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ABSTRACT

Reliable prediction of energy production performance from geothermal reservoirs is needed for optimizing sustainable development of
the underlying resources. While conventional physics-based simulation models offer a comprehensive prediction tool, they are nontrivial
to build and involve a significant level of uncertainty due to data limitation. Data-driven models offer an efficient approach to build
predictive models by extracting statistical patterns in the historical data and using them to perform direct forecasting. In particular,
recurrent neural networks (RNN) are commonly used as data-driven models for the prediction of time series sequences. Using an inherent
sequential architecture, RNN can learn the dynamic behavior and dependencies among different variables from data and use the learned
patterns to make predictions. In this work, we investigate the application of RNN to the prediction of energy production from geothermal
reservoirs. Specifically, we develop an encoder-decoder architecture, known as CNN-RNN, in which the encoder uses a convolutional
neural network (CNN) to summarize the features learned from historical data while the decoder is based on a sequential RNN structure
that uses those features and additional inputs to make predictions. We present the CNN-RNN architecture and demonstrate its prediction
performance by applying it to different datasets, including field data from a geothermal reservoir.

1. INTRODUCTION

Improving the efficiency of energy production from geothermal reservoirs hinges on the availability of accurate prediction models to
describe the performance of the geothermal reservoir under alternative operation and development scenarios. Physics-based models offer
a comprehensive prediction framework that requires constructing a reliable reservoir model, which involves extensive data acquisition,
integration of multiple sources of data, and simulation of complex multi-physics processes. Additionally, the uncertainty in describing
reservoir models and their physical properties introduces a significant level of uncertainty in the resulting predictions. Other difficulties
associated with the deployment of physics-based models include their computational burden and expertise requirement. These limitations,
especially the effort required to construct a reliable model, complicate the use of physics-based simulation models for managing the
operations and development planning of geothermal reservoirs.

An efficient alternative to physics-based models is data-driven approaches that extract statistical patterns and dependencies from various
sources of data to develop predictive models. In recent years, deep learning has enjoyed great success in many applications, including
subsurface modeling (Laloy et al., 2017; Jiang et al., 2020; Razak et al., 2020). For dynamical systems that involve data sequences,
recurrent neural networks (RNN) present an eftective tool for capturing the temporal trends in the data. RNN can be viewed as a directed
graph with a temporal sequence that can be used to model dynamic data. An important advantage of RNN is its internal state (memory),
which facilitates the extraction and use of important information from the past in generating predictions. Effective RNN models, including
the Long Short-Term Memory (LSTM), proposed by Hochreiter et al. (1997), and Gated Recurrent Units (GRU), proposed by Cho et al.
(2014), can learn long-term dependencies by implementing gate mechanisms to control the input, output, and update to the internal
memory state. RNN has also been applied to geothermal data in recent years. Tian et al. (2017) applied RNN to an analysis of downhole
gauge data. Gudmundsdottir et al. (2020) used RNN to capture well connections in geothermal reservoirs.

The goal of this study is to develop tailored RNN architectures for modeling and prediction of geothermal reservoir response using
historical production and monitoring data. The developed model is based on an encoder-decoder architecture, named CNN-RNN, that
consists of an encoder that implements a convolutional neural network (CNN) to extracts important features from historical data and a
decoder that uses an RNN structure for prediction. The CNN encoder summarizes the dynamics within the historical data, while the
decoder RNN predicts the production trends based on the learned features and the future control. We test the model by applying it to both
simulated and real field data to evaluate its performance. Since field data often includes scheduled (e.g., service and maintenance periods)
and unscheduled (faults and equipment failures) during which data is not available, the method should be able to handle data gaps. To
enable this, we use a labeling scheme that allows the CNN-RNN model to ignore specific time steps that involve data gaps.

In this paper, we present the CNN-RNN model in detail by first introducing its architecture and the training procedure to learn the
underlying network parameter. We then use different datasets, including field data from a binary cycle geothermal power plant, to
demonstrate the prediction performance of the developed model.
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2. METHODOLOGY

In this section, we introduce the CNN-RNN model and describe its important components. We begin by presenting a typical example of
the historical dataset from a geothermal field before introducing the method.

2.1 Geothermal Data

The normalized hourly data for a producer in a geothermal reservoir is shown in Figure 1. In this case, the control variable is the pump
motor speed (shown in brown) has a strong signature on other variables, which implies that the model needs to process not only historical
information but also the control information. In addition, these time series generally exhibit smooth trends except for the sudden drops
that are caused by the shut-in period. During these shut-in periods, the data is not considered reliable and should not be used for training.
One way to handle these shut-in periods is to remove them periods, which will introduce random data gaps. Therefore, the model used to
learn the behavior of this data should be able to process irregularly sampled datasets.
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Figure 1: Normalized Hourly data of a geothermal producer.
2.2 RNN

The LSTM and GRU are two commonly used RNN models. They share the same general structure in which each unit receives input at
the current time step and the hidden state from its previous unit. The major difference between the LSTM and GRU is that the former has
an additional memory unit that requires more weights to control and more data to train. Since the typical size of historical data in
geothermal reservoirs is relatively small, we use the GRU model in this study.

The GRU structure proposed by Cho et al. (2014) is shown in Figure 2, where each unit receives as input the hidden state from its previous
unit h;_, and the control at the current step x;, and updates the hidden state h; and generates the corresponding output. The update gate
z; decides what information to throw away and what new information to add to the state, while the reset gate r; control how much
information to forget. The variable i, denotes the current memory content, while is the h, output and the hidden state of the current step.
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Figure 2: A typical structure of the GRU model.
2.3CNN

RNN is typically used with an encoder-decoder architecture, which has found popularity due to its success in machine translation. The
idea is to have an encoder RNN to encode the driving series and a decoder RNN to generate predictions with the compressed information.
However, an issue with RNN is that its performance deteriorates rapidly as the length of sequence increases, but the model needs to extract
information within a long history in time series prediction. A common solution is to use the attention mechanism proposed by Bahdanau
et al. (2014) to select important parts in the driving series. Geothermal data is typically smooth, except for the shut-in periods. Therefore,
an easier alternative is to replace RNN with a one-dimensional CNN to extract the main features and correlation patterns in the historical
data. An illustration of 1D convolution is shown in Figure 3, where wy, w,, ws are the weights in the convolutional filter. Compared to
RNN, CNN has fewer weights and is more efficient when dealing with long sequences.
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Figure 3: 1D convolution.
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2.4 Labeling Scheme

As stated in Section 2.1, after removing the shut-in periods, the resulting data gaps lead to an irregularly sampled dataset. One way to
handle this type of data is to fill the gaps through interpolation. Interpolation schemes, however, incorporate assumptions and introduce
bias. An alternative approach, proposed by Zipton et al. (2016), is to label the missing data and let RNN learn to make predictions with
the existing data gaps. We apply this labeling scheme to the data and learning algorithm. To implement this approach, first, a label vector
is generated by assigning a label (0) to data points during the shut-in periods that must be ignored, while other data points are given a
different label (1). Accordingly, the observations during the shut-in period are also replaced with zeros. In the CNN-RNN model, the label
vector is included as part of the control to inform the model which steps should be ignored. In addition, during those steps, the output of
the model is multiplied by the provided label to get consistent outputs during training. The mechanism essentially excludes the data during
shut-in periods from the loss function.

2.5 CNN-RNN Model

The overall structure of the CNN-RNN model is shown in Figure 4, where t, x, y, §', §, L are the time step, control input, observation,
prediction of state, final prediction, and the label, respectively. The model combines the CNN's efficiency in summarizing information
and the RNN's ability to learn and predict dynamic (sequence) data. The CNN encoder efficiently summarizes the useful information in
the historical data and provides the learned feature vector to the decoder RNN. The decoder RNN predicts the target sequence by
combining the control information and the compressed feature vector. The final prediction is the output from RNN multiplied by the label.
Although the RNN model works with fixed-length sequences, it can predict arbitrary long future with the feed-forward scheme where
predictions are reused as history.
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Figure 4: The CNN-RNN model structure.

3. NUMERICAL EXPERIMENT

To evaluate the performance of the CNN-RNN model, we use it in a simple synthetic example before applying it to a field dataset. In
these examples, we evaluate the performance of the model for single-window prediction and multi-window (long-term) predictions using
a feed-forward scheme. The numerical examples in this study are implemented in Tensorflow (Ababi et al., 2016).

3.1 Synthetic Dataset

In our first example, we design five experiments using a periodic cosine function to test different aspects of the CNN-RNN model. The
five experiments are shown in Figure 5. Test 1 is the base case, where the data has constant frequency and amplitude. Test 2 has an
increasing frequency and amplitude. Test 3 contains variable frequency and amplitude, first increasing but then decreasing in the latter
part. Test 4 includes data corrupted with random noise. Finally, Test 5 is designed to test the model performance under the data gap. In
this case, 10% of the data are randomly selected and labeled as 0. Each test has a total of 498 steps, where the last 96 steps are reserved
as the prediction period (test dataset). The predictions are made for three steps ahead (one window) by using the data in the last 24 steps
(as history). The performance of the CNN-RNN model is compared with those of CNN and RNN with a similar level of complexity. For
each test, the models are trained 20 times to get the average performance.

The results of single window prediction are shown in Figure 6, where the vertical dashed lines separate the training and test sets. The
models show good performance in the tests except in Test 5. The RNN and CNN models do not show good performance when data gaps
are present, whereas the CNN-RNN model is not affected by the data gaps because of the labeling scheme. For multi-window predictions,
all prediction steps are predicted at once at the last training step without updating the models with new observations. From Figure 7, the
models provide good predictions when the trend in data (amplitude and frequency) does not change, even when noise is present. However,
when the trend in the data varies, the models cannot predict the trend correctly. This is, in part, because the historical data does not include
repeated patterns. In other experiments (not shown), when a longer historical dataset with repeated patterns (with variable frequency and
amplitudes) were used, the methods showed a better performance.
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Figure 5: Data from the simple synthetic tests.
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Figure 7: Average multi-window predictions.

To summarize the results from our first example, Figure 8 shows the prediction errors. Overall, the RNN and CNN-RNN models have a
better prediction performance than that of CNN. In these examples, the RNN and CNN models do not have the labeling scheme, which
degrades their performance. The labeling scheme makes the CNN-RNN model robust to the presence of data gaps. We note that results
in this example and the plot in Figure 8 are based on models with similar complexity for comparison purposes. Allowing each model to
have its own distinct architecture may lead to performance improvement for each case.
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Figure 8: Summary of errors in the synthetic tests.

3.2 Field Dataset

The field dataset has hourly data with a total of 51568 data points. Each data point has the average value of a variable over one hour (the
raw data in the field is measured every minute). In our example, the last 8640 timesteps are used for prediction, and the rest are separated
into training and validation sets (90% training, 10% validation). In this example, we first identified the relevant variables and grouped
them as controls and observations (Table 1). For the injectors, although the wells are controlled by the motor speed of the pumps, we
assigned the flow rate of the injectors as a replacement since the motor speed of the injectors is not available. Another control variable for
the injectors is the brine temperature, which is not controlled but is provided as the output from the powerplant. For the producers, since
the motor speed is available, every other variable is categorized as an observation. For each RNN sequence, data from the past 48 hours
are used as history, and the prediction window is 24 hours. These lengths are some of the hyperparameters that are tuned during training.
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Table 1: The list of control (C) and Observed (O) variables.

Injector Producer
Variable Line Flow Brine Line Flow Brine Motor Bubbler Annulus
Pressure Rate Temp Pressure Rate Temp Speed Pressure Pressure
Unit PSIG GPM F PSIG GPM F RPM PSIG PSIG
Control / 0 C C 0 0 0 C 0 0
Observation

The predicted brine temperature and flow rates are shown in Figures 9 and 10, where the vertical line separates the training and test parts.
The single window (short-term) predictions provide a good match to the true observations. The multi-window predictions are not as
accurate due to error accumulation. An important factor that can affect the performance of multi-step predictions is the possible changeS
in data trends during the prediction window. In addition, the model is not updated with incoming data, a factor that can be used to improve
the prediction performance. Overall, the performance of the multi-step prediction is as expected, considering the sudden changes that are

introduced and the error accumulation issues.

We also removed the shut-in periods based on the control information to consider the main trend in the data without the short-lived
transient effects. When the control is significantly smaller than its normal range, the target variables are set to zero, and a zero label is
assigned to these steps. The results are shown in Figures 11 and 12. We note that this simple labeling scheme does not remove all the
effects that are introduced due to shut-in periods because some short-term fluctuations result after each shut-in period. Since these
variations do not have a related signature in the control vector, they are not likely to be predictable by the model. However, additional
investigation is needed to develop more sophisticated techniques to deal with the shut-in period and to examine the predictive capability

of the model.
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Figure 9: Smgle window predictions for field data.
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Figure 20: Multi-window predictions results for field data.
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Figure 31: Single-window predictions results with simple labeling scheme.

Jiang et al.



Jiang et al.

1. — — S— - S— Lo - . - . e ———
075 075
+ Tue + Tue
050 * Faining 050 " Faining
. «  Prediction . Prediction
0325 035
000 == woewme o = oo s e m . 0p0 | ==e eooc . SRRy
0 1000 20000 30000 000D 50000 0 10000 20000 0aD oD sI0aD
100 e I — - 1p00 — E— e —
035 075
N - Tue N - Tue
050 . Faining 050 . Faining
. Prediction . Prediction
025 025
0004 —occaee oo o - o o e e 0004 oo o .. Ty - oo |
o 1n0an 20000 30000 000D 000D 0 10000 20000 000D 00D sI0aD
Loo ——— 1 v P . Loo . Tue
= - e TR g peae—— . Faining
075 ' . 075 . . Prediction
+ Tue M H
050 Taiing 050{ L i s.g.. (1 'Y S| ul
N + Brediction T TN L e TS
015 . as] o0 ! .. E LA I
oo {_—— = : c—= o = LTIt oo | - mowm - = . e ‘ ‘
1] jli[ea]H] 2000p 3n0ap 4000n sooap 1] 1 ]H 20000 30000 000D sooan
Loo N = v - PR 100
M : g i : B :..e_
. T ainin
075 YN 1 PR T JJ.A. l 075 . n—=d\ctg:r .
A Rl S el . [ P, - b SR " W
Fiib s L NI i Il O 3 P e TN P
uso ; 50 - ST e T '
025 . ¢ e . 025
Faining
«  Prediction
000 e e e n e - Drl - e o e 000 e ) — = - ——— e
1] jli[ea]H] 2000p 3ooap 400an sooap 1] 1 ]H 20000 oo L H s0oan
100 . Fue 1lo0 + Tue
- TFaining . TFaining
0.75 .'n.‘T.:'—N g "\\; 9 . Frediction s N Fradiction
. M i R .
050 . i 0807 ahs e M mab P
PR i e i L | w‘*
025 . aps | W LR '
opo{ ——o- - oo .- . - o e oo | - - — e—= - —teme -
0 1000 20000 30000 000D 50000 0 10000 20000 0aD oD sI0aD

Figure 42: Multi-window predictions with the simple labeling scheme.

4. DISCUSSION AND CONCLUSION

In this study, we have developed a robust CNN-RNN model for the analysis and prediction of geothermal energy production data. The
model combines the efficiency of CNN in summarizing the features in long data sequences with the predicting power and properties of
RNN. An additional feature of the model is its ability to handle irregularly sampled data using a simple labeling scheme to avoid biased
introduced through interpolation schemes. Using synthetic examples and a field dataset, we evaluated the performance of the developed
model and compared its performance with standard CNN and RNN models. While the model shows good performance for single-step and
multi-step predictions, multi-step prediction results are not affected by error accumulation. Another important consideration to improve
the performance of the model is retaining based on incoming data during the prediction phase, which was not performed in this work.
Retraining is helpful when the trends observed during the prediction are different from those seen during the training stage (historical
data). Additional investigation is also needed to improve the labeling scheme and to develop RNN models for long-term prediction (over
the years) and comparison with simulation-based predictions.
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