
PROCEEDINGS, 47th  Workshop on Geothermal Reservoir Engineering 
Stanford University, Stanford, California, February 7-9, 2022 

SGP-TR-223 

___________________________________________________ 

†J. Ajo-Franklin, T. Baumgartner, K. Beckers, D. Blankenship, A. Bonneville, L. Boyd, S. Brown, J.A. Burghardt, C. Chai, Y. Chen, B. 

Chi, K. Condon, P.J. Cook, D. Crandall, P.F. Dobson, T. Doe, C.A. Doughty, D. Elsworth, J. Feldman, Z. Feng, A. Foris, L.P. Frash, Z. 

Frone, P. Fu, K. Gao, A. Ghassemi, Y. Guglielmi, B. Haimson, A. Hawkins, J. Heise, C. Hopp, M. Horn, R.N. Horne, J. Horner, M . Hu, 

H. Huang, L. Huang, K.J. Im, M. Ingraham, E. Jafarov, R.S. Jayne, S.E. Johnson, T.C. Johnson, B. Johnston, K. Kim, D.K. King, T. 

Kneafsey, H. Knox, J. Knox, D. Kumar, M. Lee, K. Li, Z. Li, M. Maceira, P. Mackey, N. Makedonska, E. Mattson, M.W. McClure, J . 
McLennan, C. Medler, R.J. Mellors, E. Metcalfe, J. Moore, C.E. Morency, J.P. Morris, T. Myers, S. Nakagawa, G. Neupane, G. 

Newman, A. Nieto, C.M. Oldenburg, T. Paronish, R. Pawar, P. Petrov, B. Pietzyk, R. Podgorney, Y. Polsky, J. Pope, S. Porse, J .C. 

Primo, C. Reimers, B.Q. Roberts, M. Robertson, W. Roggenthen, J. Rutqvist, D. Rynders, M. Schoenball, P. Schwering, V. Sesetty, 

C.S. Sherman, A. Singh, M.M. Smith, H. Sone, E.L. Sonnenthal, F.A. Soom, P. Sprinkle, C.E. Strickland, J. Su, D. Templeton, J .N. 

Thomle, V.R. Tribaldos, C. Ulrich, N. Uzunlar, A. Vachaparampil, C.A. Valladao, W. Vandermeer, G. Vandine, D. Vardiman, V.R. 
Vermeul, J.L. Wagoner, H.F. Wang, J. Weers, N. Welch, J. White, M.D. White,  P. Winterfeld, T. Wood, S. Workman, H. Wu, Y.S. 

Wu, E.C. Yildirim, Y. Zhang, Y.Q. Zhang, Q. Zhou, M.D. Zoback 

This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of 

Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US 

government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this 
manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally 

sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). 

1 

Machine Learning Enhanced Seismic Monitoring at 100 km and 10 m Scales  

Chengping Chai1, Monica Maceira1 and EGS Collab Team† 

1Oak Ridge National Laboratory, Oak Ridge, TN 37930, USA 

Email: chaic@ornl.gov (Chai), maceiram@ornl.gov (Maceira)  

 

Keywords: machine learning, deep learning, seismic monitoring, geothermal energy, EGS Collab 

ABSTRACT 

Rapid and accurate monitoring of seismicity is crucial for both reservoir management and risk mitigation. It is important to monitor not 

only seismic events due to hydraulic fracturing but also naturally occurring background seismicity. Depending on the size of the reservoir, 
monitoring of background and induced seismicity usually deals with different spatial scales. Thanks to an expanded station coverage and 

continuous improvements on seismic sensors, a large amount of data has been collected for both natural and induced seismicity. Traditional 

seismic data processing techniques can provide rapid and automatic seismic event catalogs or more accurate results but at a higher time 

and labor cost. To obtain accurate seismicity catalogs rapidly and extract valuable information from large amounts of data effectively, we 

developed a machine learning enhanced seismic monitoring workflow that combines cutting-edge machine learning techniques and 
advanced seismic data processing algorithms. The workflow is suitable for the monitoring of both natural and induced seismicity at 

dramatically different spatial scales. To demonstrate this capability, we applied the workflow to the Oklahoma region as an example for 

100 km scale sites and to the experiment 1 site of the EGS Collab project with a length scale of 10 m. Our workflow not only produces 

high-precision seismicity catalogs but also images the 3D subsurface structure with high resolution. We compare our results agains t those 

from traditional techniques. 

1. INTRODUCTION 

Seismic event catalogs and subsurface structure are not only crucial for selecting and/or evaluating geothermal and carbon storage sites 

but also essential for risk monitoring of existing sites. High-precision seismic event catalogs and high-resolution images of the subsurface 

are necessary for reliable decision-making related to reservoir management. Imaging the subsurface requires significant time and effort 

from experienced researchers. Existing seismic monitoring approaches can provide crude seismic locations quickly or high-resolution 
results after months or years of dedicated research. The current state of practice uses automatic algorithms to scan through continuous 

data, detect seismic events related signals, and measure seismic phase arrival times. These automatic algorithms are usually fast. But 

arrival times measured by the traditional approaches such as short -term-average/long-term-average (STA/LTA, Allen, 1978) are not 

accurate enough for locating seismic events precisely. As manually measured arrival times are the most reliable approach, human analysts 
usually refine the automatic arrival time measurements by visually looking through a large number of seismograms one by one. Picking 

these arrival times is very labor-intensive. This labor-intensive step is the bottleneck of high-precision seismic monitoring. High-precision 

seismic catalogs take months if not years to develop. Thanks to recent developments in machine learning techniques, many deep learning 

models are available for seismic arrival time picking (e.g., Mousavi et al., 2020; Ross et al., 2018; Zhou et al., 2019; L. Zhu et al., 2019; 

W. Zhu & Beroza, 2018). However, applications of these deep learning models at different spatial scales are limited. Our objective is to 
speed up these labor-intensive steps with machine learning (ML) techniques and integrate them with advanced geophysical imaging 

algorithms to form an artificial intelligence (AI) enhanced workflow for fast and high-precision seismic monitoring.  
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We use two sites to demonstrate our seismic monitoring workflow and compare our results with existing techniques. One of them is the 
Experiment 1 site of the EGS Collab project that is located at the 4,850-ft level (around 1.5 km beneath the surface) of the Sanford 

Underground Research Facility (Lead, South Dakota). The Experiment 1 site has a spatial dimension of 10 meters (Figure 1a). Hundreds 

of microseismic events related to several hydraulic stimulations have been recorded at the site. Schoenball et al. (2020) produced a seismic 

catalog after intensive study. We will refer to it as the initial catalog hereafter. We compare our results against Schoenball et al. (2020) 

for the EGS Collab Experiment 1 site. The other site is the Oklahoma region which has a spatial dimension of 100 km (Figure 1b). Our 
results for the Oklahoma region are compared against the earthquake catalog from the United States Geological Survey (USGS) due to its 

wide availability.  

 

Figure 1: Two study areas at (a) 10 m scale and (b) 100 km scale. In panel a, lines represent boreholes. The blue line is the injection 

well. The yellow line is the production well. Black lines are monitoring wells. Purple dots represent seismic sensors. In 

panel b, gray circles represent seismic events. Blue triangles are seismic stations.  

2. EGS COLLAB EXPERIMENT 1 

The EGS Collab Experiment 1 site had one injection, one production, and six 60 m-long monitoring wells (see Figure 1a for the layout). 

Inside the monitoring wells, we deployed 24 single-component and 12 three-component seismic sensors. Several hydraulic stimulations 

were carried out in May 2018, June 2018, July 2018 and December 2018. We focus on the days that these hydraulic stimulations were 
conducted. Details about the stimulations can be found in Schoenball et al. (2020) and Fu et al. (2021). Chai et al. (2020) developed a 

transfer learned model for the site by fine-tuning a deep learning model called PhaseNet (W. Zhu & Beroza, 2018), which was designed 

for natural earthquakes and at a 100-km scale. Double-difference tomography (Zhang & Thurber, 2003, 2006) has been applied to 

manually measured arrival times (Chai, Maceira, et al., 2021). In this study, we integrate the transfer learned model and the double-

difference tomography for continuous seismic data.  

2.1 Data 

Our data for the EGS Collab Experiment 1 site consist of 13 days of continuous seismic data (around 40 TB) recorded at the 35 seismic 

sensors (one sensor was defective) between May 2018 and December 2018, when hydraulic stimulations were carried out. The data was 

sampled at 100 kHz. Crosstalk from the electrical resistivity tomography sensors, electrical spikes from the recording system, and active 

seismic shots about every 0.8 s from the continuous active seismic source monitoring system contaminated the seismic signals.  We 
followed the same procedures as Schoenball et al. (2020) to reduce these effects. Additional details about the experiment design and the 

monitoring system can be found in Schoenball et al. (2020). 

2.2 Method 

As shown in Figure 2, we applied the transfer learned model to continuous data to detect signals related to microseismic events and 
measure seismic phase arrival times. A modified version of Hypoinverse (Klein, 2002) was use to obtain an initial catalog of seismic 

events. We visually inspected the seismic events using interactive visualization tools similar to Chai et al. (2018) and found that a 

significant number of active source events were included in the initial catalog. We used the density -based spatial clustering of applications 

with noise (DBSCAN) and excluded most of the active source events. The initial catalog as well as the associated phase picks were used 

in the double-difference tomography package to further improve the seismic event locations. The resulting catalog will be referred to as 

the update catalog.  
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Figure 2: Flowcharts showing the major component of our AI-enhanced workflow for seismic monitoring (top) at 10-m scale and 

(bottom) at 100-km scale. The transfer learned model is obtained from Chai et al. (2020). Hypoinverse was designed by 

Klein (2002). Double-difference tomography was developed by Zhang & Thurber (2003). PhaseNet is a deep learning model 

developed by W. Zhu & Beroza (2018). 

2.3 Results 

We compare our seismic event catalog against that from Schoenball et al. (2020) for the stimulations in May 2018, June 2018, July 2018 

and December 2018 in Figures 3 and 4. As shown in Figure 3a and 3b, the transfer learning derived seismic events contain similar features 

as the original catalog. More seismic events were detected from the continuous data using our workflow than the existing techniques. 
Especially the transfer learned model detected additional events located in the dashed ellipse that formed a clear linear pattern. Comparing 

Figure 3c and 3d, we also found similar patterns between the initial and the update catalog. Additional seismic events (see events in the 

dashed ellipse in Figure 3d for an example) were detected for the June 2018 stimulations as well. For the July 2018 stimulations, more 

seismic events were found by the transfer learned model compared to the initial catalog (Figure 4b). In Figure 4d, we noted a planar 

feature (in solid ellipse) in both the initial and the updated catalog. The planar feature is tighter in the update catalog than in the initial 
catalog. A lot more seismic events were identified by the transfer learned model. The distribution of these seismic events shows some 

compact clusters, which may be related to local fractures that were not detected in the original catalog. Interestingly, a few clusters were 

active during the May 2018, June 2018 and December 2018 stimulations but not during the July 2018 stimulations. 

3. OKLAHOMA REGION 

The current state of practice for body wave tomography uses manually measured seismic signal arrival times (or phase picks) as data 
constraints. Manual picking is the most reliable approach to measure the signal arrival times. Picking these arrival times is very labor-

intensive. We have downloaded around 235,000 three-component body wave seismograms for the Oklahoma region. The manual picking 

step would take a human analyst nearly 6 months to complete. We used a deep learning model (PhaseNet, W. Zhu & Beroza, 2018) to 

automate and speed up the phase picking step while maintaining human performance. The resulting phase picks were used to image the 

subsurface structure and improve seismic event locations. Earthquake locations processed by the United States Geological Survey (USGS) 
are used as the baseline and compared against our results. We used manual phase picks processed by the USGS to improve the seismic 

event locations and used deep-learning derived phase picks to update the seismic catalog independently. The seismic event locations 

improved with both manual and deep-learning derived phase picks were compared with the baseline. For seismic events associated with 

several earthquake sequences, better locations are shown as a tighter linear trend along the faults. Fast and high-precision seismic event 

catalogs provide us with crucial information for fault detection, site selection and evaluation, background seismicity investigation, and 

near real-time monitoring. 
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Figure 3: Comparison of the original (a and c) and the updated (b and d) microseismic event locations (dots) associated with the 

stimulations in May 2018 (a and b) and June 2018 (c and d). The original seismic event locations were obtain ed from 

(Schoenball et al., 2020). Seismic events in the right panels (b and d) were updated with transfer-learning picks derived 

from continuous seismic data. The lines represent boreholes. The solid ellipse indicates similar patterns between the 

original and the updated seismic event locations. The dashed ellipse shows additional seismic events detected by the transfer 

learned model from the continuous data. 
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Figure 4: Comparison of the original (a and c) and the updated (b and d) microseismic event locations (dots) associated with the 

stimulations in July 2018 (a and b) and December 2018 (c and d). The original seismic event locations were obtain ed from 

(Schoenball et al., 2020). Seismic events in the right panels (b and d) were updated with transfer-learning picks derived 

from continuous seismic data. The lines represent boreholes. The dashed ellipse shows additional seismic events detected 

by the transfer learned model from the continuous data. 

3.1 Data 

Our data for the Oklahoma region included around 235,000 three-component body wave seismograms downloaded from the Data 

Management Center of Incorporated Research Institutions for Seismology and associated seismic catalog from USGS. All earthquakes 

(around 10,700) with recorded manual phase picks from the USGS between 2006 and 2020 were used. A total of 342 seismic stations 

were used (Figure 1b).  

3.2 Method 

Our technique integrates deep learning techniques with mature subsurface imaging algorithms (Figure 2). We used the double-difference 

tomography algorithm (Zhang & Thurber, 2003, 2006) for subsurface imaging and seismic catalog improvement. The double-difference 

tomography algorithm takes seismic phase picks, an original seismic event catalog, and an initial seismic velocity model as inputs and 
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produces an updated seismic event catalog and images of the subsurface. The USGS seismic event locations are used as the original 
seismic event catalog and a baseline. To better validate the improvements of deep learning techniques, we performed double-difference 

tomography using both manual phase picks and deep-learning derived phase picks. The manual phase picks were obtained from the USGS 

earthquake catalog. We used the seismic velocity model from Chai, Delorey, et al. (2021) as the initial model. We downloaded three-

component seismograms that have manual picks and measured phase picks from the seismograms using a pre-trained deep learning model, 

PhaseNet (W. Zhu & Beroza, 2018). The manual picking step would take a human analyst nearly 6 months to complete. PhaseNet 
automates and speeds up the phase picking step while maintaining human performance. The resulting phase picks were used to image the 

subsurface structure and improve seismic event locations with a double-difference tomography algorithm (Zhang & Thurber, 2003, 2006). 

We run the tomography algorithm many times using different inversion parameters and identified the optimal set of inversion parameters 

for both manual and deep-learning picks. The resulting seismic event catalogs derived from both manual and deep -learning picks were 

compared to the baseline.  

3.3 Results 

Using body-wave seismograms from the Oklahoma region, we have shown that the deep learning model can significantly speed up the 

phase picking task. As shown in Table 1, it only takes the deep learning model 38 min on a laptop computer to process all the body-wave 

seismograms (around 235,000) for the Oklahoma region. However, it would take a human analyst 118 workdays to complete the same 

task, based on our estimate. Therefore, the deep learning model reduced the processing time by 99.9%. Furthermore, we can easily improve 

the processing speed of the deep learning model by using more comput ing resources. 

Table 1: Time cost comparison between a human analyst and the deep learning model for body wave phase picking using data 

from the Oklahoma region. 

Approach Time 

Human analyst 118 workdays 

Deep learning model 38 mins 

Deep learning not only speeds up the phase picking task but also leads to better seismic event locations. As shown in Figures  5 and 6, the 

double-difference tomography improves the seismic event locations for both manual picks and deep learning derived picks. Since the 

original event locations are mostly computed assuming 1D layered models, the updated seismic event locations show improvements 
compared to the USGS catalog by accounting for the 3D heterogeneities in subsurface structure. When we compare event locations 

updated with deep learning derived picks and manual picks, we noticed tighter linear trends for the deep learning picks. The tighter linear 

trends provide better constraints on the geometry of fault structures. We also compared the updated seismic event locations against the 

moment tensor solutions from the Saint Louis University earthquake catalog. The linear trends in our seismic event catalog generally  

match the fault plane azimuth estimates from the moment tensor solutions (Figures 5 and 6). 

We visualized the original and updated seismic event locations with three-dimensional interactive tools (see Figure 7 for screenshots of 

the tools). Clearly, the seismic event locations derived from manual picks through the double-difference tomography show tighter patterns 

than the original locations from USGS. The updated seismic catalog using deep learning picks exhibits even tighter patterns than that 

using manual picks, especially in the vertical direction. The detailed geometry of fault planes is more clearly revealed with the deep-
learning derived catalog than the manual picks derived catalog and the USGS catalog. We found multiple fault segments from the deep-

learning derived catalog that are not well illustrated with the manual catalog and the USGS catalog. As an example, we fitted two planes 

(red and blue) for the Mw 5.1 2016 Waynoka earthquake sequence (Figure 8). The blue plane is difficult to constrain with the manual 

picks derived catalog but is reasonably well constrained in the deep learning derived catalog. With the high-precision catalog obtained 

with deep-learning picks, we can also study the temporal evolution of the aftershocks. As shown in Figure 9, the rupture initiated on the 
red plane and propagated to the southwest direction gradually. After around one year, the blue plane ruptured, which has a smaller length 

than the red plane. 

4. DISCUSSION AND CONCLUSIONS 

We developed an AI-enhanced seismic monitoring workflow for geothermal and carbon storage purposes. The workflow is applicable to 

various spatial scales. We have successfully applied it for studies areas at 10-m and 100-km scales. The results for the EGS Collab 
Experiment 1 show the workflow can process continuous seismic data and produce a high-quality seismic catalog quickly. The resulting 

seismic catalog contains more seismic events than the existing technique. As demonstrated with seismic data from the Oklahoma region, 

PhaseNet reduced the time cost of phase picking by 99.9% compared to a human analyst. The deep learning derived phase picks were 

then used to relocate seismic events as well as to image the 3D subsurface structure. Compared to both the USGS catalog and manual 

picks derived seismic locations, the deep learning picks lead to more precise seismic event locations. The linear trend of several earthquake 
sequences was better constrained by deep learning pick derived event locations. The earthquake depth is better constrained with the deep 

learning picks than the manual picks. With the high-precision catalog derived from deep learning picks, we revealed the detailed geometry 

of fault planes of the 2016 Waynoka earthquake sequence. The deep learning derived catalog allows us to constrain a secondary fault 

segment that is not obvious in the USGS catalog and the manual picks derived catalog. The AI-enhance seismic catalog can be used to 

better study subsurface fault/fracture systems, image the subsurface, and investigate background seismicity. 
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Figure 5: Comparison of the original seismic event locations (gray circles, from USGS), the event locations updated with manual 
phase picks (red circles and beachballs in panels a and d), and the event locations updated with deep learning picks (red 

circles and beachballs panels b and e). The locations of panels a, b, d, and e are shown in panel c with the gray lines. 

Beachballs show earthquake focal mechanisms from the Saint Louis University moment tensor catalog.  Panels a and b 

correspond to the 2016 Waynoka earthquake (Mw 5.1) sequence. Panels d and e show aftershocks of the 2016 Pawnee 

earthquake (Mw 5.8) sequence. 

Our workflow can be used for both surface sensors (Oklahoma region) and borehole monitoring arrays (EGS Collab Experiment 1). We 

have demonstrated the workflow with the transfer learning technique for borehole sensors (Chai et al., 2020). The workflow can be used 

before injection to investigate background seismicity and subsurface structure, and after injection for real-time seismic monitoring. We 

envision daily use of an advanced passive seismic workflow. Using continuous passive seismic data as input, our workflow produces near 

real-time information about microseismic events. Body-wave arrival times can be combined with other types of observations such as 
surface-wave dispersion in joint inversion algorithms (e.g., Chai et al., 2019, 2021; Syracuse et al., 2016) to produce 3D elastic property 

models efficiently and reliably. The elastic properties together with other data constraints can be incorporated for 3D stress modeling (e.g., 

Chai et al., 2021). AI models and physics-based algorithms can be systematically integrated for near real-time monitoring. The data 

products from our workflow can provide crucial information for the decision-making of geothermal and carbon storage sites. 
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Figure 6: Same as Figure 5 but for the 2016 Cushing (Mw 5.0) earthquake sequence (a and b) and the 2011 Prague earthquake 

(Mw 5.7) sequence (d and e). 
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Figure 7: 3D views of seismic event locations for the 2016 Waynoka earthquake sequences (a, b, and c) and the 2016 Pawnee 

earthquake sequence (d, e, f). Panels a and d show locations updated with deep learning picks. Panels b and e show locations 

updated with manual picks. Panels c and f are the original locations from USGS. 

 

Figure 8: Fitted fault planes using the seismic catalog updated with deep-learning picks for the 2016 Waynoka earthquake 

sequence. 
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Figure 9: Temporal evolution of the seismic events for the 2016 Waynoka earthquake sequence. The dashed box in panel b 
indicates the red plane in Figure 8. The dashed box in panel c represents the blue plane in Figure 8. The size and color of 

symbols in panels b and c are the same as those in panel a. Circles are used for seismic events close to the red plane, while  

squares are used for seismic events close to the blue plane. 
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