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ABSTRACT

We are introducing machine learning methods to the play fairway analysis to generate geothermal potential maps to support the
evaluation of geothermal resource potential and the exploration for undiscovered blind geothermal systems in the Nevada Great Basin
region. Our project aims to identify new ways to combine the play fairway data and empirically organize relationships between feature
weights and labels in an improved workflow. As a means of doing this, we introduce machine learning methods to evaluate the
influence of certain geological and geophysical features/feature sets in predicting geothermal favorability. This report highlights
promising approaches based on supervised and unsupervised learning methods. First, we demonstrate a filter method applied to
supervised classification modeling. The supervised filter method is based on permutation analysis to evaluate every possible feature
combination/drop out scenario and rank feature influence based on the performance variance of supervised classification models.
Additionally, we present an unsupervised factor analysis based on principal component analysis coupled with a semi-supervised k-
means clustering algorithm. This analysis allows us to identify the optimal number of groups/clusters for training sites and structural
settings to identify feature patterns including correlation, variance, and latent and dominant feature relationships. The results from these
methods offer a promising avenue for identifying favorable sources of predictive information to identify the locations of blind
geothermal systems and furthering our understanding of complex geothermal feature and label relationships in the Great Basin region
and beyond.

1. INTRODUCTION

The Great Basin region is a world-class geothermal province with ~720 MWe of current gross generation from ~24 power plants.
Studies indicate far greater potential for both conventional hydrothermal and EGS systems in the region (Williams et al., 2009).

Most geothermal systems in the Great Basin are controlled by Quaternary normal faults and generally reside near the margins of
actively subsiding basins. Geothermal fluids commonly upwell along basin-bounding faults, flow into permeable subsurface sediments
in the basin, and thus do not always daylight directly along the fault. Thermal springs may emanate many kilometers away from the
deeper source, or thermal groundwater may remain blind with no surface manifestations (Richards and Blackwell, 2002). Blind systems
are thought to comprise the majority of geothermal resources in the region (Coolbaugh et al., 2007). Thus, techniques are needed both to
identify the structural settings that allow geothermal systems to form (e.g., Curewitz and Karson, 1997; Faulds et al., 2006; Faulds and
Hinz, 2015) and to determine which areas may harbor subsurface hydrothermal fluid flow.

Geothermal play fairway analysis (PFA) is a concept adapted from the petroleum industry (e.g., Doust, 2010). As applied to geothermal
exploration, PFA involves the integration of geological, geophysical, and geochemical parameters indicative of geothermal activity as a
means to identify the most likely locations for significant geothermal fluid flow (i.e., play fairways). The Nevada PFA project (Faulds et
al., 2017) focused on defining geothermal play fairways and generating detailed geothermal potential maps for ~1/3 of Nevada (Figures.
1 and 2; Faulds et al., 2017, 2018) to facilitate the discovery of blind geothermal systems. Thus far, the project has led to the successful
discovery of two new blind geothermal systems (Faulds et al., 2018, 2019; Craig, 2018).

The original Nevada PFA incorporated ~10 geological, geophysical, and geochemical parameters indicative of geothermal activity. The
linking of parameters was performed by multiplying each by a unique “weight”, then combining weighted parameters into a linear
summation (Figure 2). The weights used in that analysis were derived using a combination of statistics, including Bayesian-based
weights-of-evidence and logistic regression (e.g., red numbers in Figure 2) through the analysis of 34 benchmark sites of known,
relatively high temperature geothermal systems (=130°C) in the study area and expert judgment (black numbers) due to known
limitations of some datasets and small number of training sites. Our current efforts look to address some of the challenges and
limitations of the original Nevada PFA study through the inclusion of new and improved datasets and principles and techniques of
machine learning (Faulds et al., 2020, Brown et al., 2020).
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Figure 1: The initial play fairway
model of the study area in west-
central to eastern Nevada. Plotted

within the study area are fairway
prediction values ranging from a
low ~28 to a high of ~ 65. Known
geothermal systems comprising 34
relatively high-temperature
(>130°C) benchmarks are shown
in dark gray and white (modified
from Faulds et al., 2018).
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1.1 Machine learning Efforts

The goal of our machine learning (ML) efforts is to identify the simplest models so as to understand what defines the key relationships
between geological and geophysical data inputs and label outputs of predicted favorability values. We have identified several key
advantages in replacing the combined statistically based (utilizing multiple datasets) and expert-driven methods for determining model
parameters (weights) with ML optimization methods. First, the outcome can be cast as a probability, defensible through validation tests.
Second, careful implementation can reduce or eliminate biases in the choices of the most appropriate feature set and in the choices of
the network architecture controlling how the features are combined. Finally, the algorithms can be easily automated, generalized,
refined, and extended to accommodate new data sources.

Ongoing work (Brown et al., 2020) has demonstrated a workflow utilizing a supervised learning approach, in particular with the use of
artificial neural networks (ANN) and data augmentation as being capable of recreating and improving the original results of the play
fairway study. Supervised learning involves an algorithm that is optimized to associate pairs of measurable features and labels by
providing it with many examples. Our efforts include translating the PFA datasets (original and enhanced) and adding some new
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datasets into a form suitable for machine learning algorithms and exploring a variety of ANN architectures. Major challenges
encountered during our efforts include addressing:

e A small number and potential imbalance of training examples (initially only 34 positive benchmarks were available).
e  Variable data types (a mixture of categorical and numerical)
e  Complex feature and label relationships

In the course of our work, we explored remedies for each of these issues. Below, we highlight the introduction of new training data and
ML methods to evaluate complex feature input and label output relationships to improve our future workflow.

2. METHODS

2.1 Training Sites

One issue that we have encountered in our work is how to approach training data. For optimal benefits, ML methods commonly employ
a much larger number of training data than the inventory of benchmark sites used in the initial PFA analysis. Additionally, many
supervised learning methods require a balanced inventory of positive and negative training samples. Small numbers of samples and
imbalanced data can lead to over-fitting and a corresponding reduction in the capability for generalization (being able to accurately
predict the labels of datasets not used in the training process).

Remedies explored for this problem include data augmentation or simulation (Brown et al., 2020) and maximizing a set of training data
from our regional data inventory. Our efforts have led to a training site inventory (Figure 3) that includes 83 positive sites from known
geothermal systems (>39°C) and 62 negative sites from deep and cool wells (mostly from oil and gas exploration). In addition, we
evaluate the locations of favorable structural settings (e.g., Faulds and Hinz, 2015) as training data for our unsupervised learning
(discussed below in sec 2.2).

Using a broader temperature range (=37°C), additional positive geothermal sites became available. In the case of negative sites, criteria
were established to select them from a relatively large number (>250) of relatively deep (>1 km) oil and gas wells in the region that do
not show temperature anomalies. In our criteria, the distribution and depth of the carbonate aquifer (Brooks et al., 2014) in eastern
Nevada was reviewed for its possible impact of disguising geothermal anomalies. It was decided to use wells in a regional database that
were at least 2 km deep in areas underlain by the carbonate aquifer, and 1 km deep outside the carbonate aquifer. Those wells meeting
these conditions were then evaluated on the basis of temperature. The temperature assigned to a well was compared to the predicted
temperature at the bottom of the well based on the regional heat flow and temperature gradient map used for the play fairway analysis
(Faulds et al., 2017). If the regional predicted temperature was greater than or equal to the assigned temperature (i.e., no temperature
anomaly), the well was considered as a potential negative training site. Next, a de-clustering algorithm was developed to reduce the
number of possible negative training sites in areas with a high-density of drilled holes. This de-clustering involved the following
conditions:

e A negative training site always corresponds to a given well location and its attributes.

e No two wells selected as negative training sites could be closer than 5 km to each other, or closer than 5 km to a positive
training site.

It was found that the distribution of such sites was not too complicated, such that it was possible to determine the optimal selection of
sites in a reproducible manner from careful visual inspection. Finally a detailed quality review of positive and negative sites was
completed, including a check of spatial location, temperatures, and depths.

Given the extent of our study area (96,000km?), the population of training sites represents a relatively high spatial density compared to
most geothermal provinces around the world. However, ML problems rely on tens to perhaps hundreds of thousands of labeled
examples from which to train, develop, and test network algorithms and architecture. Our initial deep learning efforts relied primarily on
data augmentation (e.g. generative adversarial networks (Goodfellow et al., 2016)) to produce large simulated datasets. Now that we can
expand the training datasets, we are able to obtain a better understanding of physical controls for geothermal favorability and can better
support ML modeling approaches (e.g., data augmentation, regularization, transfer learning). To facilitate this work and provide context
in feature/label analysis, we also outlined principal domains that reside within the PFA study area (Figure. 3). General characteristics of
these domains are listed below:

Western Domains:

e  The Walker Lane: a northwest trending belt of largely transtensional dextral motion (Stewart, 1988; Faulds and Henry, 2008)
that accommodates ~20% of the right-lateral motion between the Pacific and North American plates (Dixon et al., 1995, 2000;
Hammond et al., 2009; Kreemer et al., 2012). This domain hosts the highest strain rates in the study area, a higher density of
earthquakes, and noticeably lower fault slip and dilation tendency along its northeastern margin relative to the rest of the study
area.
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e  Central Nevada Seismic Belt: a north-northeast trending belt of high crustal strain rates and strong earthquakes (e.g., Caskey
et al.,, 2004). Along with earthquake and strain signals, this domain hosts many faults with relatively recent offsets, as
documented by fault recency values.

e  Western Great Basin: represented by two regions respectively west and east of the central Nevada seismic belt, hosting
relatively moderate to high strain rates of crustal extension with some dextral transtensional motion, high heatflow, and high
slip and dilation tendency values.

Eastern Domain:

e Carbonate Aquifer: a regionally extensive, relatively cool and deep aquifer system that occupies most of the eastern Great
Basin. Crustal strain in this area is generally a few tenths of millimeters per year (Hammond et al., 2009), significantly less
compared to the western Great Basin. There are notable spots of low geodetic strain rates and recent faulting in the north half,
and high earthquake density and low heatflow in the south. Additionally, most of this region is at a higher average elevation
than the western domains.
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Figure 3. Distribution of positive (red and yellow stars) and negative (purple circles) training sites along with the extent of the
structural domains (central Nevada seismic belt, carbonate aquifer, Walker Lane, western Great Basin)

2.2 Data Compilation

As can be seen in the original workflow diagram (Figure 2), we have sets of data divided by their perceived information content
indicating local, intermediate, and regional scale permeability, as well as heat. Individual parameters are known in map form throughout
the study area and are referred to as “features”. In our machine learning analysis, these features are normalized to allow comparison
between strongly contrasting magnitudes using the z-score transformation:

z="% 1)
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where x is the feature to be transformed, X is the sample mean, sx is the sample standard deviation, and z is the transformed feature. Z-
score normalization transforms any sample distribution to a corresponding feature with a mean of zero and a standard deviation of one,
while retaining rank information. We selected ten numerical features pertaining to regional permeability for this study, where each
feature map represents continuous real numbers known at every grid block (250 m grid block size with >1.6 million grid blocks) in the
study area. Color contoured maps of these features are shown in Figure 4 and include the data that were incorporated in the initial PFA
(geodetic strain rate, Quaternary slip rate, fault recency, Quaternary fault slip and dilation tendency, and earthquake density), as well as
data that were improved (augmented) (Quaternary fault density, horizontal gravity gradient), and new types of data that have been
newly integrated during our machine learning study (horizontal magnetic gradient, heatflow (which replaced heat source at 3 km), and a
30 m digital elevation model.

For this study, we have converted the Quaternary fault traces map representing intermediate permeability from a categorical feature (1’s

and 0’s) to a continuous numerical feature by calculating fault density using a gaussian filter (Brown et al., 2020). The original fault
layer is populated quite densely and uniformly in the study area, and thus is easily transformed for this study.
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Figure 4: Select numerical features explored in this study. Warmer colors are associated with higher numerical values.

We also explored integrating additional categorical features (fluid geothermometry data, paleo-geothermal deposits [sinter, tufa,
travertine], and local permeability features) by evaluating continuous numerical transformations (e.g., conversion to density/distance);
however these were identified as too sparsely distributed to introduce alongside intermediate and regional features for this study. Of all
the categorical data examined, local permeability factors, in particular structural setting types, were the most relevant. Local
permeability was used as the highest weighted feature set in terms of predicting geothermal favorability in the original play fairway
analysis. The challenge that these features present is that numerical values for all local permeability features, such as the structural
settings, are known only in elliptical regions that are heterogeneously distributed throughout the study area (Figure 5). We attempted to
integrate numerical values of this feature set directly. However, when evaluated at training sites, each local permeability feature does
not contribute enough variance (close to zero) to produce meaningful results. With ~85% of positive sites being within the margins of
structural setting ellipses and ~90% of negative sites falling outside these margins, local permeability features have nearly the same
values in all negative and positive samples, respectively.

Given the knowledge the local permeability feature set offers, as a work around we demonstrate below an example of treating the
locations of these settings as training samples in our unsupervised analysis. This is done by grouping the grid blocks within each
structural setting area (ellipse) and taking the mean value for each numerical feature, thus converting each ellipse into a single
representative block.
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Figure 5: Favorable structural settings identified in the study area and color coded according to type of setting. About 375
settings were recognized, which incorporate nearly 12% of the area. This includes 174 step-overs, 76 fault terminations, 76 fault
intersections, 30 accommodation zones, 9 pull-aparts, 6 displacement transfer zones, and 4 fault bends. (Faulds et al., 2015)

2.3 Analysis

In this study, we use a combined supervised and unsupervised approach to arrive at observations of certain features and feature sets at
training data and structures. Modeling is performed using python and the Sklearn machine learning library (Pedregosa et al., 2011).
After selecting numerical continuous features and preparing the data for machine learning compatibility, we first introduce the
permutation supervised model filter method to identify feature dependence in the classification of positive and negative training and test
data. This analysis gives an idea of which features might best pertain to favorability analysis in training data. In our unsupervised
modeling we introduce principal component analysis (PCA) to identify which features offer the most independent information, and
cluster the reduced dataset using the k-means semi-supervised algorithm to identify spatial patterns in our data (PCAk). We describe
each of these methods in the following sections.

2.3.1 Feature Selection Analysis: Permutation Importance Filtering

Supervised feature selection methods are commonly used in high dimensionality data problems for isolating features that may or may
not be relevant in the overall predictive performance of a model. A traditional approach considered effective if the number of available
examples (training sites) is relatively small (as is our case) is the use of filter methods (e.g., Radivojac et al., 2004). We present the use
of a filter method based on permutation dropout, whereby we evaluate every possible feature set scenario as each feature is dropped out
one at a time and a model is fit to the remaining features. Permutation importance is defined to be the difference between the baseline
metric and metric from permutating the feature column. The implementation of this method is independent of our model and metric
choice, so we compared returned accuracy as our metric from several different supervised classification models. We found nearly
identical results in each model (artificial neural network, support vector machine, random forest ensemble). For this experiment, the data
of positive and negative training sites was split into separate training and test sets. The training set was used to optimize each model,
and the separate test set (25% of the total training data) was held out from model training to enable evaluation of which features may
contribute the most to the generalization power of the model. During this process we increased the number of permutations until we had
consistent results. The results from permutation analysis of an artificial neural network (100 hidden layers, rectified linear unit
activation function, and the stochastic gradient-based optimizer) which returned fairly high results during training (90.74%) and testing
(91.89%) with the full feature set are shown in Figure 6.
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Figure 6: Boxplots of permutation importance scores for training (A) and test data (B) based on a multilayer artificial neural
network model. Scores represent feature influence on model performance if dropped out during training/testing. Orange line
represents mean values, the box bounds represent the mean value +/- standard error, and whisker bounds represent the mean
value +/- standard deviation. Dots represent outlier sample values.

Both the training and test experiments indicate that geodetic strain and heatflow are principal features in dictating model performance.
Additionally, Quaternary fault density appears to be a key feature in the test set, which may indicate that this feature is better suited in
supporting the generalization power of our model in testing versus directly fitting our data in the training process. Conversely, we can
also identify the features that are less relevant to the classification of positive and negative sites using ML, including the DEM-30m and
earthquake feature maps. Because permutation importance does not reflect the intrinsic predictive value of a feature by itself, but how
important the feature is for a particular model and task, it is difficult to interpret why these features may receive their relative rankings.
Given the nature of our problem, where each of these features is uniquely structured and representative of different geologic and
geophysical characteristics, it is clear that we cannot make direct observations of how they relate or what significance they have in
distinguishing positive and negative sites without providing content into their spatial relationships.

2.3.2 Principal Component Analysis and Clustering

As an alternative to feature selection, we introduce unsupervised learning using principal component analysis (PCA) alongside semi-
supervised k-means clustering. This work draws from similar studies (e.g., Lindsey et al., 2018; Pepin 2019; Vesselinov et al., 2020),
which utilized matrix factorization algorithms paired with clustering algorithms to characterize and classify signatures of permeability
and heat at geothermal systems. The unsupervised learning aspect of PCA and other matrix factorization algorithms (e.g., non-negative
matrix factorization, singular value decomposition) is that they are able to generate (learn) a reduced representation of a data matrix in
the form of a weighted linear combination of a mixing matrix and feature matrix (Figure. 7).
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Figure 7: Matrix factorization schematic and equation. The data matrix (X) is decomposed into two related matrices that
represent its sources of variation: a mixing matrix (W) and feature matrix (H), where the rows of the mixing matrix quantify the
sources of variation among measurements (n), and the columns of the feature matrix (m) quantify the sources of variation
among the measurements.
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The goal of our PCAk analysis is to (1) decompose a matrix X of size (n,m) into a feature matrix H of size (n,k) and mixing matrix W of
size (k,m), and (2) find the optimal number signals (k) to cluster our measurements. With PCA, signals (k) are known as principal
components (PCs), which are ordered by their proportion of dataset variance explained (i.e., PC1 explains the largest proportion of
variance, PC2 the second largest, and so on). The solutions for PCs are constrained to be orthogonal to one another. There are as many
PCs as there are variables considered, and they take the following form:

PC1= BiVi + BoVo + -+ BuVin )

where PC1 is the first principal component value for a given data point (i.e. scores), Vm are the original variables considered, Bm are the
PC loadings or weights for the first PC, and m is the total number of variables considered in the analysis. The loadings vary between -1
and 1 and therefore scale the influence of the original variables based on their contribution to each PC (Pepin, 2019). PCA is often
useful in exploratory data analysis for screening large numbers of variables, some of which may be correlated (i.e., some variables may
not be independent) to identify a subset of factors that best represents the behavior of the group (Lindsey et al., 2018).

2.4 PCAKk Results

In this section, we present the results of PCAk on select features at training sites and at structural settings described in section 2.1 and
2.2. Three major cluster groups (k=3) were identified for each analysis. Figure 8 shows results from our training inventory, and Figure 9
shows results from mean numerical values at structural settings. Cluster results are visualized by color. In each figure we project spatial
locations of each cluster member onto a map of the DEM-30m layer (where darker colors indicate higher elevation) that also includes
the labeled domains and their boundaries described in sec 2.1.

PCA results are displayed using a biplot of the first two principal components (with % variance explained in axes), whereby data are
represented as points (the closer together two points are, the closer their common denominators), while features are shown as vectors. A
vector is defined from the center of the plot to the vector vertex (endpoint), and the length of the vector is proportional to the fraction of
the total variance explained by that feature, where larger vectors have a higher influence on data position. The arrowhead on each vector
corresponds to high values of that particular variable. The cosine of the angle between any two vectors is approximately equal to the
correlation coefficient between the two variables; therefore, two vectors that are separated by a small angle represent variables that are
likely to be positively correlated, two vectors that are orthogonal to each other represent features likely to be independent, and vectors
that form angles greater than 90° are negatively correlated (vectors at 180° have a high negative correlation) (Otero et al., 2005).

The k-means analysis alongside PCA modeling (PCAKk) is performed based on the first three principal component scores, which account
for over 60% of the overall variance in both the training site and structural setting datasets. Determining k in the k-means clustering
involves experimenting with a range for the number of clusters and evaluating the compactness of the resulting solution; an elbow in a
plot of within-group sum of squares (WSS) as a function of the number of clusters is commonly used to denote the appropriate number
of clusters present in the data (Everitt et al., 2011).

Figure 8 shows the biplot and spatial clustering of positive and negative training sites based on PCAk analysis. In the biplot (Figure 8A),
the distribution of most feature vectors and positive sites is in the positive PC1 direction, while most negative sites and the DEM-30m
vector are distributed in the negative PC1 direction. Correlating these training site cluster members with the structural domains shows
that sites in cluster-1 (cyan/blue) are predominantly located in the western domains, especially the central Nevada seismic belt (CNSB).
Most training sites in this cluster are known geothermal systems and are linked to high values of geodetic strain, earthquakes, heatflow,
fault recency, and low dem-30m values. Cluster-2 training sites (green) are predominantly located in the carbonate aquifer domain.
Most sites in this cluster are negative linked to high dem-30m values (higher elevation), and negatively correlated to every other
permeability features besides fault slip and dilation tendency. Cluster-3 training sites (violet) are also located mostly in the carbonate
aquifer domain. Cluster-3 hosts a balanced mix of positive and negative sites and is mainly associated to high horizontal gravity
gradient and Quaternary fault slip rate values.

Figure 9 shows the biplot and spatial clustering of structural settings based on PCAk analysis. A total of 68 out of the 83 positive sites
fall within structural ellipses. Many of the same feature, cluster, and domain relationships seen in Figure 8 also appear in Figure 9;
however, there is a more balanced distribution of variance captured by each feature in the PC1 and PC2 direction, and certain feature
vectors have changed in orientation and length. Structures representing cluster-1 (cyan/blue) are predominantly located in the western
domains, especially the Walker Lane and southwestern part of the central Nevada seismic belt (CNSB). Cluster-1 is linked to high
values of earthquakes, geodetic strain rate, fault density, and low values of slip and dilation tendency. Cluster-2 structures (green) are
predominantly located in the carbonate aquifer domain, with some groupings in the southern part of the western Great Basin (WGB)
domain. Structures in cluster-2 are associated to low values of most permeability features, especially fault recency and Quaternary fault
slip rate. Cluster-3 structures (violet) are located mostly in the western domains, with some structures in the northern part of the
carbonate aquifer region and along its western margin. Most structures in cluster-3 are correlated to high values of Quaternary fault slip
rate, fault recency, and dem-30m.
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Figure 8: (A) PC1 vs. PC2 biplot; (B) PCA explained variance bar plot; (C) WSS cluster plot; (D) and study area map with
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Figure 9: (A) PC1 vs. PC2 biplot; (B) PCA explained variance bar plot; (C) WSS cluster plot; (D) study area map with domains
representing the structural setting PCA and k-means clustering results. Stars are structures that host a known geothermal
system/positive site (=37°C) and triangles structures without identified systems. Abbreviations: Struc = favorable structural
setting, KGS = known geothermal system, CNSB = central Nevada seismic belt, WGB = western Great Basin.

Both the PCAk analysis with training sites and favorable structural settings reveal spatial feature patterns that appear to define subtypes
of geothermal systems in each cluster set. Many of these patterns emerge due to a strong contrast between the eastern and western
domains, including differences in geodetic strain rate, earthquakes, fault slip rate, and heatflow. Cluster group-1 (cyan/blue colors) hosts
systems that are linked to low elevation zones with high values of geodetic strain, earthquakes, and heatflow and primarily occupies the
Walker Lane and central Nevada seismic belt. The other cluster groups (2 and 3) are more broadly distributed and overlap considerably.
Known geothermal systems in cluster group-2 (green) are generally located in the central and southern portions of the western Great
Basin and carbonate aquifer and are closely linked to zones of low values of fault recency (i.e., older Quaternary faults), heat flow, and
fault slip rate. Known systems in cluster group-3 (violet) are generally linked to high values of fault recency, Quaternary fault slip rate,
and horizontal gravity gradient. With further analysis we can start to examine possible relationships between 1) different types of
structural settings and the cluster groups, 2) structural settings that host known systems and those without identified systems, and 3) the
most diagnostic features of known systems in the individual structural domains.

3. DISCUSSION AND CONCLUSIONS

The combined results from our supervised and unsupervised methods demonstrates how we can utilize ML to estimate the relative
importance of each feature in a set based only on a relatively small sampling population of training samples and/or structures. First, we
demonstrate the results of a simple classification problem. Our supervised ML filter method shows how a classification model may rank
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features at our training sites in terms of importance during the training and testing stages. Commonly, supervised methods may be
joined to statistics, ranks, and knowledge into how to best design a model, transfer learning approach, etc., as illustrated in ongoing
work in our project by Brown et al. (2020). The key takeaway from this work is that supervised feature selection methods provide an
automated way to diagnose how features in our training samples may be represented in a learning problem, where certain features are
better at directly fitting our data in the training process and others better at generalizing during the testing process to approximate a
positive or negative prediction. Although we have demonstrated that a supervised network can return promising metrics (e.g., high
classification accuracy) with our training samples, it is difficult to draw significance from the permutation importance scores of each
feature (as these values are non-unique) without context from how each feature is spatially structured and related.

This is where our unsupervised dimensionality reduction methods like PCAk come into play. By ignoring target variables, we can better
identify principal correlations between features and measurements. Unsupervised learning in our case focuses on distinguishing groups
of positive and negative training sites (Figure. 8) and groups of favorable structural settings with and without known systems (Figure. 9)
in order to evaluate which features offer the most independent information and which are highly corelated and thus redundant. For
example, we can relate observations from PCAk with training sites back to our supervised permutation filtering (sec 2.3.1) which
demonstrated that geodetic strain rate, heatflow, and Quaternary fault density are key features in classifying positive and negative sites.
The result of our PCAk analysis of training sites indicates that the clustering of a large proportion of our positive sites have a strong
positive correlation to these same features (Figure. 8). PCAk can also inform about feature correlation. The training site biplot identifies
earthquakes and geodetic strain as strongly correlated, which may explain why our permutation analysis did not present earthquakes as a
high scoring feature. It is commonly observed that with two collinear features, supervised models depend more on the one that best
explains variance (Pedregosa et al., 2011), and thus a supervised model may be de-emphasizing the earthquakes feature in this study if
both features are accessible.

Knowledge of the influence of individual features can help in the assessment of potential overfitting with any of our ML efforts. PCA
and other linear models/dimensionality reduction methods (e.g., non-negative matrix factorization) give clues into variance control of
features. Alongside dimensionality reduction, clustering provides clues into training site grouping/outliers with respect to a feature set.
This information is helpful not only for deciding which features to use in our model, but also for performing de-correlation and/or
identifying extreme values to reduce the effect of spurious outlier samples and features.

3.1 Constraining Our Problem

Although our PCAk method is better constrained than the supervised feature selection method, it too suffers from non-uniqueness
associated with the selection of variables to include in the analysis, the method of handling outliers, and the employed clustering
algorithm. For example, the geodetic strain feature (Figure. 4) in our study uses non-corrected fields (that include the transient part of
the relaxation strain rate field) and was chosen over the corrected field because part of this signal may reflect the viscoelastic transient
effects associated with earthquakes in the region over the past ~100 years (Faulds et al., 2015). This feature may provide new insight or
affect the distribution of clusters if the alternative corrected field is used. Removing the geodetic strain feature all together does not
appreciably change the training site (Figure. 8) or structure (Figure. 9) PC1 vs. PC2 biplot, but this is likely a product of its strong
correlation to the earthquake feature and the number of features considered in this study; analyses that consider fewer variables will be
more susceptible to larger sensitivities associated with variable selection and handling. In practice, determining which datasets to
include and how to represent them in the analysis will likely depend on identifying regional constraints and the level of detail in PFA
input data. Additionally, the type of k-means clustering algorithm used, or the use of an entirely different clustering method (e.g. density
based spatial clustering of applications with noise (DBSCAN)) may alter the results. A significant advancement to our approach would
be to employ ensemble techniques, such as Monte Carlo methods, that consider different combinations and representations of variables
and outlier criteria to gain a better understanding of these non-uniqueness issues and find best-fit solutions (Pepin, 2019). Also, there are
cases where discriminative information actually resides in components with smaller variances, such that PCA could greatly hurt
classification performance. If most discriminative information is in smaller eigenvectors, we will want to explore isolating these vectors
or introducing alternative matrix decomposition methods (e.g., non-negative matrix factorization) to our problem (e.g., Vesselinov et al.,
2014, 2020).

Generally, our initial PCAk results yield a more unique solution if focused on how our groupings are controlled by structural domains of
the region. Thus far, the information from these results agrees well with previous work in the PFA study, while utilizing a relatively
straightforward methodology. This approach also allows investigation of both the co-location and correlation of variables and increase
in the level of detail and quality of PFA input data by constraining the influence of strongly correlated anti-correlated features to each
principal domain. Overall, we were surprised by how well organized our clustering results turned out in the context of major structural
domains. This was especially evident when we trained our PCAk model on the 375 structural settings. The comparison of our structural
setting modeling to our training site modeling indicated similar feature influences, but also the variation in our results appears to
highlight which features act better for generalizing solutions and which are more tailored to specific solutions. For example, the
horizontal gravity gradient is a feature which has a lot of discriminatory power in the supervised feature selection (sec 2.3.1) and PCAk
analysis (sec 2.4) of training sites, but this feature becomes less significant in the PCAk modeling of the mean data within a structure.
By nature we are smoothing this and other features by taking the mean values within each structure, and also resolving a more
generalized spatial pattern in our domains with a larger sampling population. It is worth exploring more representative approaches with
structural settings, such as constraining which grid blocks within structural ellipses best represent where known geothermal sites reside
and/or where areas of geothermal upwelling occur. Even still, the PCAk result from the mean numerical representation of structures in
this study, as compared to training site samples, helps to identify favorability criteria in geothermal exploration efforts and indicate
which features may act as the best proxies for permeability/heat.
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In the future, it should be possible to expand our PCAk analysis (or a similar unsupervised approach) to evaluate a larger sample
population (e.g., the entire fairway) and use spatial patterns from training sites and favorable structural settings to evaluate unexplored
regions (similar to Pepin, 2019). PCAk and similar methods also offer the opportunity to introduce new reduced feature inputs, where
we can combine features that present a strong correlation in a principal component (e.g., combining earthquakes, geodetic strain rate,
and fault density) as a preliminary step before our supervised modeling, thus simplifying the dimensionality of our inputs and structure
of a model.
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