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ABSTRACT

Rapid and accurate monitoring of seismicity is crucial for bothreservoir management and risk mitigation. It is important to monitor not
only seismic events due to hydraulic fracturing but also naturally occurring background seismicity. Depending on the size of the reservoir,
monitoring of background and induced seismicity usually deals with different spatial scales. Thanks to an expanded station coverage and
continuous improvements on seismic sensors, a large amount of data has been collected for both natural and induced seismicity. Traditional
seismic data processing techniques can provide rapid and automatic seismic event catalogs or more accurate results but at a higher time
and labor cost. To obtain accurate seismicity catalogs rapidly and extract valuable information from large amounts of data effectively, we
developed a machine learning enhanced seismic monitoring workflow that combines cutting-edge machine learning techniques and
advanced seismic data processing algorithms. The workflow is suitable for the monitoring of both natural and induced seismicity at
dramatically different spatial scales. To demonstrate this capability, we applied the workflow to the Oklahoma region as an example for
100 km scale sites and to the experiment 1 site of the EGS Collab project witha length scale of 10 m. Our workflow not only produces
high-precision seismicity catalogs but also images the 3D subsurface structure with high resolution. We compare our results against those
from traditional techniques.

1. INTRODUCTION

Seismic event catalogs and subsurface structure are not only crucial for selecting and/or evaluating geothermal and carbon storage sites
but also essential for risk monitoring of existing sites. High-precision seismic event catalogs and high-resolution images of'the subsurface
are necessary for reliable decision-making related to reservoir management. Imaging the subsurface requires significant time and effort
from experienced researchers. Existing seismic monitoring approaches can provide crude seismic locations quickly or high-resolution
results after months or years of dedicated research. The current state of practice uses automatic algorithms to scan through continuous
data, detect seismic events related signals, and measure seismic phase arrival times. These automatic algorithms are usually fast. But
arrival times measured by the traditional approaches such as short-term-average/long-term-average (STA/LTA, Allen, 1978) are not
accurate enough forlocating seismic events precisely. As manually measured arrival times are the most reliable approach, human analysts
usually refine the automatic arrival time measurements by visually looking through a large number of seismograms one by one. Picking
these arrival times is very labor-intensive. This labor-intensive step is the bottleneck of high-precision seismic monitoring. High-precision
seismic catalogs take months if not years to develop. Thanks to recent developments in machine learning techniques, many deep learning
models are available for seismic arrival time picking (e.g., Mousaviet al., 2020; Ross et al., 2018; Zhouet al., 2019; L. Zhuet al., 2019;
W. Zhu & Beroza, 2018). However, applications of these deep learning models at different spatial scales are limited. Our objective is to
speed up these labor-intensive steps with machine learning (ML) techniques and integrate them with advanced geophysical imaging
algorithms to form an artificial intelligence (AI) enhanced workflow for fast and high-precision seismic monitoring.
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We use two sites to demonstrate our seismic monitoring workflow and compare our results with existing techniques. One of them is the
Experiment 1 site of the EGS Collab project that is located at the 4,850-ft level (around 1.5 km beneath the surface) of the Sanford
Underground Research Facility (Lead, South Dakota). The Experiment 1 site has a spatial dimension of 10 meters (Figure 1a). Hundreds
of microseismic events related to several hydraulic stimulations have been recorded at the site. Schoenball et al. (2020) produced a seismic
catalog after intensive study. We will refer to it as the initial catalog hereafter. We compare our results against Schoenball et al. (2020)
for the EGS Collab Experiment 1 site. The other site is the Oklahoma region which has a spatial dimension of 100 km (Figure 1b). Our
results for the Oklahoma region are compared against the earthquake catalog from the United States Geological Survey (USGS) due toits
wide availability .
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Figure 1: Two study areas at (a) 10 m scale and (b) 100 km scale. In panel a, lines represent boreholes. The blue line is the injection
well. The yellow line is the production well. Black lines are monitoring wells. Purple dots represent seismic sensors. In
panel b, gray circles represent seismic events. Blue triangles are seismic stations.

2. EGS COLLAB EXPERIMENT 1

The EGS Collab Experiment 1 site had one injection, one production, and six 60 m-long monitoring wells (see Figure la for the layout).
Inside the monitoring wells, we deployed 24 single-component and 12 three-component seismic sensors. Several hydraulic stimulations
were carried out in May 2018, June 2018, July 2018 and December 2018. We focus on the days that these hydraulic stimulations were
conducted. Details about the stimulations can be found in Schoenball et al. (2020) and Fu et al. (2021). Chai et al. (2020) developed a
transfer learned model for the site by fine-tuning a deep learning model called PhaseNet (W. Zhu & Beroza, 2018), which was designed
for natural earthquakes and at a 100-km scale. Double-difference tomography (Zhang & Thurber, 2003, 2006) has been applied to
manually measured arrival times (Chai, Maceira, et al., 2021). In this study, we integrate the transfer learned model and the double-
difference tomography for continuous seismic data.

2.1 Data

Our data for the EGS Collab Experiment 1 site consist of 13 days of continuous seismic data (around 40 TB) recorded at the 35 seismic
sensors (one sensor was defective) between May 2018 and December 2018, when hydraulic stimulations were carried out. The data was
sampled at 100 kHz. Crosstalk from the electrical resistivity tomography sensors, electrical spikes from therecording system, and active
seismic shots about every 0.8 s from the continuous active seismic source monitoring system contaminated the seismic signals. We
followed the same procedures as Schoenball et al. (2020) to reduce these effects. Additional details about the experiment design and the
monitoring system can be found in Schoenball et al. (2020).

2.2 Method

As shown in Figure 2, we applied the transfer learned model to continuous data to detect signals related to microseismic events and
measure seismic phase arrival times. A modified version of Hypoinverse (Klein, 2002) was use to obtain an initial catalog of seismic
events. We visually inspected the seismic events using interactive visualization tools similar to Chai et al. (2018) and found that a
significant number of active source events were included in theinitial catalog. We used the density -based spatial clustering of applications
with noise (DBSCAN) and excluded most of the active source events. The initial catalog as well as the associated phase picks were used
in the double-difference tomography package to further improve the seismic event locations. The resulting catalog will be referred to as
the update catalog.
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Figure 2: Flowcharts showing the major component of our Al-enhanced workflow for seismic monitoring (top) at 10-m scale and
(bottom) at 100-km scale. The transfer learned model is obtained from Chai et al. (2020). Hypoinverse was designed by
Klein (2002). Double-difference tomography was developed by Zhang & Thurber (2003). PhaseNetis a deeplearning model
developed by W. Zhu & Beroza (2018).

2.3 Results

We compare our seismic event catalog against that from Schoenball et al. (2020) for the stimulations in May 2018, June 2018, July 2018
and December 2018 in Figures 3 and 4. As shown in Figure 3a and 3b, the transfer learning derived seismic events contain similar features
as the original catalog. More seismic events were detected from the continuous data using our workflow than the existing techniques.
Especially the transfer learned model detected additional events located in the dashed ellipse that formed a clear linear pattern. Comparing
Figure 3c and 3d, we also found similar patterns between the initial and the update catalog. Additional seismic events (see events in the
dashed ellipse in Figure 3d for an example) were detected for the June 2018 stimulations as well. For the July 2018 stimulations, more
seismic events were found by the transfer learned model compared to the initial catalog (Figure 4b). In Figure 4d, we noted a planar
feature (in solid ellipse) in both the initial and the updated catalog. The planar feature is tighter in the update catalog than in the initial
catalog. A lot more seismic events were identified by the transfer learned model. The distribution of these seismic events shows some
compact clusters, which may be related to local fractures that were not detected in the original catalog. Interestingly, a few clusters were
active during the May 2018, June 2018 and December 2018 stimulations but not during the July 2018 stimulations.

3. OKLAHOMA REGION

The current state of practice for body wave tomography uses manually measured seismic signal arrival times (or phase picks) as data
constraints. M anual picking is the most reliable approach to measure the signal arrival times. Picking these arrival times is very labor-
intensive. We have downloaded around 235,000 three-component body wave seismograms for the Oklahoma region. The manual picking
step would take a human analyst nearly 6 months to complete. We used a deep learning model (PhaseNet, W. Zhu & Beroza, 2018) to
automate and speed up the phase picking step while maintaining human performance. The resulting phase picks were used to image the
subsurface structure and improve seismic event locations. Earthquake locations processed by the United States Geological Survey (USGS)
are used as the baseline and compared against our results. We used manual phase picks processed by the USGS to improve the seismic
event locations and used deep-learning derived phase picks to update the seismic catalog independently. The seismic event locations
improved with both manual and deep-learning derived phase picks were compared with the baseline. For seismic events associated with
several earthquake sequences, better locations are shown as a tighter linear trend along the faults. Fast and high-precision seismic event
catalogs provide us with crucial information for fault detection, site selection and evaluation, background seismicity investigation, and
near real-time monitoring.
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Figure 3: Comparison of the original (a and c¢) and the updated (b and d) microseismic eventlocations (dots) associated with the
stimulations in May 2018 (a and b) and June 2018 (c and d). The original seismic event locations were obtain ed from
(Schoenball et al., 2020). Seismic events in the right panels (b and d) were updated with transfer-learning picks derived
from continuous seismic data. The lines represent boreholes. The solid ellipse indicates similar patterns between the
original and the updated seismic event locations. The dashed ellipse shows additional seismic events detected by the transfer
learned model from the continuous data.
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Figure 4: Comparison of the original (a and c¢) and the updated (b and d) microseismic eventlocations (dots) associated with the
stimulations in July 2018 (a and b) and December 2018 (c and d). The original seismic eventlocations were obtain ed from
(Schoenball et al., 2020). Seismic events in the right panels (b and d) were updated with transfer-learning picks derived
from continuous seismic data. The lines represent boreholes. The dashed ellipse shows additional seismic events detected
by the transfer learned model from the continuous data.

3.1 Data

Our data for the Oklahoma region included around 235,000 three-component body wave seismograms downloaded from the Data
Management Center of Incorporated Research Institutions for Seismology and associated seismic catalog from USGS. All earthquakes
(around 10,700) with recorded manual phase picks from the USGS between 2006 and 2020 were used. A total of 342 seismic stations
were used (Figure 1b).

3.2 Method

Our technique integrates deep learning techniques with mature subsurface imaging algorithms (Figure 2). We used the double-difference
tomography algorithm (Zhang & Thurber, 2003, 2006) for subsurface imaging and seismic catalog improvement. The double-difference
tomography algorithm takes seismic phase picks, an original seismic event catalog, and an initial seismic velocity model as inputs and

5



Chai et al.

produces an updated seismic event catalog and images of the subsurface. The USGS seismic event locations are used as the original
seismic event catalog and a baseline. To better validate the improvements of deep learning techniques, we performed double-difference
tomography using both manual phase picks and deep -learning derived phase picks. The manual phase picks were obtained from the USGS
earthquake catalog. We used the seismic velocity model from Chai, Delorey, et al. (2021) as the initial model. We downloaded three-
component seismograms that have manual picks and measured phase picks from the seismograms using a pre-trained deep learning model,
PhaseNet (W. Zhu & Beroza, 2018). The manual picking step would take a human analyst nearly 6 months to complete. PhaseNet
automates and speeds up the phase picking step while maintaining human performance. The resulting phase picks were used to image the
subsurface structure and improve seismic event locations with a double-difference tomography algorithm (Zhang & Thurber, 2003, 2006).
We run the tomography algorithm many times using different inversion parameters and identified the optimal set of inversion parameters
for both manual and deep-learning picks. The resulting seismic event catalogs derived from both manual and deep -learning picks were
compared to the baseline.

3.3 Results

Using body-wave seismograms from the Oklahoma region, we have shown that the deep learning model can significantly speed up the
phase picking task. As shownin Table 1, it only takes the deep learning model 38 min on a laptop computer to process all the body -wave
seismograms (around 235,000) for the Oklahoma region. However, it would take a human analyst 118 workdays to complete the same
task, based on our estimate. Therefore, the deep learning model reduced the processing time by 99.9%. Furthermore, we can easily improve
the processing speed of the deep learning model by using more computing resources.

Table 1: Time cost comparison between a human analyst and the deep learning model for body wave phase picking using data
from the Oklahoma region.

Approach Time
Human analy st 118 workdays
Deep learning model 38 mins

Deep learning not only speeds up the phase picking task but also leads to better seismic event locations. As shown in Figures 5 and 6, the
double-difference tomography improves the seismic event locations for both manual picks and deep learning derived picks. Since the
original event locations are mostly computed assuming 1D layered models, the updated seismic event locations show improvements
compared to the USGS catalog by accounting for the 3D heterogeneities in subsurface structure. When we compare event locations
updated with deep learning derived picks and manual picks, we noticed tighter linear trends for the deep learning picks. The tighter linear
trends provide better constraints on the geometry of fault structures. We also compared the updated seismic event locations against the
moment tensor solutions from the Saint Louis University earthquake catalog. The linear trends in our seismic event catalog generally
match the fault plane azimuth estimates from the moment tensor solutions (Figures 5 and 6).

We visualized the original and updated seismic event locations with three-dimensional interactive tools (see Figure 7 for screenshots of
thetools). Clearly, the seismic event locations derived from manual picks through the double-difference tomography show tighter pattems
than the original locations from USGS. The updated seismic catalog using deep learning picks exhibits even tighter patterns than that
using manual picks, especially in the vertical direction. The detailed geometry of fault planes is more clearly revealed with the deep-
learning derived catalog than the manual picks derived catalog and the USGS catalog. We found multiple fault segments from the deep -
learning derived catalog that are not well illustrated with the manual catalog and the USGS catalog. As an example, we fitted two planes
(red and blue) for the Mw 5.1 2016 Waynoka earthquake sequence (Figure 8). The blue plane is difficult to constrain with the manual
picks derived catalog but is reasonably well constrained in the deep learning derived catalog. With the high-precision catalog obtained
with deep-learning picks, we can also study thetemporal evolution of the aftershocks. As shown in Figure 9, the rupture initiated on the
red plane and propagated to the southwest direction gradually. After around one year, the blue plane ruptured, which has a smaller length
than thered plane.

4. DISCUSSIONAND CONCLUSIONS

We developed an Al-enhanced seismic monitoring workflow for geothermal and carbon storage purposes. The workflow is applicable to
various spatial scales. We have successfully applied it for studies areas at 10-m and 100-km scales. The results for the EGS Collab
Experiment 1 show the workflow can process continuous seismic data and produce a high-quality seismic catalog quickly. The resulting
seismic catalog contains more seismic events than the existing technique. As demonstrated with seismic data from the Oklahoma region,
PhaseNet reduced the time cost of phase picking by 99.9% compared to a human analyst. The deep learning derived phase picks were
then used to relocate seismic events as well as to image the 3D subsurface structure. Compared to both the USGS catalog and manual
picks derived seismic locations, the deep learning picks lead to more precise seismic event locations. The linear trend of several earthquake
sequences was better constrained by deep learning pick derived event locations. The earthquake depth is better constrained with the deep
learning picks than the manual picks. With the high-precision catalog derived from deep learning picks, we revealed the detailed geometry
of fault planes of the 2016 Waynoka earthquake sequence. The deep learning derived catalog allows us to constrain a secondary fault
segment that is not obvious in the USGS catalog and the manual picks derived catalog. The Al-enhance seismic catalog can be used to
better study subsurface fault/fracture systems, image the subsurface, and investigate background seismicity.
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Figure 5: Comparison of the original seismic eventlocations (gray circles, from US GS), the event locations updated with manual
phase picks (red circles and beachballs in panels a and d), and the event locations updated with deep learning picks (red
circles and beachballs panels b and e). The locations of panels a, b, d, and e are shown in panel ¢ with the gray lines.
Beachballs show earthquake focal mechanisms from the Saint Louis University moment tensor catalog. Panels a and b
correspond to the 2016 Waynoka earthquake (Mw 5.1) sequence. Panels d and e show aftershocks of the 2016 Pawnee

earthquake (Mw 5.8) sequence.

Our workflow can be used for both surface sensors (Oklahoma region) and borehole monitoring arrays (EGS Collab Experiment 1). We
have demonstrated the workflow with the transfer learning technique for borehole sensors (Chai et al., 2020). The workflow can be used
before injection to investigate background seismicity and subsurface structure, and after injection for real-time seismic monitoring We
envision daily use of an advanced passive seismic workflow. Using continuous passive seismic data as input, our workflow produces near
real-time information about microseismic events. Body-wave arrival times can be combined with other types of observations such as
surface-wave dispersion in joint inversion algorithms (e.g., Chai et al., 2019, 2021; Syracuse et al., 2016) to produce 3D elastic prop ety
models efficiently and reliably. The elastic properties together with other data constraints can be incorporated for 3D stress modeling (e.g.,
Chai et al., 2021). Al models and physics-based algorithms can be systematically integrated for near real-time monitoring. The data
products from our workflow can provide crucial information for the decision-making of geothermal and carbon storage sites.
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