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ABSTRACT 

Reliable prediction of energy production performance from geothermal reservoirs is needed for optimizing sustainable development of 

the underlying resources. While conventional physics-based simulation models offer a comprehensive prediction tool, they are nontrivial 

to build and involve a significant level of uncertainty due to data limitation. Data-driven models offer an efficient approach to build 

predictive models by extracting statistical patterns in the historical data and using them to perform direct forecasting. In particular, 

recurrent neural networks (RNN) are commonly used as data-driven models for the prediction of time series sequences. Using an inherent 

sequential architecture, RNN can learn the dynamic behavior and dependencies among different variables from data and use the learned 

patterns to make predictions. In this work, we investigate the application of RNN to the prediction of energy production from geothermal 

reservoirs. Specifically, we develop an encoder-decoder architecture, known as CNN-RNN, in which the encoder uses a convolutional 

neural network (CNN) to summarize the features learned from historical data while the decoder is based on a sequential RNN structure 

that uses those features and additional inputs to make predictions. We present the CNN-RNN architecture and demonstrate its prediction 

performance by applying it to different datasets, including field data from a geothermal reservoir.  

1. INTRODUCTION 

Improving the efficiency of energy production from geothermal reservoirs hinges on the availability of accurate prediction models to 

describe the performance of the geothermal reservoir under alternative operation and development scenarios. Physics-based models offer 

a comprehensive prediction framework that requires constructing a reliable reservoir model, which involves extensive data acquisition, 

integration of multiple sources of data, and simulation of complex multi-physics processes. Additionally, the uncertainty in describing 

reservoir models and their physical properties introduces a significant level of uncertainty in the resulting predictions. Other difficulties 

associated with the deployment of physics-based models include their computational burden and expertise requirement. These limitations, 

especially the effort required to construct a reliable model, complicate the use of physics-based simulation models for managing the 

operations and development planning of geothermal reservoirs.     

An efficient alternative to physics-based models is data-driven approaches that extract statistical patterns and dependencies from various 

sources of data to develop predictive models. In recent years, deep learning has enjoyed great success in many applications, including 

subsurface modeling (Laloy et al., 2017; Jiang et al., 2020; Razak et al., 2020). For dynamical systems that involve data sequences, 

recurrent neural networks (RNN) present an effective tool for capturing the temporal trends in the data. RNN can be viewed as a directed 

graph with a temporal sequence that can be used to model dynamic data. An important advantage of RNN is its internal state (memory), 

which facilitates the extraction and use of important information from the past in generating predictions. Effective RNN models, including 

the Long Short-Term Memory (LSTM), proposed by Hochreiter et al. (1997), and Gated Recurrent Units (GRU), proposed by Cho et al. 

(2014), can learn long-term dependencies by implementing gate mechanisms to control the input, output, and update to the internal 

memory state. RNN has also been applied to geothermal data in recent years. Tian et al. (2017) applied RNN to an analysis of downhole 

gauge data. Gudmundsdottir et al. (2020) used RNN to capture well connections in geothermal reservoirs.  

The goal of this study is to develop tailored RNN architectures for modeling and prediction of geothermal reservoir response using 

historical production and monitoring data. The developed model is based on an encoder-decoder architecture, named CNN-RNN, that 

consists of an encoder that implements a convolutional neural network (CNN) to extracts important features from historical data and a 

decoder that uses an RNN structure for prediction. The CNN encoder summarizes the dynamics within the historical data, while the 

decoder RNN predicts the production trends based on the learned features and the future control. We test the model by applying it to both 

simulated and real field data to evaluate its performance. Since field data often includes scheduled (e.g., service and maintenance periods) 

and unscheduled (faults and equipment failures) during which data is not available, the method should be able to handle data gaps. To 

enable this, we use a labeling scheme that allows the CNN-RNN model to ignore specific time steps that involve data gaps.  

In this paper, we present the CNN-RNN model in detail by first introducing its architecture and the training procedure to learn the 

underlying network parameter. We then use different datasets, including field data from a binary cycle geothermal power plant, to 

demonstrate the prediction performance of the developed model.  
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2. METHODOLOGY 

In this section, we introduce the CNN-RNN model and describe its important components. We begin by presenting a typical example of 

the historical dataset from a geothermal field before introducing the method.   

2.1 Geothermal Data 

The normalized hourly data for a producer in a geothermal reservoir is shown in Figure 1. In this case, the control variable is the pump 

motor speed (shown in brown) has a strong signature on other variables, which implies that the model needs to process not only historical 

information but also the control information. In addition, these time series generally exhibit smooth trends except for the sudden drops 

that are caused by the shut-in period. During these shut-in periods, the data is not considered reliable and should not be used for training. 

One way to handle these shut-in periods is to remove them periods, which will introduce random data gaps. Therefore, the model used to 

learn the behavior of this data should be able to process irregularly sampled datasets.  

 
Figure 1: Normalized Hourly data of a geothermal producer. 

2.2 RNN 

The LSTM and GRU are two commonly used RNN models. They share the same general structure in which each unit receives input at 

the current time step and the hidden state from its previous unit. The major difference between the LSTM and GRU is that the former has 

an additional memory unit that requires more weights to control and more data to train. Since the typical size of historical data in 

geothermal reservoirs is relatively small, we use the GRU model in this study. 

The GRU structure proposed by Cho et al. (2014) is shown in Figure 2, where each unit receives as input the hidden state from its previous 

unit ℎ𝑡−1 and the control at the current step 𝑥𝑡, and updates the hidden state ℎ𝑡 and generates the corresponding output. The update gate 

𝑧𝑡  decides what information to throw away and what new information to add to the state, while the reset gate 𝑟𝑡 control how much 

information to forget. The variable ℎ̃𝑡 denotes the current memory content, while is the ℎ𝑡 output and the hidden state of the current step. 

 
Figure 2: A typical structure of the GRU model. 

2.3 CNN 

RNN is typically used with an encoder-decoder architecture, which has found popularity due to its success in machine translation. The 

idea is to have an encoder RNN to encode the driving series and a decoder RNN to generate predictions with the compressed information. 

However, an issue with RNN is that its performance deteriorates rapidly as the length of sequence increases, but the model needs to extract 

information within a long history in time series prediction. A common solution is to use the attention mechanism proposed by Bahdanau 

et al. (2014) to select important parts in the driving series. Geothermal data is typically smooth, except for the shut-in periods. Therefore, 

an easier alternative is to replace RNN with a one-dimensional CNN to extract the main features and correlation patterns in the historical 

data. An illustration of 1D convolution is shown in Figure 3, where 𝑤1, 𝑤2, 𝑤3 are the weights in the convolutional filter. Compared to 

RNN, CNN has fewer weights and is more efficient when dealing with long sequences.  

 
Figure 3: 1D convolution. 
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2.4 Labeling Scheme 

As stated in Section 2.1, after removing the shut-in periods, the resulting data gaps lead to an irregularly sampled dataset. One way to 

handle this type of data is to fill the gaps through interpolation. Interpolation schemes, however, incorporate assumptions and introduce 

bias. An alternative approach, proposed by Zipton et al. (2016), is to label the missing data and let RNN learn to make predictions with 

the existing data gaps. We apply this labeling scheme to the data and learning algorithm. To implement this approach, first, a label vector 

is generated by assigning a label (0) to data points during the shut-in periods that must be ignored, while other data points are given a 

different label (1). Accordingly, the observations during the shut-in period are also replaced with zeros. In the CNN-RNN model, the label 

vector is included as part of the control to inform the model which steps should be ignored. In addition, during those steps, the output of 

the model is multiplied by the provided label to get consistent outputs during training. The mechanism essentially excludes the data during 

shut-in periods from the loss function. 

2.5 CNN-RNN Model 

The overall structure of the CNN-RNN model is shown in Figure 4, where 𝑡, 𝑥, 𝑦, 𝑦̂′, 𝑦̂, 𝐿 are the time step, control input, observation, 

prediction of state, final prediction, and the label, respectively. The model combines the CNN's efficiency in summarizing information 

and the RNN's ability to learn and predict dynamic (sequence) data. The CNN encoder efficiently summarizes the useful information in 

the historical data and provides the learned feature vector to the decoder RNN. The decoder RNN predicts the target sequence by 

combining the control information and the compressed feature vector. The final prediction is the output from RNN multiplied by the label. 

Although the RNN model works with fixed-length sequences, it can predict arbitrary long future with the feed-forward scheme where 

predictions are reused as history.  

 
Figure 4: The CNN-RNN model structure. 

 

3. NUMERICAL EXPERIMENT 

To evaluate the performance of the CNN-RNN model, we use it in a simple synthetic example before applying it to a field dataset. In 

these examples, we evaluate the performance of the model for single-window prediction and multi-window (long-term) predictions using 

a feed-forward scheme. The numerical examples in this study are implemented in Tensorflow (Ababi et al., 2016). 

3.1 Synthetic Dataset 

In our first example, we design five experiments using a periodic cosine function to test different aspects of the CNN-RNN model. The 

five experiments are shown in Figure 5. Test 1 is the base case, where the data has constant frequency and amplitude. Test 2 has an 

increasing frequency and amplitude. Test 3 contains variable frequency and amplitude, first increasing but then decreasing in the latter 

part. Test 4 includes data corrupted with random noise. Finally, Test 5 is designed to test the model performance under the data gap. In 

this case, 10% of the data are randomly selected and labeled as 0. Each test has a total of 498 steps, where the last 96 steps are reserved 

as the prediction period (test dataset). The predictions are made for three steps ahead (one window) by using the data in the last 24 steps 

(as history). The performance of the CNN-RNN model is compared with those of CNN and RNN with a similar level of complexity. For 

each test, the models are trained 20 times to get the average performance.  

The results of single window prediction are shown in Figure 6, where the vertical dashed lines separate the training and test sets. The 

models show good performance in the tests except in Test 5. The RNN and CNN models do not show good performance when data gaps 

are present, whereas the CNN-RNN model is not affected by the data gaps because of the labeling scheme. For multi-window predictions, 

all prediction steps are predicted at once at the last training step without updating the models with new observations. From Figure 7, the 

models provide good predictions when the trend in data (amplitude and frequency) does not change, even when noise is present. However, 

when the trend in the data varies, the models cannot predict the trend correctly. This is, in part, because the historical data does not include 

repeated patterns. In other experiments (not shown), when a longer historical dataset with repeated patterns (with variable frequency and 

amplitudes) were used, the methods showed a better performance.   
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Figure 5: Data from the simple synthetic tests. 

 
Figure 6: Average single-window predictions. 
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Figure 7: Average multi-window predictions. 

 

To summarize the results from our first example, Figure 8 shows the prediction errors. Overall, the RNN and CNN-RNN models have a 

better prediction performance than that of CNN. In these examples, the RNN and CNN models do not have the labeling scheme, which 

degrades their performance. The labeling scheme makes the CNN-RNN model robust to the presence of data gaps. We note that results 

in this example and the plot in Figure 8 are based on models with similar complexity for comparison purposes. Allowing each model to 

have its own distinct architecture may lead to performance improvement for each case. 

 
Figure 8: Summary of errors in the synthetic tests. 

3.2 Field Dataset 

The field dataset has hourly data with a total of 51568 data points. Each data point has the average value of a variable over one hour (the 

raw data in the field is measured every minute). In our example, the last 8640 timesteps are used for prediction, and the rest are separated 

into training and validation sets (90% training, 10% validation). In this example, we first identified the relevant variables and grouped 

them as controls and observations (Table 1). For the injectors, although the wells are controlled by the motor speed of the pumps, we 

assigned the flow rate of the injectors as a replacement since the motor speed of the injectors is not available. Another control variable for 

the injectors is the brine temperature, which is not controlled but is provided as the output from the powerplant. For the producers, since 

the motor speed is available, every other variable is categorized as an observation. For each RNN sequence, data from the past 48 hours 

are used as history, and the prediction window is 24 hours. These lengths are some of the hyperparameters that are tuned during training.  
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Table 1: The list of control (C) and Observed (O) variables. 

 Injector Producer 

Variable 
Line 

Pressure 

Flow 

Rate 

Brine 

Temp 

Line 

Pressure 

Flow  

Rate 

Brine 

Temp 

Motor 

Speed 

Bubbler 

Pressure 

Annulus 

Pressure 

Unit PSIG GPM F PSIG GPM F RPM PSIG PSIG 

Control / 

Observation  
O C C O O O C O O 

 

The predicted brine temperature and flow rates are shown in Figures 9 and 10, where the vertical line separates the training and test parts. 

The single window (short-term) predictions provide a good match to the true observations. The multi-window predictions are not as 

accurate due to error accumulation. An important factor that can affect the performance of multi-step predictions is the possible changeS 

in data trends during the prediction window. In addition, the model is not updated with incoming data, a factor that can be used to improve 

the prediction performance. Overall, the performance of the multi-step prediction is as expected, considering the sudden changes that are 

introduced and the error accumulation issues. 

We also removed the shut-in periods based on the control information to consider the main trend in the data without the short-lived 

transient effects. When the control is significantly smaller than its normal range, the target variables are set to zero, and a zero label is 

assigned to these steps. The results are shown in Figures 11 and 12. We note that this simple labeling scheme does not remove all the 

effects that are introduced due to shut-in periods because some short-term fluctuations result after each shut-in period. Since these 

variations do not have a related signature in the control vector, they are not likely to be predictable by the model. However, additional 

investigation is needed to develop more sophisticated techniques to deal with the shut-in period and to examine the predictive capability 

of the model.  

 

 
Figure 9: Single window predictions for field data. 
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Figure 20: Multi-window predictions results for field data. 

  

 
Figure 31: Single-window predictions results with simple labeling scheme. 
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Figure 42: Multi-window predictions with the simple labeling scheme. 

 

4. DISCUSSION AND CONCLUSION 

In this study, we have developed a robust CNN-RNN model for the analysis and prediction of geothermal energy production data. The 

model combines the efficiency of CNN in summarizing the features in long data sequences with the predicting power and properties of 

RNN. An additional feature of the model is its ability to handle irregularly sampled data using a simple labeling scheme to avoid biased 

introduced through interpolation schemes. Using synthetic examples and a field dataset, we evaluated the performance of the developed 

model and compared its performance with standard CNN and RNN models. While the model shows good performance for single-step and 

multi-step predictions, multi-step prediction results are not affected by error accumulation. Another important consideration to improve 

the performance of the model is retaining based on incoming data during the prediction phase, which was not performed in this work. 

Retraining is helpful when the trends observed during the prediction are different from those seen during the training stage (historical 

data). Additional investigation is also needed to improve the labeling scheme and to develop RNN models for long-term prediction (over 

the years) and comparison with simulation-based predictions.  
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