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ABSTRACT

Drilling optimization may have several definitions, but what they all have in common is the concept of drilling time and well failure
reduction, which is of fundamental importance in reducing the overall costs of a geothermal project. To this purpose, an international
research coordination network aimed at developing machine learning strategies to improve geothermal drilling efficiency has been
established under the support of the EDGE Program of the US Department of Energy (DOE) Geothermal Technologies Office. The EDGE
research collaboration involves two US Universities, a DOE National Laboratory and four Geothermal and Oil and Gas companies from
several countries (Iceland, Norway, USA).The first year of the project consisted of four major tasks: 1) Data gathering from more than
100 wells from different companies and geothermal fields; 2) Exploratory Data Analysis (EDA) to assess both the quality and the structure
of the data, i.e. the presence of gaps, outliers, typos, the correlation between variables and their distribution, and also to define which
variables might be more useful for drilling efficiency prediction in such a way that a data format/structure can be defined as a standard
for the machine learning procedures; 3) Development of a well data repository for the data products (data, code, analysis workflows and
models) developed during the project; and 4) Initial development and testing of machine learning (ML) techniques.

The main findings of the exploratory data analysis and initial machine learning testing can be summarized as follows: i) information
related to drill bit life cycle and bottom hole assembly are necessary to improve the data clustering as well as to improve the accuracy of
machine learning algorithms; ii) lithological classifications usually used to describe well cuttings are too specific and idiosyncratic to be
useful for machine learning purposes in their raw form; iii) both Random Forest and Deep Learning models were tested. At present, their
accuracy in predicting drilling parameters is similar overall, with Deep Learning models slightly outperforming the Random Forest ones
as the number of input parameters increases. With regard to idiosyncratic lithological information as appearing in the raw mudlog data,
we have tried both dummy encoding and text embedding to encode the lithological information but none of them has resulted in an
improvement in the accuracy of the machine learning algorithms in predicting drilling parameters. A new “rock-strength” description
needs to be defined for this purpose.

1. INTRODUCTION

Drilling operations account for an overall 30-70 percent of the total costs of a geothermal project (Saleh et al., 2020; Dumas et al., 2013;
Finger and Blankenship 2012). Several factors contribute to the driving up of drilling costs such as casing failure, loss circulations, stuck
pipe and fast bit wearing, resulting in an increased total drilling time and/or a well failure and abandonment (Saleh et al., 2020; Kruszewski
and Wittig, 2018; Teodoriu, 2015; Marbun et al., 2013). Thus, geothermal drilling optimization is of crucial importance to reduce the total
cost of geothermal operations and to improve the large-scale deployment of geothermal energy. The variety of the root causes of slow
drilling operations has led several authors to tackle this problem from different directions. Some of them focused on the development of
new technologies and best practices to reduce the non-productive time (NPT), in particular to prevent casing failures (Salehi et al., 2013,
Karimi et al., 2011), mitigate the impact of loss circulations zones and improving the drilling bit’s wear resistance (Saleh et al., 2020;
Imaizumi et al., 2019; Miyazaki et al., 2019; Raymond et al., 2012). Other authors instead focused on the optimization of the drilling
parameters by using both physics-based model and data driven methods (i.e. machine learning and deep learning): in particular, several
attempts to optimize the Rate Of Penetration (ROP) and the Mechanical Specific Energy (MSE) have been done (Alali et al., 2020: Sabah
et al., 2019; Hedge et al., 2018; Hedge et al., 2017; Basarir et al., 2014). Even though these data-driven approaches yielded promising
results in recent years, there are still some limitations on their real-world suitability. Indeed, oftentimes the proposed models are tightly
related to small datasets from one or two wells of a single geothermal field, and so they might not be suitable for a different geothermal
field or even a new well in the same field. Moreover, these proposed solutions frequently rely on detailed logs data (UCS, pore pressure,
gamma-ray), which are not always available when drilling a new well (Alali et al 2020).

The EDGE project aims to build a database of geothermal drilling data coming from a wide range of geologic and operational settings
and then to develop a well optimization scheme based on machine learning and deep learning methodologies. The novelty of this project
relies on two factors: i) it uses data from different geothermal fields, thus avoiding being context-specific; ii) it creates a continuous
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optimization framework for drilling. Thus, by combining active machine-learning methods with incremental learning algorithms, the final
optimization scheme will be able to continuously improve as new data are ingested into the database.

This project is structured in two yearlong phases, which in turn consist of several tasks. Here we focus on the first year of the project,
which can be summarized in the following tasks: 1) data collection from more than 100 wells from different companies and geothermal
fields; 2) development of a well data repository for the data products (data, code, analysis workflows and models) developed during the
project; 3) exploratory data analysis (EDA\) to assess both the quality and the structure of the data, i.e. the presence of gaps, outliers, typos,
the correlation between variables and their distribution; and 4) initial development and testing of machine learning (ML) techniques.

In the following sections, each of these tasks will be discussed separately.

2. DATA COLLECTION AND REPOSITORY

The development of a geothermal well data repository has been the starting point of the first year of the EDGE project. The data gathering
relied on both proprietary and public well data. The proprietary wells data have been provided by the EDGE project’s industrial partners
- AltaRock (USA), Cyrg Energy (USA), Equinor (Norway), Iceland GeoSurvey-ISOR (Iceland)-, while the public data come from the
Utah FORGE and Fallon project. At the end of the first year of the EDGE project, data from 113 wells have been collected. The well data
have been obtained from different geothermal projects developed over the past thirty years in the USA and Iceland (Figure 1), and thus
represent different geological settings.
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Figure 1: Geothermal fields locations for the US dataset (a) and the Iceland dataset (b).

Once collected, the data have been stored on a virtual machine deployed on Pacific Northwest National Laboratory (PNNL)’s public
cloud. The data repository is based on the CKAN platform (Winn 2013) and is structured in different sections. The Raw Data section
preserves the original files provided by the project’s contributors. Access to this section is read-only to ensure that the original data will
not be altered during data analysis tasks. The Processed Data section stores secondary/derived files which are used for analytics and model
development and validation. Finally, Analytics and Models sections are used to store other artifacts that are necessary to ensure the
reproducibility of the research work. The repository could also allow public access to selected datasets and results. In addition to the web-
based U, the repository implements a data access API that facilitates the direct interaction with analytics workflows.

3. EXPLORATORY DATA ANALYSIS

As mentioned above, (Section 2), at present the developed dataset relies on two main data sources: US data and Icelandic data. These two
data groups present different data format, sampling rate and unit of measure. Specifically, the US data, except for the Utah FORGE and
Fallon data, are organized into a MySQL database while Icelandic data are contained in Microsoft Excel files. For this reason, the
Exploratory Data Analysis (EDA) has been conducted separately on each dataset. In the following sections the main findings of the EDA
on each dataset are described.



Table 1: features and units included in the daily bit table.
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Feature Name Feature meaning Unit
BitNO Bit Serial Number Scalar quantity
BitRunNO Bit runs into the hole Scalar quantity
BitHrs Hours of bit usage Hour [hr]
BitFootage Drilled footage with one bit Feet [ft]
BitMudDensity Mud density [Ibs gal]
BitMudFlowAvg Mudflow [gals min1]
BitDrop Pressure drop Pound per square inch [psi]
BitPumpPSIAvvg Pumped pressure [psi]
BitRPMAvg Revolution per minute (RPM) [min-1]
BitROPAvg Rate of penetration (ROP) [ft hr]
BitTorgAvg Torque [Ibf ft]
BitWOBAvg Weight on bit (WOB) [Ibs]
BitHHP Hydraulic horsepower [ft Ib gal}]
BitJIF Jet Impact Force [1bf]
JetVelocity Jet velocity [ft sec]]
ReportFootage Daily drilled footage [ft]
ReportHrs Daily drilled hours [hr]
BHANo Bottom hole assembly ID code Scalar quantity
BITDiam Bit diameter Inch [in]
BHALength Bottom hole assembly length [in]
BHAWeight Bottom hole assembly weight [Ibs]

3.1 EDA US Dataset

The study of the database has shown the presence of two source of drilling data: dailybit and dailydrill tables. The first provides drilling
and bit information averaged over a bit life cycle while the second provides only drilling data averaged over one-day of operations. Thus,
one record for each day of drilling is provided for the US data, except for those days when a bit has been changed. In this latter case, two
records for the same day are present in the dailybit table. The total number of records for the dailydrill and dailybit tables are 4624 and
6608, respectively, both referring to 81 wells and recorded in US customary units. Table 1 shows the features and units of the dailybit
table. Several data quality issues such as ambiguities in units and scales, missing data (null data) or invalid data (zero or contradictory
data) have been discovered during data evaluation. Thus, extensive pre-processing and filtering for each parameter have been required.
For example, by plotting the Kernel Density Estimate to visualize the approximate probability density of the Weight on the Bit (WOB)
data, a strong clustering of WOB values is observed around zero (Figure 2a). This skewed distribution was explained by a scaling issue,
indeed some WOB values were reported in tons while others in pounds. A more balanced distribution resulted from the re-scaling of the
WOB values (Figure 2b). After data cleaning, clustering analysis using Principal Component Analysis (PCA) and t-distributed stochastic
neighbor embedding (t-SNE) dimensionality reduction techniques have been employed to evaluate whether the provided dailybit or
dailydrill dataset are more suitable for machine learning purposes. With these techniques, the dailybit data resulted in a better clustering
in the new projection space. This behavior is depicted in Figure 3, showing a comparison between t-SNE clustering analysis results on
the dailybit data and the dailydrill data. As it can be observed, the clustering of the data is clearer when the Bit info data are used. These
results suggest that the bit information, whenever available, should be incorporated into a standard format with the drilling data.
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Figure 2: Weight on the Bit (WOB) distribution for the US dataset before (a) and after (b) re-scaling its values.



Carbonari et al.

10 Geothermal Field 10 . N Geothermal Field
- Blue Mountain g 42 N Blue rdauntam
w0 Patua 1 w : A Salt Wells
5 Y Salt Wells % | Gig 2 . Patua 1
-10 { 3 ¢ Thermol =5 ¢ Thermol
JLd X e Geysers SORTTINT ) e Patua2
10 Lightning Dock Fallon 1
Neal Hot Spring 10 Geysers
S' 0 ) ¥ Newberry :, ol @ AR E ; ;ngh:n:ngsoock
- = ’ ¢ eal Hot Spring
8 10 B 10 L Newberry
-20 | L | 36 #
10 20
il ™, 10
zZ o0 s
1} g o°
-10 1L A -10 ’ [
-10 0 10 -20 0 -10 0 10 -10 0 10-20 -10 0 10 -10 0 10 20
tSNE_1 tSNE_2 tSNE_3 tSNE_1 tSNE_2 tSNE_3
Daily bit data Daily drill data

Figure 3: t-SNE plot visualizing the distribution of the data into the new space according. The colors refer to the individual
geothermal fields.

3.2 EDA Iceland Dataset

The Icelandic dataset comprises data from 30 wells, each stored in a separate Excel file. In this case, the data have been recorded in the
metric system (Table 2) and each record represents an average over 0.5 meter of drilled depth. The total number of records is 126679. The
well data quality has also been checked for the Icelandic dataset pointing out the presence of few outliers and anomalous values. In
particular, several records with a negative WOB values have been found, which are probably related to reaming or casing operations and
not with drilling operations. Thus, these records have not been incorporated when modeling drilling parameters.

Table 2: features and units provided for the Icelandic dataset

Feature Name Feature meaning Unit
Depth Depth Meters [m]
ROP Rate of penetration [m hrt]
WOB Weight on bit (WOB) Tons [t]
TDH Top drive height [m]
RPM Revolution per minute (RPM) [min-]
Torque Torque [da Nm]
SPP Stand Pipe Pressure [bar]
Tot_pump Pumped fluid flow [1s7]
Temp_down Temperature downhole [°C]
Temp_ret Temperature return [°C]
Diff_temp Differential temperature [°C]
Kill_line High-pressure line [bar]
Outer_Diam Outer casing diameter [in]
Inner_Diam Inner casing diameter [in]
Drill_bit_mm Bit diameter [mm]

4 PRELIMINARY MACHINE LEARNING MODELS

The last part of the first year of the EDGE project involved the preliminary development and testing of ML models to find out whether or
not the collected data were enough to build reliable predictive models. Before starting the development and test of any ML model, the
choice of the variables that might be considered as target variables (i.e. features that are related to well drilling performance) as well as
the definition of the well performance were thoroughly discussed. The project team has identified four main criteria that should guide the
definition of drilling performance: i) minimization of both drilling cost and drilling time; ii) comparison between scheduled and un-
scheduled non-productive time; iii) well usability and long-term durability; iv) injectivity or productivity success. At this stage of the
study, the project team choose to focus on the Rate of Penetration (ROP) as the target variable. Indeed, among the different drilling
parameters, the ROP is strongly related to the efficiency of the drilling process and it is a widely used optimization target in drilling
industry (Alali et al., 2020). This is due to both its availability and its connection with working hours and, thus, with the overall drilling
cost. However, tying the drilling performance exclusively to the ROP might not be a good choice because, in some geological contexts,
its maximization comes at the expense of a faster bit consumption, or increase the chance of stuck pipe in poor circulation conditions, thus
driving up the price of the drilling. For this reason, a discussion is currently underway to define other variables to complement the ROP
as a measure of drilling efficiency.
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Two main approaches have been tested to model the ROP with different level of complexity: decision trees and deep learning. Specifically,
a Random Forest model (RF) model and a Dual-branch Dual-path Neural Network (DBDPN) model have been used. Since the US and
Icelandic datasets have a different number of features and a different sampling rate, this preliminary analysis has been carried out
separately for the two datasets. In the next section, the two algorithms will be described briefly.

4.1 Methodologies and Data Preparation

The original datasets have been preprocessed to eliminate outliers and records unrelated with the drilling ahead of the bit. To this aim,
each record with a Null/Zero value for the ROP or WOB has been considered a non-drilling record and discarded before starting the actual
ML processes. The Null/Zero values that are not in the ROP or WOB columns are set to 0. Then the dataset is concatenated with a mask.
A mask is a matrix that has the same size as the input dataset, filled with 0 and 1: 1 for locations where there is a Null/Zero value and 0
for the rest. This enables the model to work with datasets that originally had Null/Zero values. Furthermore, the DBDPN model also
required features’ normalization, which ensures a smooth training process. Finally, to avoid overfitting, both the datasets have been divided
into a train and test sets in a 1:5 ratio. Thus, 80% of the data are for training purpose and the remaining 20% are for testing. The accuracy
of the developed predictive models has been measured through both the root mean squared error (RMSE) and the coefficient of
determination (R?).

4.1.1 Random Forest (RF)

Decision tree methods are a non-parametric supervised learning method based on the recursive partitioning of the data into smaller subsets
according to the values of its features. They proved to be really effective in modeling nonlinear data but suffer from over fitting and high
variance (Hedge et al., 2017). The Random Forest algorithm, proposed for the first time in the 1990s (Ho, 1995), has proven useful in
overcoming these obstacles and has since been used widely in industry. The method relies on an ensemble of decision trees rather than
just a single tree. The main characteristic of the RF are bootstrap resampling and random attribute selection. The first allows to build each
tree on a partially different training data sample while the second one allows the random selection of a subset of features at each split node
of a tree. These two processes result in a diversification and decorrelation of the ensemble trees, allowing a reduction of variance and
improvement of the prediction accuracy (Sabah et al., 2019). Three main hyperparameters control the implementation of a RF algorithm:
1) number of trees in the forest; 2) features subset size; 3) bootstrap sample size. In this preliminary work, the RF implemented models
have been developed in Python using the scikit-learn package (Pedregosa et al., 2011) with default values of the hyperparameters.

4.1.2. Dual-Branch Dual-Path Neural Network

In recent years, the Dual Path Neural Network (DPN) has been proposed as a novel network architecture to combine the advantages of
both Residual Network (ResNet) and Densely Connected Network (DenseNet) — i.e. features re-usage and features re-exploitation (Chen
et al., 2017). In DPN, there are two paths that data can flow through: the common data path and the densely connected data path (Figure
4a). The input of each block is the concatenation of both data paths at the block’s depth, and the output of each block is composed of the
common parts and the densely connected parts. The output’s common parts are summed with the common data path, mimicking the
behavior of ResNet; while the output’s densely connected parts are concatenated with the densely connected data path, mirroring what
DenseNet does. This allows DPN to reuse common features with low redundancy while still having the flexibility to learn new features.

Despite its advanced architecture, like most neural networks, DPN performs better if used in conjunction with some form of regularization.
For conventional feed-forward neural networks, L1/L2 regularization and Dropout are usually used. However, these conventional
techniques do not always work well and can be harmful as they limit the flexibility of the model (Gastaldi, 2017). For this reason, in recent
years, the Shake-Shake regularization has been proposed, achieving promising results with ResNet architecture and its derivatives
(Gastaldi, 2017).

The Dual-branch Dual-path Neural Network (Figure 4b) is a modification of the DPN architecture that incorporates Shake-Shake
regularization and utilizes two branches in each block. By having the strengths from the DPN architecture in conjunction with Shake-
Shake regularization, DBDPN should have a superior performance when compared to the plain DPN architecture.

In this study, a 15 blocks DBDPN has been used so far. Each DBDPN block’s branch is a conventional two layers feed forward neural
network. The network has been trained using Adam optimizer with a learning rate of 3x10-4. A smoothed L1 loss function (Huber loss)
was used with the US dataset, while a L2 loss function with the Icelandic dataset.
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Figure 4: a) Dual-path Network architecture, where the symbol “?” denotes a split operation, and “+” denotes element-wise
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4.2 Results: US Dataset

Both models have been applied to predict the ROP. Starting from the features shown in Table 1, all the features related to drilling time
(BitHrs, ReportHrs) and footage (ReportFootage, BitFootage) have not been used as predictors to avoid data leaking because ROP is the
ratio between the drilled footage and the corresponding drilling time. Figure 5a shows a cross plot of predicted versus measured values
obtained on the test dataset with the RF model. The R? score is 0.56 while the RMSE is 6.07 fthrX. These two values indicate that the RF
model probably is not able to fully grasp the structure of the data. In Figure 5b the feature importance plot is shown. This plot shows
which features the RF model is mostly relying upon to predict the ROP. As it can be seen, the BitWOBAvg and BitDiam are actually the
most important parameters according to the RF algorithm. Figure 6 shows the cross plot obtained on the test with the DBDPN model. The

R2 score is 0.58 indicating that even this DBDPN is not able to find a clear pattern in the data.
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Figure 5: ROP prediction with Random Forest on US dataset. a) cross plot of predicted versus actual ROP values; b) Feature
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Figure 6: cross plot of predicted versus actual ROP values obtained with DBDPN on US dataset.

The similarity of the two results, obtained with two completely different models, suggests that the actual predictors might not be sufficient
to fully characterize the relationship between the drilling parameters and the resulting ROP. The lack of information regarding rock type
and rock strength might be crucial, because starting with the same predictors, different ROP can be achieved when drilling rocks with
different rock strength. On the other hand, the low prediction accuracy might not be related to the number and kind of features but to the
sampling frequency. Indeed, having a daily average data might probably smooth out the complex relationship between the ROP and its
predictors.

To address this problem, new features, such as lithological descriptions, were integrated into the ML models and well data with a higher
sampling frequency were retrieved. At present, lithological descriptions of the reservoir rocks were retrieved from the original mud logs
(cutting descriptions). However, the lithological descriptions were mostly heterogenous including short to very detailed and complex
comments, abbreviations, and technical jargon which can’t be referred to a specific rock type (Figure 7). Furthermore, the comments do
not provide any information on the mechanical behavior of the reservoir rocks. For example, rocks which are similar from a mechanical
point of view might have different lithological descriptions or vice versa units of the same rock type might be highly variable with respect
to their mechanical behavior due to hydrothermal alteration, brecciation or fracturing. Two different approaches were applied to better
interpret those lithological comments for the ML models. The first attempt included manual mapping of individual rock types and
classification into boarder groups reflecting their supposed rock strength. For example, after interpreting the lithological comments (e.g.
Andesite, Dacite, Tuff) the volcanic rocks were grouped into “soft volcanic deposits” (ash fall deposits, tuff), “volcanoclastic deposits”
(pyroclastic deposits, ignimbrites) and lavas, while the latter was subdivided into massive, nonporous and porous lavas (Figure 8a).
Additionally, information on brecciation, fracturing or hydrothermal alteration were considered. Subsequently, the mapped information
were converted into a binary vector and used as an input feature during the modeling (8b). However, this attempt did not result in a
significant improvement of the overall prediction accuracy, most likely due to the complex geologic settings including a high variety of
different rock types that can’t be depict by using daily average drilling data.

The second approach used Natural Language Processing (NPL) directly applied on the lithological comments. By using a Bidirectional
Encoder Representations from Transformers (BERT) NLP model (Devlin et al., 2018), these lithological comments can be transformed
into dense vector representation, which can serve as additional input features. The BERT model managed to achieve a F1 score of 0.81
when compared its output vectors with the vectors from the first attempt. This result suggests that an NLP transformer is able to extract
meaning from the comments and that it could be probably used to effectively embed lithology comments. The preliminary results obtained
with the NLP parsing of the comments however haven’t shown a clear improvement in the prediction accuracy.

The embedding of lithology information and the gathering of data with a higher sampling frequency is going to be part of the second year
of EDGE project.
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WelllD FromDepth ToDepth Lithology

14-14 2330 2690 12330-2380 100% Phyllite, 2390
70% Phyllite 30% Quartz Veining,
12400-2600 70-100% Phyllite, 0-
30% Quartz Veining, 2610-2690
40-60% Clay 40-50% Clay, 0-10%
Quartz Veining

14(11)28 ST1 | 5124 5190 5124'-5130'"; 30-70% Granodirorite,
120-30% Felsic/Siliceous Dike, 10-
120% Cement, 0-10% Dacite, 0-
10% Metal 5130-5150": 80-100%
Granodirorite, 0-10% Dacite, 0-
10% Granite 5150'-5190": 20-100%
Felsic/Siliceous Dike

Figure 7: sample of lithology comments from the US dataset.

Original lithological descriptions Proposed rock-strength mapping Lithology

Tuff, Ash, Ash-Tuff, Lithic-Tuff, Altered Soft Volcanic Depaosits (SVD) 100% Andesite, 10-60% Dacite; 40-90% Andesite,60-90% Andesite; 10-40%
Tuff Dacite,80-100% Scoria & Basalt (5800 40% Tuff)

Pyroclastics, Ignimbrite, Volcanics Volcanoclastic Deposits (VD) 1

Basalt, Basaltic, Andesite, andesitic massive Non-Porous Lava (LNP)

Basalt, Dacite, Rhyolite, Rhyodacite mﬂﬂ

Scoria, vesicular, amygdale, porous Porous Lava (LP) 1 0 1 1 0

Breccia, micro-breccia Volcanic Breccia (VB)

Figure 8: a) Example of the proposed mapping. Different lithological descriptions are mapped into broader categories according
to their supposed rock-strength. In this case the mapping only for the volcanic rocks is shown; b) example showing the
conversion of a lithology comment into a binary vector to be used into ML models.

4.3 Results: Iceland Dataset

The predictors used with the Icelandic dataset are the one shown in Table 2. Figure 9a shows the cross plot obtained on the test dataset
with the RF model. The R? score is 0.77 while the RMSE is 4.59 mhr. In this case, the RF model is able to provide a good accuracy.
Figure 9b shows that TotPump, SPP and WOB are the most important parameters to predict the ROP, which is an expected behavior
because these three parameters influence the ROP directly. In order to verify the robustness of both the RMSE and R? score achieved with
the RF model, a 5-fold cross-validation with 10 repeats has been implemented and the corresponding distributions of these two parameters
are depicted in Figure 10. The R? distribution (Figure 10a) is centered around 0.77 with all the values ranging from 0.74 to 0.79 while the
RMSE (Figure 10b) distribution is centered around 4.7 mhr with all the values ranging from 4.44 to 5 m-hr. Figure 11 shows the cross
plot obtained on the test with the DBDPN model. The R? score is 0.75 while the RMSE is 5.03 mhr! indicating that the DBDPN model
also provides a good accuracy with the Icelandic dataset.

The overall higher accuracy obtained with the Icelandic dataset can be ascribed to both the higher sampling frequency of this dataset (one
record each 0.5 meter of drilling versus one record for each drilling day) and the roughly homogeneity in the drilled lithologies
(predominantly basaltic lavas). Further analysis will help to better define the source of this difference in the prediction accuracy.
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Figure 9: ROP prediction with Random Forest applied on the Icelandic dataset. a) cross plot of predicted versus actual ROP

values; b) Feature importance plot.
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Figure 10: R2 score (a) and RMSE (b) distribution obtained with a 5-fold cross-validation with 10 repeats.
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Figure 11: cross plot of predicted versus actual ROP values obtained with DBDPN on US dataset.

5 CONCLUSIONS

The EDGE project aims to build a database of geothermal drilling data and to develop a well optimization scheme based on machine
learning and deep learning methodologies. The first part of the project concerned the collection of drilling data from different industrial
project contributors. Data retrieved from 113 wells, representing different geological settings, were stored into a data repository created
and deployed on the PNNL public cloud. So far, the database includes two data sets, the US and Icelandic dataset, which differ in terms
of units, number of features and sampling frequency. After data evaluation and cleaning, preliminary machine learning models were
developed to assess the feasibility of building predictive models on the dataset. The first prediction models focused on the rate of
penetration (ROP), since this parameter is strictly related to the drilling time and, thus, to the overall drilling cost. Thereby, two main
models —the Random Forest and the Dual-branch dual-path neural network — were explored. Both models achieved a good accuracy when
trained on the Icelandic dataset (RMSE~4.8; R2~0.76), while being less accurate when applied on the US dataset (RMSE ~6, R2~0.56).
This difference in the prediction accuracy can be ascribed to several factors including the different sampling frequency of the two datasets
(daily averages versus data provided per 0.5 m) and the higher homogeneity in the drilled lithologies for the Icelandic dataset (mainly
basaltic lava). In order to improve the prediction accuracy, lithological information retrieved from mud logs were integrated into the
machine learning process. However, the automatic interpretation of lithological information, which are usually stored as long comments
or abbreviations, remains challenging. A classification into boarder mechanical categories based on laboratory rock strength data will be
tested in the future.

The second year of the project will be devoted to: i) the definition of new target variables to complement the ROP in the optimization of
drilling operations; ii) the merging of the two different datasets; iii) the development and testing of machine learning models with the new
target variables and with the lithological information; iv) the development of a well failure analysis and v) the deployment of the developed
models into the PNNL public cloud.
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