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ABSTRACT 

Drilling optimization may have several definitions, but what they all have in common is the concept of drilling time and well failure 

reduction, which is of fundamental importance in reducing the overall costs of a geothermal project. To this purpose, an international 

research coordination network aimed at developing machine learning strategies to improve geothermal drilling efficiency has been 

established under the support of the EDGE Program of the US Department of Energy (DOE) Geothermal Technologies Office. The EDGE 

research collaboration involves two US Universities, a DOE National Laboratory and four Geothermal and Oil and Gas companies from 

several countries (Iceland, Norway, USA).The first year of the project consisted of four major tasks: 1) Data gathering from more than 

100 wells from different companies and geothermal fields; 2) Exploratory Data Analysis (EDA) to assess both the quality and the structure 

of the data, i.e. the presence of gaps, outliers, typos, the correlation between variables and their distribution, and also to define which 

variables might be more useful for drilling efficiency prediction in such a way that a data format/structure can be defined as a standard 

for the machine learning procedures; 3) Development of a well data repository for the data products (data, code, analysis workflows and 

models) developed during the project; and 4) Initial development and testing of machine learning (ML) techniques.  

The main findings of the exploratory data analysis and initial machine learning testing can be summarized as follows: i) information 

related to drill bit life cycle and bottom hole assembly are necessary to improve the data clustering as well as to improve the accuracy of 

machine learning algorithms; ii) lithological classifications usually used to describe well cuttings are too specific and idiosyncratic to be 

useful for machine learning purposes in their raw form; iii) both Random Forest and Deep Learning models were tested. At present, their 

accuracy in predicting drilling parameters is similar overall, with Deep Learning models slightly outperforming the Random Forest ones 

as the number of input parameters increases. With regard to idiosyncratic lithological information as appearing in the raw mudlog data, 

we have tried both dummy encoding and text embedding to encode the lithological information but none of them has resulted in an 

improvement in the accuracy of the machine learning algorithms in predicting drilling parameters. A new “rock-strength” description 

needs to be defined for this purpose. 

1. INTRODUCTION 

Drilling operations account for an overall 30-70 percent of the total costs of a geothermal project (Saleh et al., 2020; Dumas et al., 2013; 

Finger and Blankenship 2012). Several factors contribute to the driving up of drilling costs such as casing failure, loss circulations, stuck 

pipe and fast bit wearing, resulting in an increased total drilling time and/or a well failure and abandonment (Saleh et al., 2020; Kruszewski 

and Wittig, 2018; Teodoriu, 2015; Marbun et al., 2013). Thus, geothermal drilling optimization is of crucial importance to reduce the total 

cost of geothermal operations and to improve the large-scale deployment of geothermal energy. The variety of the root causes of slow 

drilling operations has led several authors to tackle this problem from different directions. Some of them focused on the development of 

new technologies and best practices to reduce the non-productive time (NPT), in particular to prevent casing failures (Salehi et al., 2013, 

Karimi et al., 2011), mitigate the impact of loss circulations zones and improving the drilling bit’s wear resistance (Saleh et al., 2020; 

Imaizumi et al., 2019; Miyazaki et al., 2019; Raymond et al., 2012). Other authors instead focused on the optimization of the drilling 

parameters by using both physics-based model and data driven methods (i.e. machine learning and deep learning): in particular, several 

attempts to optimize the Rate Of Penetration (ROP) and the Mechanical Specific Energy (MSE) have been done (Alali et al., 2020: Sabah 

et al., 2019; Hedge et al., 2018; Hedge et al., 2017; Basarir et al., 2014). Even though these data-driven approaches yielded promising 

results in recent years, there are still some limitations on their real-world suitability. Indeed, oftentimes the proposed models are tightly 

related to small datasets from one or two wells of a single geothermal field, and so they might not be suitable for a different geothermal 

field or even a new well in the same field. Moreover, these proposed solutions frequently rely on detailed logs data (UCS, pore pressure, 

gamma-ray), which are not always available when drilling a new well (Alali et al 2020). 

The EDGE project aims to build a database of geothermal drilling data coming from a wide range of geologic and operational settings 

and then to develop a well optimization scheme based on machine learning and deep learning methodologies. The novelty of this project 

relies on two factors: i) it uses data from different geothermal fields, thus avoiding being context-specific; ii) it creates a continuous 
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optimization framework for drilling. Thus, by combining active machine-learning methods with incremental learning algorithms, the final 

optimization scheme will be able to continuously improve as new data are ingested into the database. 

This project is structured in two yearlong phases, which in turn consist of several tasks. Here we focus on the first year of the project, 

which can be summarized in the following tasks: 1) data collection from more than 100 wells from different companies and geothermal 

fields; 2) development of a well data repository for the data products (data, code, analysis workflows and models) developed during the 

project; 3) exploratory data analysis (EDA) to assess both the quality and the structure of the data, i.e. the presence of gaps, outliers, typos, 

the correlation between variables and their distribution;  and 4) initial development and testing of machine learning (ML) techniques. 

In the following sections, each of these tasks will be discussed separately. 

2. DATA COLLECTION AND REPOSITORY 

The development of a geothermal well data repository has been the starting point of the first year of the EDGE project. The data gathering 

relied on both proprietary and public well data. The proprietary wells data have been provided by the EDGE project’s industrial partners 

- AltaRock (USA), Cyrq Energy (USA), Equinor (Norway), Iceland GeoSurvey-ISOR (Iceland)-, while the public data come from the 

Utah FORGE and Fallon project. At the end of the first year of the EDGE project, data from 113 wells have been collected. The well data 

have been obtained from different geothermal projects developed over the past thirty years in the USA and Iceland (Figure 1), and thus 

represent different geological settings. 

 

Figure 1: Geothermal fields locations for the US dataset (a) and the Iceland dataset (b). 

Once collected, the data have been stored on a virtual machine deployed on Pacific Northwest National Laboratory (PNNL)’s public 

cloud. The data repository is based on the CKAN platform (Winn 2013) and is structured in different sections. The Raw Data section 

preserves the original files provided by the project’s contributors. Access to this section is read-only to ensure that the original data will 

not be altered during data analysis tasks. The Processed Data section stores secondary/derived files which are used for analytics and model 

development and validation. Finally, Analytics and Models sections are used to store other artifacts that are necessary to ensure the 

reproducibility of the research work. The repository could also allow public access to selected datasets and results. In addition to the web-

based UI, the repository implements a data access API that facilitates the direct interaction with analytics workflows. 

3. EXPLORATORY DATA ANALYSIS 

As mentioned above, (Section 2), at present the developed dataset relies on two main data sources: US data and Icelandic data. These two 

data groups present different data format, sampling rate and unit of measure. Specifically, the US data, except for the Utah FORGE and 

Fallon data, are organized into a MySQL database while Icelandic data are contained in Microsoft Excel files. For this reason, the 

Exploratory Data Analysis (EDA) has been conducted separately on each dataset. In the following sections the main findings of the EDA 

on each dataset are described. 



Carbonari et al. 

 3 

Table 1: features and units included in the daily bit table. 

 

3.1 EDA US Dataset 

The study of the database has shown the presence of two source of drilling data: dailybit and dailydrill tables. The first provides drilling 

and bit information averaged over a bit life cycle while the second provides only drilling data averaged over one-day of operations. Thus, 

one record for each day of drilling is provided for the US data, except for those days when a bit has been changed. In this latter case, two 

records for the same day are present in the dailybit table. The total number of records for the dailydrill and dailybit tables are 4624 and 

6608, respectively, both referring to 81 wells and recorded in US customary units. Table 1 shows the features and units of the dailybit 

table. Several data quality issues such as ambiguities in units and scales, missing data (null data) or invalid data (zero or contradictory 

data) have been discovered during data evaluation. Thus, extensive pre-processing and filtering for each parameter have been required. 

For example, by plotting the Kernel Density Estimate to visualize the approximate probability density of the Weight on the Bit (WOB) 

data, a strong clustering of WOB values is observed around zero (Figure 2a). This skewed distribution was explained by a scaling issue, 

indeed some WOB values were reported in tons while others in pounds. A more balanced distribution resulted from the re-scaling of the 

WOB values (Figure 2b). After data cleaning, clustering analysis using Principal Component Analysis (PCA) and t-distributed stochastic 

neighbor embedding (t-SNE) dimensionality reduction techniques have been employed to evaluate whether the provided dailybit or 

dailydrill dataset are more suitable for machine learning purposes. With these techniques, the dailybit data resulted in a better clustering 

in the new projection space. This behavior is depicted in Figure 3, showing a comparison between t-SNE clustering analysis results on 

the dailybit data and the dailydrill data. As it can be observed, the clustering of the data is clearer when the Bit info data are used. These 

results suggest that the bit information, whenever available, should be incorporated into a standard format with the drilling data. 

 

Figure 2: Weight on the Bit (WOB) distribution for the US dataset before (a) and after (b) re-scaling its values. 

Feature Name Feature meaning Unit 

BitNO Bit Serial Number Scalar quantity 
BitRunNO Bit runs into the hole Scalar quantity 

BitHrs Hours of bit usage Hour [hr] 
BitFootage Drilled footage with one bit Feet [ft] 

BitMudDensity Mud density [lbs gal-1] 
BitMudFlowAvg Mudflow [gals min-1] 

BitDrop Pressure drop Pound per square inch [psi] 
BitPumpPSIAvvg Pumped pressure  [psi] 

BitRPMAvg Revolution per minute (RPM) [min-1] 
BitROPAvg Rate of penetration (ROP) [ft hr-1] 

BitTorqAvg Torque [lbf ft]  
BitWOBAvg Weight on bit (WOB) [lbs] 

BitHHP Hydraulic horsepower [ft lb gal-1] 
BitJIF Jet Impact Force [lbf] 

JetVelocity Jet velocity [ft sec-1] 
ReportFootage Daily drilled footage [ft] 

ReportHrs Daily drilled hours [hr] 
BHANo Bottom hole assembly ID code Scalar quantity 

BITDiam Bit diameter Inch [in] 
BHALength Bottom hole assembly length [in] 

BHAWeight Bottom hole assembly weight [lbs] 
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Figure 3: t-SNE plot visualizing the distribution of the data into the new space according. The colors refer to the individual 

geothermal fields. 

3.2 EDA Iceland Dataset 

The Icelandic dataset comprises data from 30 wells, each stored in a separate Excel file. In this case, the data have been recorded in the 

metric system (Table 2) and each record represents an average over 0.5 meter of drilled depth. The total number of records is 126679. The 

well data quality has also been checked for the Icelandic dataset pointing out the presence of few outliers and anomalous values. In 

particular, several records with a negative WOB values have been found, which are probably related to reaming or casing operations and 

not with drilling operations. Thus, these records have not been incorporated when modeling drilling parameters.  

Table 2: features and units provided for the Icelandic dataset 

 

4 PRELIMINARY MACHINE LEARNING MODELS 

The last part of the first year of the EDGE project involved the preliminary development and testing of ML models to find out whether or 

not the collected data were enough to build reliable predictive models. Before starting the development and test of any ML model, the 

choice of the variables that might be considered as target variables (i.e. features that are related to well drilling performance) as well as 

the definition of the well performance were thoroughly discussed. The project team has identified four main criteria that should guide the 

definition of drilling performance: i) minimization of both drilling cost and drilling time; ii) comparison between scheduled and un-

scheduled non-productive time; iii) well usability and long-term durability; iv) injectivity or productivity success. At this stage of the 

study, the project team choose to focus on the Rate of Penetration (ROP) as the target variable. Indeed, among the different drilling 

parameters, the ROP is strongly related to the efficiency of the drilling process and it is a widely used optimization target in drilling 

industry (Alali et al., 2020). This is due to both its availability and its connection with working hours and, thus, with the overall drilling 

cost. However, tying the drilling performance exclusively to the ROP might not be a good choice because, in some geological contexts, 

its maximization comes at the expense of a faster bit consumption, or increase the chance of stuck pipe in poor circulation conditions, thus 

driving up the price of the drilling. For this reason, a discussion is currently underway to define other variables to complement the ROP 

as a measure of drilling efficiency.  

Feature Name Feature meaning Unit 

Depth Depth Meters [m] 
ROP Rate of penetration [m hr-1] 

WOB Weight on bit (WOB) Tons [t] 
TDH Top drive height [m] 

RPM Revolution per minute (RPM) [min-1] 
Torque Torque [da Nm]  

SPP Stand Pipe Pressure [bar] 
Tot_pump Pumped fluid flow [l s-1] 

Temp_down Temperature downhole [°C] 
Temp_ret Temperature return [°C] 

Diff_temp Differential temperature [°C] 
Kill_line High-pressure line [bar] 

Outer_Diam Outer casing diameter [in] 
Inner_Diam Inner casing diameter [in] 

Drill_bit_mm Bit diameter [mm] 
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Two main approaches have been tested to model the ROP with different level of complexity: decision trees and deep learning. Specifically, 

a Random Forest model (RF) model and a Dual-branch Dual-path Neural Network (DBDPN) model have been used. Since the US and 

Icelandic datasets have a different number of features and a different sampling rate, this preliminary analysis has been carried out 

separately for the two datasets. In the next section, the two algorithms will be described briefly.  

4.1 Methodologies and Data Preparation 

The original datasets have been preprocessed to eliminate outliers and records unrelated with the drilling ahead of the bit. To this aim, 

each record with a Null/Zero value for the ROP or WOB has been considered a non-drilling record and discarded before starting the actual 

ML processes. The Null/Zero values that are not in the ROP or WOB columns are set to 0. Then the dataset is concatenated with a mask. 

A mask is a matrix that has the same size as the input dataset, filled with 0 and 1: 1 for locations where there is a Null/Zero value and 0 

for the rest. This enables the model to work with datasets that originally had Null/Zero values. Furthermore, the DBDPN model also 

required features’ normalization, which ensures a smooth training process. Finally, to avoid overfitting, both the datasets have been divided 

into a train and test sets in a 1:5 ratio. Thus, 80% of the data are for training purpose and the remaining 20% are for testing. The accuracy 

of the developed predictive models has been measured through both the root mean squared error (RMSE) and the coefficient of 

determination (R2). 

 4.1.1 Random Forest (RF) 

Decision tree methods are a non-parametric supervised learning method based on the recursive partitioning of the data into smaller subsets 

according to the values of its features. They proved to be really effective in modeling nonlinear data but suffer from over fitting and high 

variance (Hedge et al., 2017). The Random Forest algorithm, proposed for the first time in the 1990s (Ho, 1995), has proven useful in 

overcoming these obstacles and has since been used widely in industry. The method relies on an ensemble of decision trees rather than 

just a single tree. The main characteristic of the RF are bootstrap resampling and random attribute selection. The first allows to build each 

tree on a partially different training data sample while the second one allows the random selection of a subset of features at each split node 

of a tree. These two processes result in a diversification and decorrelation of the ensemble trees, allowing a reduction of variance and 

improvement of the prediction accuracy (Sabah et al., 2019). Three main hyperparameters control the implementation of a RF algorithm: 

1) number of trees in the forest; 2) features subset size; 3) bootstrap sample size. In this preliminary work, the RF implemented models 

have been developed in Python using the scikit-learn package (Pedregosa et al., 2011) with default values of the hyperparameters. 

4.1.2. Dual-Branch Dual-Path Neural Network 

In recent years, the Dual Path Neural Network (DPN) has been proposed as a novel network architecture to combine the advantages of 

both Residual Network (ResNet) and Densely Connected Network (DenseNet) – i.e. features re-usage and features re-exploitation (Chen 

et al., 2017). In DPN, there are two paths that data can flow through: the common data path and the densely connected data path (Figure 

4a). The input of each block is the concatenation of both data paths at the block’s depth, and the output of each block is composed of the 

common parts and the densely connected parts. The output’s common parts are summed with the common data path, mimicking the 

behavior of ResNet; while the output’s densely connected parts are concatenated with the densely connected data path, mirroring what 

DenseNet does. This allows DPN to reuse common features with low redundancy while still having the flexibility to learn new features.  

Despite its advanced architecture, like most neural networks, DPN performs better if used in conjunction with some form of regularization. 

For conventional feed-forward neural networks, L1/L2 regularization and Dropout are usually used. However, these conventional 

techniques do not always work well and can be harmful as they limit the flexibility of the model (Gastaldi, 2017). For this reason, in recent 

years, the Shake-Shake regularization has been proposed, achieving promising results with ResNet architecture and its derivatives 

(Gastaldi, 2017). 

The Dual-branch Dual-path Neural Network (Figure 4b) is a modification of the DPN architecture that incorporates Shake-Shake 

regularization and utilizes two branches in each block. By having the strengths from the DPN architecture in conjunction with Shake-

Shake regularization, DBDPN should have a superior performance when compared to the plain DPN architecture. 

In this study, a 15 blocks DBDPN has been used so far. Each DBDPN block’s branch is a conventional two layers feed forward neural 

network. The network has been trained using Adam optimizer with a learning rate of 3x10-4. A smoothed L1 loss function (Huber loss) 

was used with the US dataset, while a L2 loss function with the Icelandic dataset. 
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Figure 4: a) Dual-path Network architecture, where the symbol “≀” denotes a split operation, and “+” denotes element-wise 

addition (From Chen et al., 2017); b) Dual-branch Dual-path Neural Network Architecture. 

4.2 Results: US Dataset 

Both models have been applied to predict the ROP. Starting from the features shown in Table 1, all the features related to drilling time 

(BitHrs, ReportHrs) and footage (ReportFootage, BitFootage) have not been used as predictors to avoid data leaking because ROP is the 

ratio between the drilled footage and the corresponding drilling time. Figure 5a shows a cross plot of predicted versus measured values 

obtained on the test dataset with the RF model. The R2 score is 0.56 while the RMSE is 6.07 ft.hr-1. These two values indicate that the RF 

model probably is not able to fully grasp the structure of the data. In Figure 5b the feature importance plot is shown. This plot shows 

which features the RF model is mostly relying upon to predict the ROP. As it can be seen, the BitWOBAvg and BitDiam are actually the 

most important parameters according to the RF algorithm. Figure 6 shows the cross plot obtained on the test with the DBDPN model. The 

R2 score is 0.58 indicating that even this DBDPN is not able to find a clear pattern in the data. 

 

Figure 5: ROP prediction with Random Forest on US dataset. a) cross plot of predicted versus actual ROP values; b) Feature 

importance plot. 
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Figure 6: cross plot of predicted versus actual ROP values obtained with DBDPN on US dataset. 

The similarity of the two results, obtained with two completely different models, suggests that the actual predictors might not be sufficient 

to fully characterize the relationship between the drilling parameters and the resulting ROP. The lack of information regarding rock type 

and rock strength might be crucial, because starting with the same predictors, different ROP can be achieved when drilling rocks with 

different rock strength. On the other hand, the low prediction accuracy might not be related to the number and kind of features but to the 

sampling frequency. Indeed, having a daily average data might probably smooth out the complex relationship between the ROP and its 

predictors. 

To address this problem, new features, such as lithological descriptions, were integrated into the ML models and well data with a higher 

sampling frequency were retrieved. At present, lithological descriptions of the reservoir rocks were retrieved from the original mud logs 

(cutting descriptions). However, the lithological descriptions were mostly heterogenous including short to very detailed and complex 

comments, abbreviations, and technical jargon which can’t be referred to a specific rock type (Figure 7). Furthermore, the comments do 

not provide any information on the mechanical behavior of the reservoir rocks. For example, rocks which are similar from a mechanical 

point of view might have different lithological descriptions or vice versa units of the same rock type might be highly variable with respect 

to their mechanical behavior due to hydrothermal alteration, brecciation or fracturing. Two different approaches were applied to better 

interpret those lithological comments for the ML models. The first attempt included manual mapping of individual rock types and 

classification into boarder groups reflecting their supposed rock strength. For example, after interpreting the lithological comments (e.g. 

Andesite, Dacite, Tuff) the volcanic rocks were grouped into “soft volcanic deposits” (ash fall deposits, tuff), “volcanoclastic deposits” 

(pyroclastic deposits, ignimbrites) and lavas, while the latter was subdivided into massive, nonporous and porous lavas (Figure 8a). 

Additionally, information on brecciation, fracturing or hydrothermal alteration were considered. Subsequently, the mapped information 

were converted into a binary vector and used as an input feature during the modeling (8b). However, this attempt did not result in a 

significant improvement of the overall prediction accuracy, most likely due to the complex geologic settings including a high variety of 

different rock types that can’t be depict by using daily average drilling data. 

The second approach used Natural Language Processing (NPL) directly applied on the lithological comments. By using a Bidirectional 

Encoder Representations from Transformers (BERT) NLP model (Devlin et al., 2018), these lithological comments can be transformed 

into dense vector representation, which can serve as additional input features. The BERT model managed to achieve a F1 score of 0.81 

when compared its output vectors with the vectors from the first attempt. This result suggests that an NLP transformer is able to extract 

meaning from the comments and that it could be probably used to effectively embed lithology comments. The preliminary results obtained 

with the NLP parsing of the comments however haven’t shown a clear improvement in the prediction accuracy. 

The embedding of lithology information and the gathering of data with a higher sampling frequency is going to be part of the second year 

of EDGE project. 
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Figure 7: sample of lithology comments from the US dataset.  

 

 

Figure 8: a) Example of the proposed mapping. Different lithological descriptions are mapped into broader categories according 

to their supposed rock-strength. In this case the mapping only for the volcanic rocks is shown; b) example showing the 

conversion of a lithology comment into a binary vector to be used into ML models.  

4.3 Results: Iceland Dataset 

The predictors used with the Icelandic dataset are the one shown in Table 2. Figure 9a shows the cross plot obtained on the test dataset 

with the RF model. The R2 score is 0.77 while the RMSE is 4.59 m.hr-1. In this case, the RF model is able to provide a good accuracy. 

Figure 9b shows that TotPump, SPP and WOB are the most important parameters to predict the ROP, which is an expected behavior 

because these three parameters influence the ROP directly. In order to verify the robustness of both the RMSE and R2 score achieved with 

the RF model, a 5-fold cross-validation with 10 repeats has been implemented and the corresponding distributions of these two parameters 

are depicted in Figure 10. The R2 distribution (Figure 10a) is centered around 0.77 with all the values ranging from 0.74 to 0.79 while the 

RMSE (Figure 10b) distribution is centered around 4.7 m.hr-1 with all the values ranging from 4.44 to 5 m.hr-1. Figure 11 shows the cross 

plot obtained on the test with the DBDPN model. The R2 score is 0.75 while the RMSE is 5.03 m.hr-1 indicating that the DBDPN model 

also provides a good accuracy with the Icelandic dataset.  

The overall higher accuracy obtained with the Icelandic dataset can be ascribed to both the higher sampling frequency of this dataset (one 

record each 0.5 meter of drilling versus one record for each drilling day) and the roughly homogeneity in the drilled lithologies 

(predominantly basaltic lavas). Further analysis will help to better define the source of this difference in the prediction accuracy.  
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Figure 9: ROP prediction with Random Forest applied on the Icelandic dataset. a) cross plot of predicted versus actual ROP 

values; b) Feature importance plot. 

 

 

Figure 10: R2 score (a) and RMSE (b) distribution obtained with a 5-fold cross-validation with 10 repeats.  
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Figure 11: cross plot of predicted versus actual ROP values obtained with DBDPN on US dataset. 

5 CONCLUSIONS 

The EDGE project aims to build a database of geothermal drilling data and to develop a well optimization scheme based on machine 

learning and deep learning methodologies. The first part of the project concerned the collection of drilling data from different industrial 

project contributors. Data retrieved from 113 wells, representing different geological settings, were stored into a data repository created 

and deployed on the PNNL public cloud. So far, the database includes two data sets, the US and Icelandic dataset, which differ in terms 

of units, number of features and sampling frequency. After data evaluation and cleaning, preliminary machine learning models were 

developed to assess the feasibility of building predictive models on the dataset. The first prediction models focused on the rate of 

penetration (ROP), since this parameter is strictly related to the drilling time and, thus, to the overall drilling cost. Thereby, two main 

models –the Random Forest and the Dual-branch dual-path neural network – were explored. Both models achieved a good accuracy when 

trained on the Icelandic dataset (RMSE~4.8; R2~0.76), while being less accurate when applied on the US dataset (RMSE ~6, R2~0.56). 

This difference in the prediction accuracy can be ascribed to several factors including the different sampling frequency of the two datasets 

(daily averages versus data provided per 0.5 m) and the higher homogeneity in the drilled lithologies for the Icelandic dataset (mainly 

basaltic lava). In order to improve the prediction accuracy, lithological information retrieved from mud logs were integrated into the 

machine learning process. However, the automatic interpretation of lithological information, which are usually stored as long comments 

or abbreviations, remains challenging. A classification into boarder mechanical categories based on laboratory rock strength data will be 

tested in the future. 

The second year of the project will be devoted to: i) the definition of new target variables to complement the ROP in the optimization of 

drilling operations; ii) the merging of the two different datasets; iii) the development and testing of machine learning models with the new 

target variables and with the lithological information; iv) the development of a well failure analysis and v) the deployment of the developed 

models into the PNNL public cloud.  
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