface and in drill cores. Groundwater data collected in boreholes include physical properties 

(water level and specific capacity), aqueous chemistry (major ions, nutrients, and metals), environmental tracers (isotopes),  and aqueous 
parameters (dissolved oxygen, specific conductivity, and temperature). These datasets reflect field sampling from the surface to a 

maximum borehole depth of about 1 km (Figure 2). To connect this sample region to greater depths, uncollated surface gravity and 

magnetotelluric measurements were collected and deterministically inverted to estimate 3D distribution of density and electrical 

resistivity values across Lāna‘i to depths of more than 14 km (Lautze et al., 2020).  
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Figure 2. Study map showing Lāna‘i coastal boundaries at sea level (brown) at 15km depth (gray); left panel includes primary 
rift zones: north (green) and south (yellow); caldera, borehole/well locations (shown as dots with color indicating 

temperature); middle and right panels show location of borehole/well locations with respect to elevation.  

4. RESULTS AND DISCUSSION 

4.1 Feature Selection 

Of the original predictor variables (N = 54), the learn-heuristic based feature-selection process identified an optimal global set of 
variables (N = 27) suitable for predicting features beneath Lanai (Table 1). These variables are used in building of the unsupervised 

learning-based models. Important predictors that appear common to all three state variables include Water: Ocean, Geology: basalt and 

dike, Physical properties: density, resistivity, specific capacity; Aqueous properties: specific conductivity, oxygen reduction potential, 

and pH; Aqueous chemistry: HCO3, NO3, PO3, SO4, r, F, F, K, Na, Si, Sr, and Ca/Mg ratio; Stable isotopes: oxygen and hydrogen; and 

isotopic ratios including Ar, He, and Ne. 

 

Table 1. Summary of features determined to be informative using the learn heuristics approach constrained to the state 
variables of head (m), temperature (C), and chloride concentration (mg/l). Physical properties: resistivity (ohm-m), 

specific capacity (m3/d/m); Aqueous properties: specific conductance, uM/s, oxygen reduction potential (mv); Aqueous 

chemistry: Br = bromide, (mg/l) F = Flouride (mg/l), Fe = iron (mg/l), HCO3 = bicarbonate (mg/l), K = potassium (mg/l ),  

Na = sodium (mg/l), NO3 = nitrate (mg/l), PO4 = phosphate (mg/l), S i = silica (mg/l), SO4 = sulfate (mg/l), Sr = stronti um 

(mg/l), Ca/Mg = calcium -magnesium ratio; Isotopes: abs 18O = absolute value of stable oxygen isotope, absolute value of 
Deuterium, absolute carbon isotope, Isotopic ratios: 4He20Ne = helium – neon ratio, 40Ar36Ar = agon ratio, 38Ar36Ar = 

Argon ratio. 

4.2 Feature Prediction 

Prior to training of the MSOM, features (field variables) were normalized by their data variance and randomly assigned (presenting the 

input vectors to the map sequentially using a randomly sorted database) as an initial set of map weight vectors. Application of the 
MSOM network to training data is done using a single fixed number of neurons and topological relations. The selected neural map 

shape (148 rows by 140 columns) is a toroid (wraps from top to bottom and side to side) with hexagonal neurons. Training of the map 

was conducted using both rough and fine phases. The rough training phase involved 20 iterations using a Gaussian neighborhood with 

an initial and final radius of 204 units and 51 units; and the fine training involved 400 iterations using a Gaussian neighborhood with an 

initial and final radius of 51 units and 1 unit. The initial and final learning rates of 0.5 and 0.05 decayed linearly down t o 10−5, and the 
Gaussian neighborhood function decreased exponentially from a decay rate of 10−1 iteration to 10−3, providing reasonable convergence 

evidenced by similarity in their low quantization (qe=0.073) and topographic (te=0.076) errors. 
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Testing and validation of the trained MSOM model are reflective of the five split sets previously discussed. The cross-validation 
statistics further reveal that the MSOM model has a moderate ability (kappa values > 0.53) to predict dikes and basalt with s trong 

prediction accuracies (accuracy values > 0.99). For the sake of brevity, summary statistics and scatter plots are presented for 

independent observations and predictions of selected features that include temperature, chloride concentration, resistivity, and density. 

Note that the metrics for temperature predictions are reflective of those measured in the upper 1 km, because the magnitude of 

increasing temperatures at greater depths is unknown. In general, the cross-validation statistics (table 2) reveal similar observed to 
predicted values (minimum, average median and maximum) with reasonable prediction accuracies (standard deviation / square root of 

count): resistivity = 0.32 ohm-m, density = 1.2 kg/m3, temperature = 0.002 C, chloride concentration = 1.16 mg/. The associated scatter 

plots (Figure 3) of observed versus predicted values for these features have reasonable R-squared values (resistivity, ohm-m = 89.9%; 

density, kg/m3 = 99.9%, chloride, mg/l = 68.8%; temperature, C = 92.8%) albeit with some bias at smallest values. The bias at  small 

values for density, conductivity, and chloride concentration is attributed to challenges in predicting these features at the ocean-basalt 
interface given the large voxels used during deterministic inversions and moderate ability to predict the presence or absence of basalt. 

Future studies may benefit by introducing higher frequency audiomagnetotelluric measurements to improve near surface estimates of 

resistivity at the coastal boundary and shallow depths. Likewise, the prediction of small density values may be reflective of the inability 

of MSOM to resolve density at the ocean-coastal boundary due to grid resolution. 

 

Figure. 3. Scatter plots showing observed versus predicted values for selected features with fitted line and R-squared values: 

resistivity, density, chloride concentration and temperature. 

Table 2. Summary statistics for observed and predicted features: temperature (C), chloride concentration (mg/l), resistivity 

(ohm-m), and density (kg/m3). Note that statistics for the temperature are confined to those  measured in the upper 1 km 

given that temperatures at the Moho are assumed to be about 758C (Schutt et al., 2018). 

 

A natural outcome of using the trained MSOM model is the simultaneous prediction all model features. Given the large number of 

available features, a reduced number of features is selected for presentation that include state variables (temperature, chloride 

concentration), physical properties (specific capacity – a surrogate for permeability), geology (basalt and dike), and Geothermal 
Stratigraphic Units (GSU). Each of these features represent predicted values extracted from the 3D data cube along the cross -section A-

B. The cross-section A-B trends SW-NE along a profile that begins at the Pacific Ocean on the west, crosses the caldera dike sys tem, 

point of highest elevation, and ends at the Pacific Ocean on the east. Collectively, these figures reveal a heterogeneous groundwater – 
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geothermal system from which information can be useful in developing a conceptual model. Testing reveals that the p rediction process 
preserves reasonable population statistics for the geologic, hydrogeologic and geophysical features, but the individual feature 

predictions reflect a random process (statistics change for different split sets). For this study, the cross-validation statistics demonstrate 

the ability of the MSOM to generalize when estimating continuous features from sparse field data characterizing the different  support 

volumes.  

This section presents a subset of features predicted while using the trained MSOM and 5 sets of independent observations. For examp le, 
the 3D density and resistivity predictions are presented in Figure 4. Some general spatial observations are that both density  and 

resistivity are heterogeneous through the region. Some density features include minimum values associated with the ocean and greatest 

density inland at the caldera and to depth of about 15 km. The predicted resistivity also appears heterogenous through the region with 

features at sea level displaying more resistive character at and below the region of greatest elevation and conductive features similar in 

magnitude to the ocean but decreasing landward in areas located at the northern most point and southwestern point (toward point A on 
the cross section). Another slightly deeper region of high conductivity (low resistivity) appears at the eastern boundary of the island 

(toward point B on the cross section). These areas suggest regions landward intrusion of sea water with decreasing gradients over about 

5 km. In the area of maximum elevation, the resistivities are greatest possibly due in part to groundwater recharge of freshwater. Below 

about 1 km, the anomalies appear to be vertically oriented as rectangular regions of alternating medium to high resistivity values.  

 

Figure. 4. Inverted 3D geophysical property distributions sliced horizontally at sea level and vertically along A-B: (left)  density, 

kg/m3 (density > 2500 kg/m3), and (right) log resistivity, ohm-m. 

The predicted spatial occurrence of basalt (left) and dike (right) as predicted using MSOM are shown in Figure 5. The general character 

of the predicted basalt is the prominence from surface to depths as great as about 10 km. One characteristic that the basalt appears to be 

draped over the region indicated as not basalt. The not basalt region appears as dike material with several interesting features. In fact, 

the dike material in the region of not basalt is interpreted as a domed shape pluton with roots below the Moho located at about 12.5 km 
depth. The change in character from the pluton at depth is interpreted as the possible location of the Moho. Other vertical features are 

interpreted as rising dike swarms to the west side of the pluton (between 5 and 8 km depth) and at the top of the pluton below the 

caldera region (between sea level to about 1 km depth). The later dike swarms correspond to the region denoted as a pipe zone by 

Malahoff and Woollard (1966) based on airborne total field magnetic anomalies. Lastly, the western dike swarm rose vertically  to a 

depth of about 5 km below the surface where they terminate forming what appears to be a sill. 

 

Figure 5. Predicted 3D geology distribution (probability) sliced horizontally at sea level and vertically along A-B: basalt  (left) 

and dike (right). Dike image includes likely dike swarms, sill, pluton, and Moho (about 12.5 km).  Location of shallow 

dike swarms correspond to airborne dipole magnetic anomalies (Malahoff and Woollard, 1966). 
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The predicted spatial occurrence of the ocean (left) and specific capacity  (right) are shown in Figure 6. The character of the ocean 
appears correctly located adjacent to the island and increasing at depth to the western and eastern boundary. That said, the ocean at the 

western edge appears to extend to the bottom of the model domain. In fact, the actual ocean depth in this region is known to be about 6 

km thereby revealing the apparent lack of resolution in resistivity and gravity information to inform the MSOM model. Improvements in 

predictions for this region of the model would likely require the addition of related properties derived from shipborne and/or ocean 

bottom geophysical measurements. The specific capacity predictions in this study represent the analog to permeability. In general, there 
is a trend characterized by low specific capacity at the eastern boundary increasing toward the west. This trend follows from an earlier 

discussion indicating that the most permeable basaltic rocks are located at the western edge of Lāna‘i. Also, the western dike swarm 

(between 5 and 8 km depth) is characterized as medium specific capacity, whereas the adjacent region to the east is characterized as low 

specific capacity. 

 

Figure 6. Predicted features sliced horizontally at sea level and vertically along A-B: (left) 3D ocean character (present//absent), 

(right) specific capacity (permeability analog) This figure reveals a trend where low specific capacity at the eastern 

boundary increases toward the west. This trend follows from an earlier discussion indicating that the most permeable 

basaltic rocks are located at the western edge of Lāna‘i . Well locations are black dots. 

The predicted spatial distribution of temperature is over the range of 5°C to 758°C as shown in Figure 7. The upper left panel reveals the 
plan view temperature distribution at sea level with the digital elevation model overlying the island. The deep ocean at the model 

boundary reveals the coldest temperatures of about 5°C. The upper right panel reveals the plan view temperature distribution at sea level 

with no digital elevation model. Noteworthy are the cool temperatures near 20°C (blue) in the region of  highest elevation and warm 

temperatures near 65°C (orange) in and around the caldera region. The lower left panel has interpreted regions of downward 

groundwater recharge from the region of highest elevation and cool temperatures and likely upward convective transport from the 758C 
source at the Moho through the interpreted dike swarm and sill region of medium specific capacity (surrogate for permeability ) toward 

the warm 65C region of in the vicinity of the deepest well. The region directly below this well and adjacent to the interpreted region of 

convective transport is predicted to have the no specific capacity (no permeability) thereby supporting plausible convective transport 

through the more permeable region with conductive heat transfer away from the convective heat transport pathway.  The lower right 

panel identified two geothermal prospects. The first geothermal prospect has predicted temperatures of about 65°C t o 108°C and is 
located between 1 and 2 km depth in the vicinity of the caldera. The second and preferred geothermal prospect has predicted 

temperatures of about 149°C to 275°C located between 3 to 6 km depths in the vicinity of the western dike swarm and s ill. 
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Figure 7. Predicted temperature over the range of 20C to 758C. Upper left: plan view temperature distribution at sea level wi th  

the digital elevation model. Upper right: plan view temperature distribution at sea level with no digital elevati on mode l  

(lower left). Noteworthy are the cool temperatures (blue) attributed to recharge at high elevation and warm 
temperatures in and around the caldera region. Lower left: interpreted regions of groundwater recharge from the region 

of highest elevation and hydrothermal transport from the region below the Moho. Lower right: two geothermal 

prospects; first is about 65°C to 107°C between 1 and 2 km depth in the vicinity of the caldera, second is about 149°C to 

275°C between 3 to 6km in the vicinity of the western dike swarm and sill. 

The predicted spatial distribution of chloride concentration sliced horizontally at sea level and vertically along A-B is shown in Figure 
8. The left linear concentration plot spans 23 mg/l (freshwater or no water) to 18000 mg/l (ocean water). The right log chloride 

concentration plot reveals heterogeneous water types that include freshwater, brackish water, and saline water. Two potential freshwater 

resource zones are indicated with circles. These freshwater resource zones have similar specific capacity but the zone to the west (closer 

to the caldera) has elevated temperatures, whereas the zone to the east has cooler temperatures. A conceptual groundwater sys tem is 

constructed based on chloride concentration, geology, and temperature predictions (figure 9). 
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Figure 8. Predicted chloride concentration sliced horizontally at sea level and vertically along A-B. (left) linear concentration 

plot (23 mg/l (freshwater or no water) to 18000 mg/l (ocean water); (right) log chloride concentration  plot showing 

heterogeneous water types that include freshwater, brackish water, and saline water. Two potential freshwater resource  

zones are present. The resources have similar permeability but zone to the west (closer to the caldera) has elevated 

temperatures, whereas the zone to the east has cooler temperatures. 

 

Figure 9. Conceptual model produced by Lautze and Thomas (unpublished) which agrees with MML predictions of continuous 

features along cross-section A-B 

4.3 Feature Clustering 

The joint interpretation of information across the MSOM network is undertaken by application of stochastic k-means clustering. In this 

case, the mode of k-means clusters is interpreted as the most likely and used to aggregate information. The clustering of similar 
information at various locations characterizes the variability of parameters associated with these Geothermal Stratigraphic Units (GSU). 

The distribution of GSUs mapped along the cross-section A-B on Lāna‘i reveal five basic groups shown in Figure 10: 1. Ocean. 2. 

Salinized basalt. 3. Basalt. 4. Basalt-dike transition.  5. Dike. Each GSU is characterized by univariate and spatial statistics that describe 

the physical and chemical properties comprising the geothermal model (Table 3). Other interpreted features include a pluton, batholith, 

depth to underplating/oceanic crust and Moho (Lahey et al., 2010). 
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Figure 10. Predicted 3D Geothermal Stratigraphic Units sliced horizontally at sea level and vertically along A-B reveal five basic 

groups: 1. Ocean (purple), 2. salinized basalt (blue), 3. Basalt (green), 4. basalt-dike transition (orange), and 5. Dike (red). 

Each GSU is characterized by univariate and spatial statistics describing all the physical and chemical properties 

comprising the model (Table X). Well locations appear as black dots. Other interpreted features include a pluton, 

batholith, depth to underplating/oceanic crust and Moho (Lahey et al., 2010). 

Table 3. Summary statistics for selected properties associated with Geothermal Stratigraphic Units. Location; Elev = e l e vati on 

(m);  State variables: Head = hydraulic head (m), cl = chloride concentration (mg/l), Temp = temperature (C);  Physical 

properties: Res = electrical resistivity (ohm-m), SpecCap = specific capacity, (m3/d/m); Aqueous properties: Cond 

(specific conductance, uM/s, ORP = oxygen reduction potential (mv); Aqueous chemistry: Br = bromide, F = Flouride, Fe  
= iron, HCO3 = bicarbonate (mg/l), K = potassium, Na = sodium, NO3 = nitrate (mg/l), PO4 = phosphate (mg/l), S i = 

silica, SO4 = sulfate, Sr = strontium, Ca/Mg = calcium -magnesium ratio. 
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5. SUMMARY 

In this study, a multimodal machine learning (MML) workflow was proposed, features selected, and modified self-organizing map 

(MSOM) model trained and tested using the Lanai subset of the Hawaii Play Fairway hydrogeologic, geothermal, and geophysical data. 
The Lanai MSOM model generalized to independent test data (five random 80/20 splits) despite data being characterized as sparse, 

spatially limited with different support volumes, and uncertain. The trained Lanai model was then used to predict continuous 3D 

features from which interesting merges of clusters characterized five 3D Geothermal Stratigraphic Units. The predicted features include 

state variables (such as hydraulic head, temperature, chloride concentration), physical properties (such as density, resistivity, specific 

capacity – permeability surrogate), geology (basalt and dike – generalized for plutonic and dike material), aqueous chemistry (major 
ions, metals, isotopes), and aqueous properties (pH, specific conductance, dissolved oxygen). Inspection of the predicted features 

revealed possible geologic attributes, such as basalt, dike swarms, sill, pluton, batholith, and Moho; possible groundwater attributes, 

such as downward groundwater recharge, saltwater intrusion, heterogenous chloride concentration, such as zones of freshwater, 

brackish water, and saline water; and geothermal attributes, such as upward convective hydrothermal transport along a gradient from the 

very hot Moho (758°C) to the near surface heterogeneous temperature distribution ranging from warm (65°C) to cool (20°C). Based on 
this information, two freshwater resources were identified from the surface to below 1 km depth: a warm water (50-65°C) region with 

intermediate specific capacity, low chloride concentration (<50 mg/l), and a cool water (about 20C) region with low specific capacity, 

low chloride concentration (<300 mg/l). Two geothermal resources were identified: one in the vicinity of the caldera where there is a 

warm (65°C) water at or near to the surface warmer down to 1 km depth, and a very hot hydrothermal plume being transported upward 

from the Moho (about 750°C) to commercially viable drilling depths of about 2.0 km to 6 km depth with temperatures of about 107°C 
to 275°C. The ability to determine Geothermal Stratigraphic Units (GSUs) from independent set of hydrogeologic, geothermal and 

geophysical measurements support their potential use in simultaneous characterization of combined groundwater and geothermal 

resources. Further, this novel approach affords the possibility for direct assignment of GSUs and their features to numerical model cells 

(or nodes), thereby minimizing ambiguity in the conceptualization to numerical modeling process including initial starting parameter 

values, boundary conditions, and geostatistical constraints in support of the calibration process. The MML workflow techniques used 
herein are recognized as novel in this application and their initial success warrants further research. The performance metrics in the 

Lāna‘i case study provide encouragement to continue this line of groundwater-geothermal research as part of the new Island Heat 

project funded by DOE’s GTO. 
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