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ABSTRACT

Geothermal energy is getting more and more attention these days due to its nature of being a clean source of renewable energy sources
provider with a zero-carbon footprint, free and available year-round. Assessment of this geothermal systemis often neglected in practice
during the exploration phase of energy extraction in geothermal development projects. The artificial intelligence expertise encompasses a
vast number of deep learning and machine learning techniques ranging from linear regression, logistic regression, convolutional neural
networks, genetic algorithms, reinforcement learning experiments, generative adversarial networks, etc. On amalgamating these available
machine learning techniques with the geothermal concepts like power conversion, geology, thermodynamics, geophysics, electricity
generation, heat flux, etc. are capable of improving the geothermal sector holistically by Subterranean resource characterization, Discrete
micro-seismic event detection, and classification, drill fault deception, and prediction, predicting subsurface temperature and geothermal
gradient and more. This study targets the analysis and prediction of the subsurface temperature of geothermal oil and gas wells. The
implemented Support Vector Regression (RM SE = 4.75) shows better results when compared with the counter model, XGBoost (RM SE
=5.16).

1. INTRODUCTION

Bottom-hole temperature (BHT) readings were increasingly utilized in the United States to map subsurface temperature levels for
geothermal resource analysis. In 2021, (Shahdi et al., 2021) combined BHT data from the northeastern U.S. with stratigrap hic information
& generated surface heat flow and temperature-at-depth maps using a basic thermal conductivity model. (Teresa Jordan et al., 2016)
undertook a comprehensive review of therisks and potentials connected with probable geothermal resources in Pennsylvania, New York,
and West Virginia. Each geothermal systemis unique in its basic features, including the reservoir rocks, clay cap, fluid, and heat source.
These variations are directly tied to the methods by which each typeof geothermal energy is generated and the eruptions & modification
of hydrothermal activities. These factors (Sutarmin & Daud, 2021) significantly affect the features of the rocks created, including their
permeability, saturation, density, porosity, and the clay minerals contained inside them.

Theenergy stored in low-temperature geothermal regions in the northeast can be exploited for a range of direct-use applications. However,
most geothermally active regions are located in the western United States (along Earth's plate borders). While it has been demonstrated
that geothermal energy may be used for a variety of industrial and home direct-use purposes, few geothermal sites in the northeastem
states are financially vulnerable. Two fundamental geothermal properties, heat flow and temperature at depth have been extensively
explored using physics-based models. The temperatures of the reservoirs have a significant effect ona geothermal system Drilling will be
extremely accurate for estimating the temperature of the geothermal reservoir, in contrast to the geothermometer and the geochemical
technique. The presence of a rock resistance-reservoir temperature connection, which is commonly connected with TOR (Top of
Reservoir) data gathered from boreholes and BOC (Best of Conductor) data generated from 3D M.T. data, is unquestionably significant
to uncover.

Additionally to the geothermal energy sector, the subsurface temperature is an enormously important metric in the petroleum sector and
other industries. Since hydrocarbon characteristics are highly influenced by temperature, they must be estimated before being utilized in
reservoir & drilling models. Geothermal gradient maps are commonly used to acquire the geothermal gradient value at the required
location and then compute the subsurface temperature at the desired depth of interest using the geothermal gradient value (Jones, 1970).
Investors may make more confident judgments with the help of machine learning & geostatistics, which have been appliedin a range of
applications. Given the inaccessibility of geothermal energy, there is also a significant level of risk and uncertainty connected with the
search drilling and geothermal energy production. Only a few extensive studies have been conducted to examine the hazards associated
with geothermal development to give insights into the possibilities of developing geothermal locations. Machine learning is a new
technology that has benefited the sector during the many stages described for geothermal energy.

2. LITERATURE REVIEW

In renewable energy, optimizing geothermal plant power production & economic value over years of operationis a key problem. To get
the best results, one needs to predict the flow rates & output temperatures of production wells depending on the injection wells' input
temperatures and the system's previous data. Based on previous data, (Carneiro et al., 2021) investigate the potential of machine learning
systems to predict temperature outputs accurately. They propose an alternative approach, considering the difficulties associated with
obtaining an evidence-based set of data from field measurements large enough to enable reliable ML. Attemptingto develop a high-
fidelity reservoir model & utilizing computational resources to generate a dataset large enough to enable reliable M L. It is presented that
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preliminary findings from applying machine learning to forecast the temperature time series of basic modeled geothermal systems will
help them achieve this aim in the first stage. To extract temporal patterns from model data, they discuss the use of appropriate state-of-
the-art machine learning algorithms, like Long Short-Term M emory networks or Convolutional Neural Networks.

Geothermal scientists were able to construct heat flow and temp erature-at-depth maps usingbottom-hole temp erature measurements from
petroleum well records, which have been used to detect possibly geothermally active areas. The use of different machine learning
algorithms for predicting temperature-at-depth or geothermal gradients parameters is examined in this paper since there are many
uncertainties and simplifying assumptions associated with the current state of physics-based models. (Shahdi et al., 2021). Their
exploratory investigation discovered that XGBoost & Random Forest are the two models that forecast subsurface temperature with the
best accuracy possible. They also apply theirmodel to areas surrounding the sites to generate 2D constant temperature mapping at three
different depths using the XGBoost model, identifying potentially geothermally active locations. As a benefit, they used an additional
dataset including recorded temperature reading throughout the depth of 58 wells located in the state of West Virginia to evaluate both the
suggested XGBoost & DNN models. In terms of accuracy, M L methods are generally equivalent to the physics-based model & in some
instances, surpass the thermal performance model because the absolute mean error of M achine learning algorithms like XGBoost & DNN
is 7.3, 7.27, whereas the physics-based model error is 8.76.

The conductivity of rocks and the reservoir temperature are mostly affected by the same properties, such as porosity, permeability, fluid
salinity, and temperature. The goal of this study (Namaswa et al., 2021) was to combine temperature readings from Olkaria Domes
geothermal well drilling with geophysical electromagnetic resistivity data to develop a new method for predicting reservoir temp eratures
via machine learning analytics. The Data-Driven Discovery Predictive M odel Algorithm was created in Python utilizing the Anaconda
framework. For coding and visualization, the open-source online tool Jupyter Notebook was utilized. The regression techniques used
were: Decision Tree Regression, Adaptive Booster Regression, Random Forest Regression and Support Vector Regression. The R-Score
& Mean Absolute Error metrics evaluated the model's performance. Based on these performance scores, the optimal model for predicting
subsurface temperatures from resistivity was recommended. The DTR algorithm improves outcomes withan R2 of 0.81 and an MAEof
29.8. (Chaajer et al., 2021; Kshirsagar, 2018)fIn high-temperature hydrothermal environments, the DTR approach can measure the
subsurface temperatures from resistivity.

(Rundle et al., 2016) The authors are particularly interested in determining whether any predictors of micro-earthquakes can be used to
forecast when significant seismic activity will occur soon, allowing for immediate action being taken before anythingviolent occurs. With
an emphasis on characterization rather than detection, an unsupervised learning approach can be used to deploy machine learning
techniques that forecast geothermal heat flux results based on variables of geologists. It includes bedrock, topography, crustal thickness,
and other geologic variables for a given area — as well as geothermal heat flux information from around the world. Associating temp late
fingerprints with distinct fault attributes or processes will lead to supervised learning approaches. These new technologies will help
reservoir engineers to make better decisions, minimize harmful seismicity, and optimize small-scale seismicity to improve fracture
networks and energy production efficiency. Identifying these processes and their transitions will substantially increase our knowledge of
a geothermal reservoir's thermal-mechanical condition. These approaches also give a novel tool to discover and quantify spectrum
variations in micro-seismicity, which may help us better understand the earthquake process.

Temperature and pressure data obtained throughout the wellbore are used in geothermal wells log analy sis to estimate feed zones, reservoir
pressure & reservoir temperature. The use of a multi-layered convolutional neural network to diagnose sets of temperature and pressure
well records is discussed in this research (Okoroafor et al., 2021). This approach allows for the interpretation of many wells logs in
seconds. This project's data source is synthesized well data that strongly match real data. A total of 10,000 datasets were utilized in this
study. The data were partitioned into three sets: training data, validation data, & testing data: 8,000, 1000, & 1000. The algorithm takes
three "depth-series" logs of temp, pressure, as well as temperature gradient as input, runs the data through it witha convolutional neural
network with a flat layer and a fully connected layer, and outputs five variables: reservoir temp erature, feed zone depths, reservoir pressure,
and depth at which reservoir pressure is known. This model's cost function was mean squared error. Adam was the optimizer met hod
utilized, and the learning rate decayed exponentially. The algorithm recorded the model state with the least overall absolute validation
error. With a TensorFlow backend, the architecture was built in Keras. The best model discovered throughout the hyper-parameter tuning
procedure was utilized to forecast reservoir properties for the testing and validation data sets. With a training error of 0.8 percent, a
validation error of 2%, and a test error of 3%, the findings demonstrate a good match between projected and actual data.

3. RESEARCH METHODOLOGY

EDA is a process of generating statistical information for numerical data in a dataset and constructing different graphs and charts to
understand the databetter. Geothermal energy may be a valuable source of heat energy for residential areas at shallow depths. Geothermal
wells were drilled for production when the potential geothermally active zones had been identified. The drilling stage of a geothermal
project might cost up to 45% ofthe entire project cost. ML has benefited the business in designing this stage more effectively from several
perspectives. In the oil and gas sector, the EDA approach will be utilized to forecast geothermal subsurface temperature visually. This
article uses mathematical models to conclude geothermal temperature forecasts based on data that has been visually reviewed.

The data selected is a combination of wells observation from SMU's (National Geothermal Data System) node & respective state
observations collected fromthe (Association of American State Geologists) and GDR. The database p rovides information on wells identity
(Observation URI, Well Name, and Well Status), county, state, latitude/longitude, the spatial reference system (SRS) that used map points,
the depth of temperature measurement, temperature, the information source, and the parent dataset (e.g, SMU or AASG). The entire
dataset was filtered for fewer temperature criteria, with temperatures ranging from 30 °C - 150 °C. Total 306,608 rows were there in
dataset, out of which 214,997 rows are not null. It is better to look at and compare the results of each data collection using a variety of
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exp loratory methodologies. This procedure uses visual & quantitative tools to analyze the dataset and locate missing data and outliers. It
suggests reasonable next steps, queries, or research topics for future research.

3.1 EDA Workflow

EDA involves summarizing datanumerically & visually and, as a result, preparing data for even more formal modeling procedures. EDA
can quickly deliver useful information, identify patterns, and uncover overall relationships by summarizing and accounting data that can
guide furtherreview & potentialize its outcomes.

Data Collection

Accounting and
Summarizing

Modeling

Exploratory Data Analysis

Anomaly Detection

Statistical Analysis Clustering

Data Cleaning
Decision Making

Figure 1: EDA and methodology adopted workflow.

Visualizations

4. RESULT & DISCUSSION

4.1 Top 30 Counties with Most Number of Geothermal/Oil/Gas Well

With thehelp of EDA, the graph shows the top 30 counties having the most number of oil/gas wells. The below graph shows Ellis county
has most no. of wells because of which it significantly contributes to the world economy.
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Figure 2: Number of wells in the top 30 counties.

Following the finding of the producing commercial well on William Shutts' property in 1928, Ellis and the neighboring counties have
been active in oil and gas production for almost forty years. From the late 1920s through the mid-1930s, large oil firms stepped inside and
bought out small, independent oil companies, resulting in increased oil output. When oil and gas production resumed in the 1950s, oil
prices fell. resulting in an uneven and less reliable oil market. Due to oversupply & drop in oil output and unpredictable markets. the oil
cornorations and enternrises that relocated to Havs were forced to close their doors or relocate. Desnite shifting oil nrices and the oil
market's unpredictability over the years, the oil business should be acknowledged for the economic support is made on a personal,
municipal, and state level.
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4.2 Various Types of Wells in the USA

Exploratory Data Analysis (EDA) evaluates datasets to summarize their main characteristics, often using visual approaches. ED A is used
before modeling to see what the data could tell us. With the help of it, we found 30 wells present in the USA.
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Figure 3: Number of different types of wells.

It is found that D&A well is primarily present in the world whose count is 35642, the number of oil wells is 22808 which is more than
gas wells, i.e., 19390. Brine well, junked well & pilot hole well are least compared to others based on data used for analysis.

Brines are an excellent source of salt (NaCl); during 500 BC, the Chinese drilled 100 brine wells, a few of which reached depths of more
than 100 meters (330 ft.). Boreholes were used to dig large brine reserves beneath the Earth's surface. Surface water & groundwater are
both included in commercial brines. Although brine produced by geothermal energy wells frequently contains large minerals, it is not
currently utilized for industrial mineral extraction (Wikipedia, 2022). The study suggested better brine management practices to avoid
negative environmental consequences and lower the economic disposal cost. The Zero Brine initiative attempts to achieve both of these
goals while utilizing high-quality resources (Filtration & Separation, 2019).

Oil & gas are key commodities that are traded on a global scale. Transporting oil & gas products is relatively inexpensive and
straightforward due to economies of scale. In many countries, oil and gas commerce contributes significantly (both positively and
negatively) to their current account in the balance of trade. The number of oil exporters, in particular, rely mostly on exports for foreign
cash (Stevens, 2018).

4.3 Number of Wells in Different S tates

According to finding, the most well present in Kansas State, i.e.. 83293. Kansas' economy depends heavily on the petroleum sector. Since
thelate 19th century, hundreds or even thousands of natural gas & oil wells have been drilled throughout the state, vielding more than 6.7
billion barrels of oil & 41.2 trillion cubic feet of natural gas (Uwatoko, 1952). NE has 17199 wells and Texas has 8305 wells. Texas is
the nation's leading nroducer of oil and natural eas. Texas will nroduce 43% ofthe countrv's crude oil and 26% ofthe nation's commercial
natural gas in 2020. As of January 2020, Texas' 31 petroleum refineries could produce nearly 5.9 million barrels of crude oil per day,
accounting for 31% of the nation's refining capacity (US Energy Information Administration, 2022).

Georgia and Northern California have 27 & 22 oils & gas wells. whereas G.A.. Missouri. and S.D. have the least number of wells. M issouri
has no maior crude oil deposits and has produced roughly 100,000 barrels per vear since the early 1980s, although output has declined
since 2013. The state's yearly oil production was 75,000 barrels in 2020, down from a high of 285,000 barrels in 1984 (N Dakota, 2021).
The below graph describes the actual count of geothermal, oil & gas wells in a different state.
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Figure 4: Number of wells in a different state

4.4 Recorded Temperature Inside Well

Temperature measuring in wells is an old procedure, & geothermal gradients have long interested geologists' curiosity. Their use in
oil/gas wells is a relatively recent development. Temperature abnormalities have long been noticed in drilling & producing wells, but
thermometers capable of obtaining a reliable record of the abnormalities were unavailable (Millikan, 1941). The below graph shows the
well temperature variation across the USA.
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Figure 5: Temperature at wells depth

The usual geothermal gradient is thought to be roughly 1 degree Fahrenheit for every 60 feet of depth. These normal gradients differ in
various regions, but whatever it is in a given area, there is minimal fluctuation from the surface to the depth of the drill. The standard
gradient is significantly altered when the gas expands from thereservoirs into the borehole or when fluid moves through a borehole during
drilling, producing or cycling.

4.5 A Map-Based Plot of Wells Present Different Location

It is shownusing the marker cluster function. The marker clustering function assists in managing several zones at various zoom settings.
When a user zooms in to a high level, individual markers emerge on the map, which helps the process simple to examine the map. The
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below graph shows the different mark points of wells present in other regions. The below map is the located map of the United States
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Figure 6: oil/gas wells in U.S. region

In 2020, the total sum of dry natural gas manufactured in the United States was over 33.5 trillion cubic feet (Tcf), an average of 91.5
billion cubic feet per dav. and the second-highest annual volume ever recorded. Horizontal drilling & hydraulic fracturing techniques have
accounted for most nroduction gains since 2005. In 2020. drv natural eas nroduction in the U.S. was around 10% larger than total natural
gas consumption in the United States (U.S. Energy Information Administration, 2022). Some of the oil/gas wells near Chicago are also

shown below.

. |
|
Sicu; City
10
Om_c:iha

Lincoln

747

Topeka ™
5 1493

Wichita 0
5

20
474

2
Tulsa
Edmiond
o

Okl

p— ]
lowa Colar
ol Rapids
Des Moines
Saintjoseph
- Columbia
Kansas City W
Missouri
o]
Springfield
Fort %rml h 2
91

o
Kitchener 58

r Grand
MI|W.?IU|(EE Rapids L sarnia
Madison Lansing” Flint
Kengsha O
3519 Detroit:
Chatham
o FiWaukegan Annrtord 2 . ~ Erie
Rockford A ke Erie B
Chicago South
T Bend Toleda
e Aurera 9 5 Clevgland
Davenport Gary
ot i
Akran
Pegr.. a3 orpNeayne Eﬁ%
Bloomington & il Pittsburg
Champaign -
i a7 5 319
Mirvois Irigdiano Dayton=c o imb| 124
692
5
Cincinnati Wiast Virginia
saint Lauis
26603 Louisville Charlsaston
o
5
Evanzville 98 Kentu 10
S114 Roa [:ok:
1627
Nashville
b o Greenshoro s
Tennessee Knoxville
E
Meén 15 Asheville ':°"§,°r°‘
149 Chattancooa 12}

Figure 7: Wellsin a different region of Chicago



Kshirsagar and Sanghavi

4.6 Heatmap of Wells across the USA

A heatmap would be a graphical depiction of individual matrix values as colors. A heatmap is an excellent tool for displaying the intensity
of values between 2 dimensions of a matrix. It helps with pattern recognition and provides a sense of depth. With its help, we represent
the number of well types in different states see the below graph.

| Leaflet | Data by @ OpenStreetMap, under ODbL.

Figure 8: Heat Map presentation of well distribution across the US A.

4.7 Prediction of Geothermal Well Temperature Using Machine Learning Algorithm

High-pressure, high-temperature prediction of wells is one of the most challenging circumstances in wellbore management because they
need huge expenditures and maintenance expenses in the petroleum industry. In this context, drilling fluid rheology and its key factors
will help engineers develop a fundamental knowledge of the best wellbore management strategy. Furthermore, it can help engineers in
controlling the fluid loss issue. The authors have used two machine-learning algorithms to predict the geothermal surface temperature.

4.7.1 Support Vector Regression

SVR applies the same idea as Support vector machine but have regression issues. Now we will see working of implemented SVR to
predict temperature.
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Figure 9: Working of S VR model (Awad & Khanna, 2015).

The Scikit-Learn module in Python contains all of the functions required to implement SVR. All we have to do now is preparea data set
to train an SVR model.

e Import all essential libraries.
e Import thedataset and create the feature matrix & dependent variable vector.

e  Feature scale the data.
e Lastly, fitting the SVR model to the dataset and predicting theresult.
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The RM SE ofan SVR algorithm determines the model's absolute fit with the data. In other words, it displays how near the real data values
are to the expected values of the model. A low RM SE number implies a better fit and is an excellent metric for measuring the reliability
of the model's predictions.

4.7.2 XGBoost Regression

XGBoost is a decision-tree-based gradient boosting ensemble Machine Learning algorithm. (Solanki et al., 2021) Artificial neural
networks (ANN) surpass all the frameworks or other algorithms in unstructured data prediction problems. For predicting a numerical
value, like temperature, depth is the goal of regression predictive modeling issues (Brownlee, 2021). For predictive regression modeling,
XGBoost can be utilized directly. By determining the root mean square error value for the XGBoost algorithm. It can be stated that RM SE
values around 0.2 - 0.5 indicate that the algorithm can adequately predict the data.

Data Set: (X, Y)

R (X) B(X) l Fo(X)

Tree 1 Tree 2 Tree m

| | | |

Compute Compute o Compute Compute Compute Compute &; Compute Compute cty,
Residuals Residuals Residuals Residuals
(r1) (r2) (i) ("m)

l i | |
l

Fm{X} = m—l(X) +th’m(Xs rm—l),
where «;, and r; are the regularization parameters and residuals computed with the it tree respectfully, and h;
is a function that is trained to predict residuals, r; using X for the it tree. To compute a; we use the residuals

m
computed, 7; and compute the following: arg min — Z L(Y;, F,_1 (X)) + ahy(X;, r_1)) where
o
i-1
L(Y, F(X)) is a differentiable loss function.

Figure 10: Working of XGBoost Model (Ma etal.,2020).

The following steps were followed to implement the XGBoost model:

e Import necessary libraries.

e Set up parameters.

e  Predictors & target variables are being developed.

e  Divide thedata into two groups: training and testing.
e Initialize the XGBoost model.

e Train the model.

e  Prediction evaluation.

4.7.3 Evaluation of Support Vector Regression (SVR) and XGBoost Used for Subsurface Temp erature Prediction

The standard deviation of the residuals is defined as RM SE. Residuals measure the distance between the data noints and the reeression
line;: RM SE estimates all these residuals scattered. In other words. it indicates how dense the datais near the line of greatest fit. Root mean
square error is often utilized in meteorology, forecasting, & regression analysis. There is no appropriate M SE value. Simply, the lower
values, the better the model. As there is no true answer, the M SE's primary utility is deciding one prediction model over another. The
equation below depict the mathematical notion of RM SE:; where N is the number of terms, i is the i Term. And the table 1 shows the
RM SE values for the implemented model for their comparison.
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Table 1: RMSE values for the implemented machine learning models.

RMSE = \/

Sr.No. Machine Learning Model RMSE Value
1. SVR 4.75
2 XGBoost 5.16

5. CONCLUSION

Our study led us to conclude that EDA is a thorough examination that helps to find data structures. It is important for all industries because
it reveals trends, patterns, and linkages that are not abundantly clear. EDA is the best method for identifying abnormalities, but it might
mislead us wrong if not done correctly. Based on our analysis, it is concluded that-

® Most ofthe oil/gas wells, i.e., more than 7000 wells, are found in Ellis County, which significantly contributes to the economy.

e Many nations’ oil and gas commerce contributes significantly (both positively and negatively) to their current account in the balance of
trade. The number of oil exporters, in particular, rely mostly on exports for foreign cash.

e According finding the most number of well present in Kansas State, i.e., 83293. Kansas' economy depends heavily on the petroleum
sector, whereas M issouri has no major crude oil deposits and has produced roughly 100,000 barrels per year since the early 1980s.

o The usual geothermal gradient is thought to be roughly 1 degree Fahrenheit for every 60 feet of depth.

® We have used two machine learning models: Support Vector Regression and XGBoost regression, to determine which models better
predict the geothermal surface temp erature and determined the root mean square error value for both models, as shown in table 1.

Hence SVR's RMSE, i.e., 4.75, which is less than XGBoost's root mean square error, 5.16. As a result, when compared to the XG Boost
algorithm, SVR performs well in forecasting temperature utilizing independent factors.
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