

## Corrosion Test of Casing Steel at High Temperature Acid Condition

Norio Yanagisawa<sup>1</sup>, Masatake Sato<sup>2</sup>, Kazumi Osato<sup>2</sup>, Yu Yamamoto<sup>3</sup>, Koji Sakura<sup>3</sup>, Keith Lichti<sup>4</sup>, Bruce Mountain<sup>5</sup>

<sup>1</sup> Advanced Industrial Science and Technology (AIST), Central 7, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8567 Japan

<sup>2</sup> Geothermal Energy Research & Development Co., Ltd., 1-22-4 Shinkawa Chuo-ku, Tokyo 104-0033, Japan

<sup>3</sup> Tenaris NKK Tubes, 1-10, Minami Watarida-cho Kawasaki-ku, Kawasaki-city, Kanagawa Pref. 210-0855, Japan

<sup>4</sup> Quest Integrity NZL Ltd, NZCIS, Level 2, D Block, 20 Somme Road Upper Hutt 5018, New Zealand

<sup>5</sup> GNS Science Wairakei Research Centre, 114 Karetoto Road, Wairakei Taupo 3377, New Zealand

msato@gerd.co.jp, kasai@gerd.co.jp, osato@gerd.co.jp, n-yanagisawa@aist.go.jp, yuyamamoto@nkktubes.co.jp,  
tofukui@nkktubes.co.jp, K.Sakura@nkktubes.co.jp, b.mountain@gns.cri.nz, k.lighti@Questintegrity.com

**Keywords:** Corrosion, Casing Steel, TN95Cr13S, TN125Cr13U, 17Cr, Acidic brine, Cylinder coupon, NEDO

### ABSTRACT

The authors have been carrying out “development of technologies for utilizing unused acidic hot water in conventional geothermal resources” with the NEDO budget since FY2018. This is to develop a geothermal power plant risk assessment system for high-temperature acidic hot water that has not been used so far by evaluating the material corrosion characteristics of high-temperature acidic hot water at about 300 °C and above pH3.

As one of the evaluation methods, a material corrosion test using a flow type autoclave of New Zealand GNS was conducted. A test piece having a diameter of 8 mm and a length of 13 mm was fixed with zirconia beads inside a flow-type autoclave having a length of about 15 cm. The test temperature was 250, 300, 350 °C., the pH of the fluid was 3 at room temperature, and two types of tests, hydrochloric acid and sulfuric acid, were performed. Three types of specimens, TN125Cr13U steel, TN110Cr13S steel, and 17Cr steel, were used, and a test was conducted at a maximum flow rate of 200 L / min for about 5 hours.

The corrosion rate was calculated from the change in weight before and after the test obtained after removing the corrosion product present on the sample surface after the test. The results of the comparison between the corrosion rate obtained in the test and the predicted value by the material corrosion prediction formula by Cr equivalent are introduced.

### 1. INTRODUCTION

The corrosion and scale formation due to various chemical components are issues of concern for the operation of geothermal power plants. In particular, under acidic condition, the well casing made of carbon steel, the surface piping, and the power generation facility often suffer damage due to overall corrosion and erosion. For example, the carbon steel and low alloy steel, corrosion progresses in a high temperature environment of pH 4 or less. (Yanagisawa et al., 2016, Yanagisawa et al. 2017)

Selection of more corrosion resistant alloys must also address risk of Chloride SCC and Sulfide Stress Cracking. This work is concerned with corrosion rate determination as a function of temperature and pH for a selected set of geothermal fluid chemistry conditions. In order to estimate material corrosion rate under high temperature and acidic condition, we are carrying out “Technological Development towards Utilization of Unused Geothermal Energy (Development of Unused Acid Brine Utilization Technology in Conventional Geothermal Resources)” for utilization of unused geothermal energy by NEDO budget since FY2018. In this R&D project, we are developing a system that can derive optimal materials and countermeasure technologies when considering the use of acidic hydrothermal resources. Evaluation of the material corrosion rate has been progressed using a flow type autoclave and comparison with a previously developed estimation formula of material corrosion rate using Cr equivalent of material, see for example Yanagisawa et al., 2016, Yanagisawa et al. 2017.

### 2. ESTIMATION OF CORROSION RATE USING CR EQUIVALENT

From 1974 to 2002, AIST-Tohoku branch carried out the survey of erosion and corrosion in geothermal power plant pipelines and several laboratory tests were carried out. From these tests, the relationship between corrosion rate and corrosion environment for different alloy elements was summarized (Kurata et al., 1995, Sanada et al., 1995, Sanada et al., 1997, Sanada et al., 2000).

From the results of test data, the corrosion rate depends on temperature, pH and the chemical composition of the exposed material. For indexing of corrosion rate by material chemical composition, the idea of Cr equivalent was introduced (Kurata et al., 1992).

The ratio of the contribution to corrosion resistance of Cr and elements other than Cr was deduced from the experimental data. In the HCl acidified system, the Cr equivalent was calculated as follows:

$$C_{req} = Cr - 13.73 C + 1.598 Si - 0.433 Mn + 27.28 P - 51.12 S + 0.237 Ni + 0.712 Mo - 1.060 Cu \text{ (wt\%)} \quad (1)$$

And the material corrosion rate (C.R, mm/year) was calculated using temperature, pH and Cr equivalent as follows:

$$\log (C.R) = 6.696 - 1930 (1/T) - 0.622 (\text{pH}) - 0.085 (C_{req}) \quad (2)$$

And in the  $H_2SO_4$  acidified system, the Cr equivalent was calculated as follows:

$$C_{req} = Cr - 16.76 C + 0.63 Si + 0.193 Mn - 10.2 P + 35.11 S + 0.187 Ni + 0.02 Mo + 0.725 Cu \text{ (wt\%)} \quad (1)$$

And the material corrosion rate (C.R, mm/year) was calculated using temperature, pH and Cr equivalent as follows:

$$\log (C.R) = 6.467 - 1633 (1/T) - 0.697 (\text{pH}) - 0.093 (C_{req})$$

An example list of calculation results of  $C_{req}$  is shown in Table 1. And based on the above equations, we make the calculations using a Microsoft excel spreadsheet. An example of this system is shown in Figure 1.

The corrosion rate is calculated by firstly selecting the material and indicating the Cr equivalent and secondly by inputting the temperature and pH. And in this example, the estimated corrosion rate at 100 to 140 °C is shown and a comparison is made for the corrosion rate of a selected casing alloy and carbon steel.

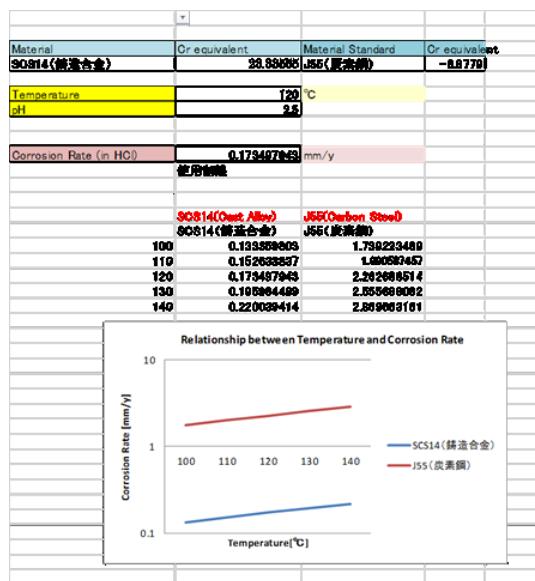


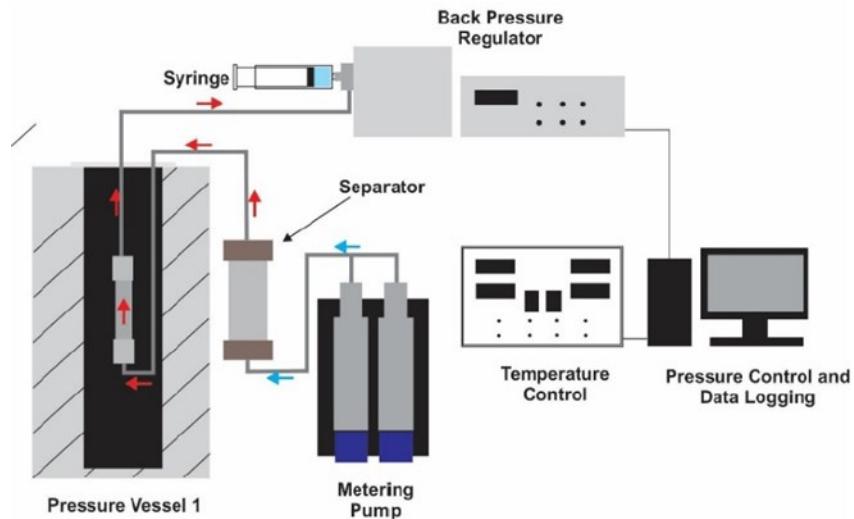

Figure 1: sample of the corrosion rate calculation system using Microsoft excel file

Table 1: The chemical composition of materials and Cr equivalent

| Material   | Cr Content | Mo Content | Cr equivalent( $H_2SO_4$ ) | Cr equivalent(HCl) |
|------------|------------|------------|----------------------------|--------------------|
| TN95Cr13S  | 13%        | 2.0%       | 13.2                       | 15.5               |
| TN125Cr13U | 13%        | 3.0%       | 13.5                       | 16.2               |
| 17Cr       | 17%        | 2.5%       | 18.6                       | 21.4               |

### 3. LABORATORY CORROSION TEST UNDER HIGH TEMPERATURE AND LOW PH CONDITION

In order to select materials that can be used in a high temperature, low pH hydrothermal environment, we evaluated the corrosion resistance of each material. The corrosion test was conducted by using a Hydrothermal flow simulator owned by GNS Science of New Zealand (Figure 2). It can also be used for a material corrosion test.


This apparatus is capable of conducting a corrosion test in a state where hot water flows after adjusting pH, temperature, and non-condensable gas to conditions suitable for the purpose. Corrosion testing can be performed in an environment where metal specimens

are always exposed to fresh hot water. For this reason, it is possible to conduct corrosion testing which closely approximates the corrosion chemistry of an actual casing or piping under low flow conditions.

### 3.1 Experimental apparatus for corrosion test

The apparatus can simulate water-rock interaction in a geothermal reservoir, using an input fluid prepared for the pH, temperature, and non-condensable gas conditions desired. Corrosion tests can be conducted in an environment where metal specimens are always exposed to fresh brine. It is possible to conduct the corrosion testing under conditions that closely approximate the actual corrosion chemistry for casings and pipes.

Prepared test materials for the work were in the form of a cylindrical coupons of OD 8 mm x 13 mm. Single coupons were set so as not to directly touch the pressure vessel made of titanium by inserting OD 2 mm Zirconia beads. Test brine was prepared in a 1 L separator. The flow rate was set between 5 mL/h and 200 mL/h, and the test brine was passed through the pressure vessel at a constant flow rate. The temperature in the pressure vessel was controlled by the heater and the pressure was controlled by the back-pressure regulator. The temperature was set to 250 deg. C, 300 deg. C, and 350 deg. C, and the pressure was set to 20 MPa. In addition, the test brine after reacting with a metal coupon can be collected by a syringe located at the outlet of the pressure vessel after the pressure letdown valve, and analysis of pH and dissolved chemical components could be conducted.



**Figure 2** Hydrothermal flow simulator at Wairakei Research Centre, GNS Science.

### 3.2 Conditions of Corrosion Experiments

The materials of the test coupon were TN95Cr13S (13CrS), TN125Cr13U (13CrU), and 17Cr. These materials were processed and supplied by TenarisNKKTubes. The mixing ratio of Cr and Mo in each material was as shown in Table 1.

Measurement of corrosion rate under the conditions of 250 deg. C, 300 deg. C, and 350 deg. C was carried out for the three materials TN95Cr13S, TN125Cr13U, and 17Cr. The test brine had a pH of 3.0 and contained non-condensable gas (Total 3%, CO<sub>2</sub>: 96%, H<sub>2</sub>S: 4%) and chloride ion (10,000 ppm). The pH was adjusted with sulfuric acid and hydrochloric acid. The flow rate of the test brine was adjusted stepwise to 10 mL/h, 50 mL/h, 100 mL/h, and 200 mL/h, and an exposure test of a total of 6 hours was conducted.

After the corrosion test, controlled removal of the corrosion product was carried out at Advanced Industrial Science and Technology (AIST), and the final weight loss was measured. Di-hydrogen ammonium citrate was used to dissolve the corrosion products. The dissolution was carried out at 70 deg. C with cathodic protection using a carbon rod for the anode.

### 3.3 Results of Corrosion Tests

The results of converting measured weight loss of test material into corrosion rate after one year are summarized in Figures 3 and 4. Figure 3 shows the test results in sulfuric acid. In case of sulfuric acid, the corrosion rates appeared to be higher at lower temperature especially in the case of TN125Cr13U. The corrosion rate at 250 °C was 1.55 mm/year and the rate at 350 °C was 0.75 mm/year.

In the case of TN95Cr13S, the highest corrosion rate, 0.83mm/year, was seen at 300 °C and was 0.51mm/year at 350 °C. In contrast, the corrosion rate of 17Cr showed the lowest rate at 300 °C about 0.42mm/year and the highest rate at 350 °C. The change in corrosion rate

with temperature was not always monotonic, compare the corrosion rate decrease of TN125Cr13U from 250 °C at 1.55 mm/year, to about 1 mm/year at higher temperatures with the corrosion rate changes for TN95Cr13S and 17Cr which showed differing trends in Figure 3.

Figure 4 shows the result in hydrochloric acid. In the case of TN95Cr13S, the corrosion rate decreased with increasing temperature. The corrosion rate at 250 °C was 1.62 mm/year and the rate at 350 °C was 0.94 mm/year. In contrast, the corrosion rate of 17Cr increased with temperature. The corrosion rate at 250 °C was 0.09 mm/year and the rate at 350 °C was 1.36 mm/year. In the case of TN125Cr13U, the highest corrosion rate was seen at 1.20 mm/year, at 300 °C and decreased to 0.77 mm/year at 350 °C.

In hydrochloric acid, the corrosion rate often exceeded 1 mm/year and was higher than with sulfuric acid.

### 3.4 Comparison with estimation formula using Cr equivalent

Based on the formula of material corrosion rate using temperature, pH and Cr equivalent, the corrosion rate tends to increase with temperature and with lower pH whereas in this testing work the corrosion rate did not always increase with temperature.

In order to resolve the differing trend seen in the testing the pH in higher temperature was simulated using geochemical calculator, Solveq-Chim (Reed, 2014). Figure 5 shows the result for the simulated pH from room temperature to 375 °C for case of this test, containing non-condensable gas (Total 3%, CO<sub>2</sub>: 96%, H<sub>2</sub>S: 4%) and chloride ion (10,000 ppm) and pH 3 at room temperature. The pH is almost same from room temperature to 100 °C and gradually increases with temperature. And pH rapidly increases at higher temperatures. The pH shows 3.38 at 250 °C, 3.66 at 300 °C and 4.5 at 350 °C.

Then, we calculated the corrosion rate using the simulated pH at 250, 300, 350 °C. In this case, the corrosion rate was highest at 300 °C. Figure 6 shows a comparison of the estimated corrosion rate using simulated pH and measured corrosion rate of TN95Cr13S at H<sub>2</sub>SO<sub>4</sub> condition. Note that the estimated corrosion rates correspond to the measured rates for the range from 0.5 to 1 mm/year. A similar trend has been observed for the case of TN125Cr13U with HCl acid. While the remaining alloys still show some variation between measured rate and estimated rate. One of the reasons for the observed variation of material corrosion rate in the present corrosion test was due to the short exposure time of about 6 hours. The results must be interpreted as being from a short-term corrosion rate test. Long-term exposure tests are planned in the future, in which we plan to evaluate the change in corrosion rate due to formation of the protective corrosion product films.

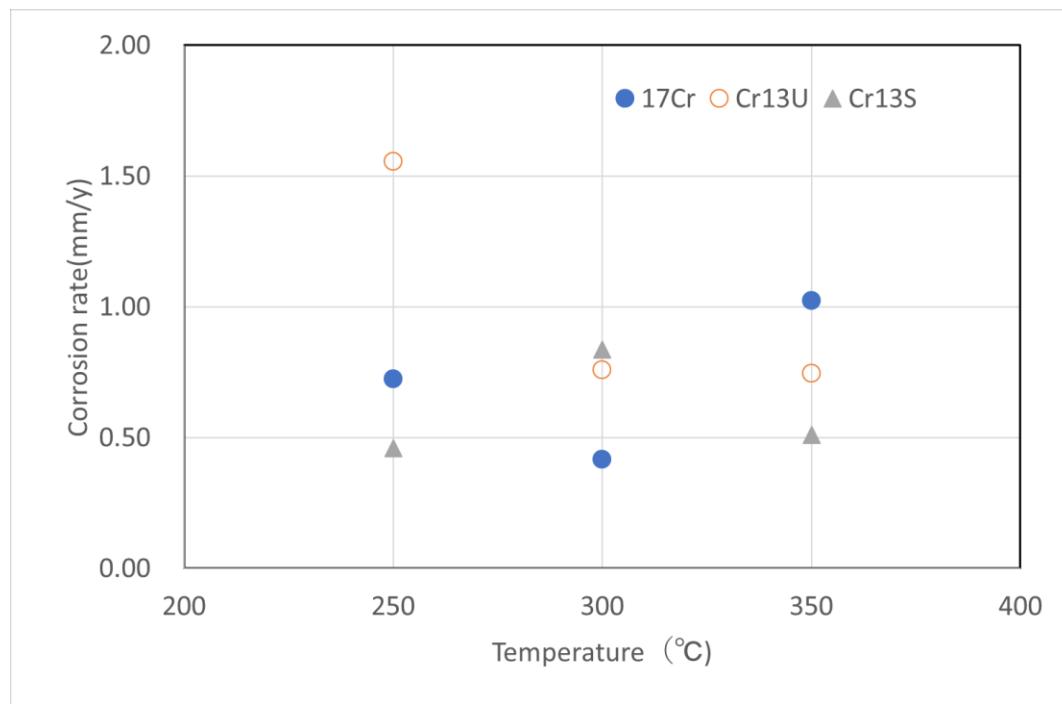



Figure 3 Measured corrosion rate of TN95Cr13S, TN125Cr13U, and 17Cr from 250 to 350 deg. C at H<sub>2</sub>SO<sub>4</sub> condition

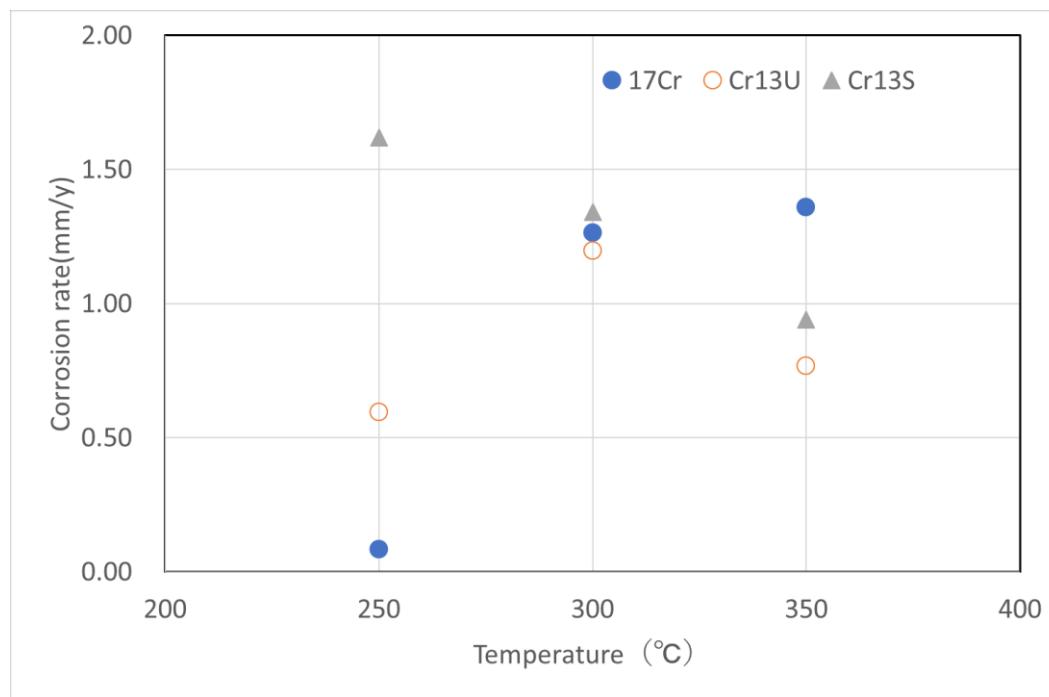



Figure 4 Measured corrosion rate of TN95Cr13S, TN125Cr13U, and 17Cr from 250 to 350 deg. C at HCl condition

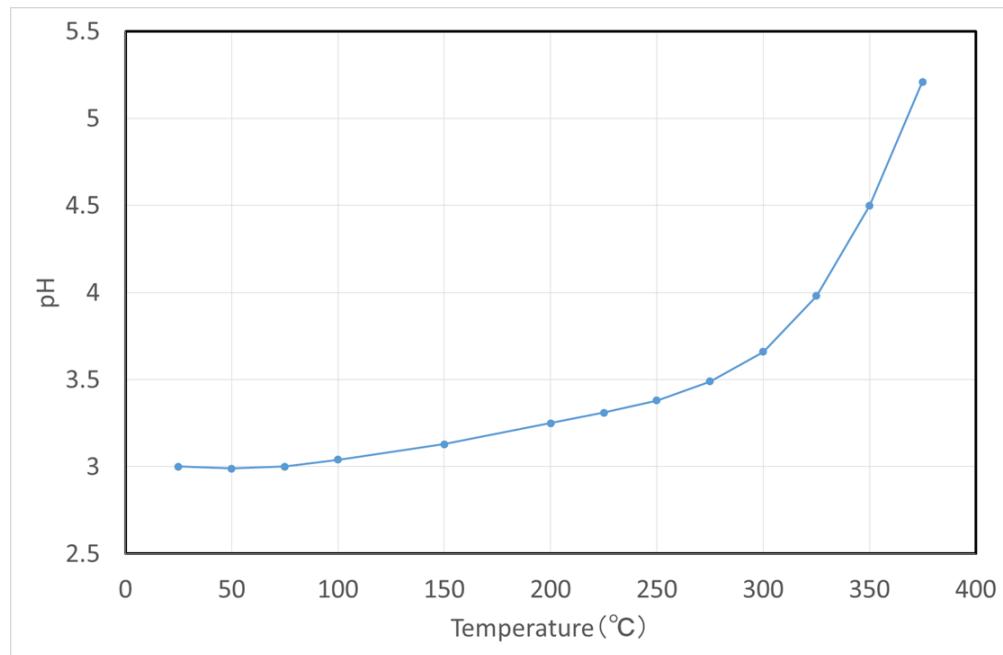
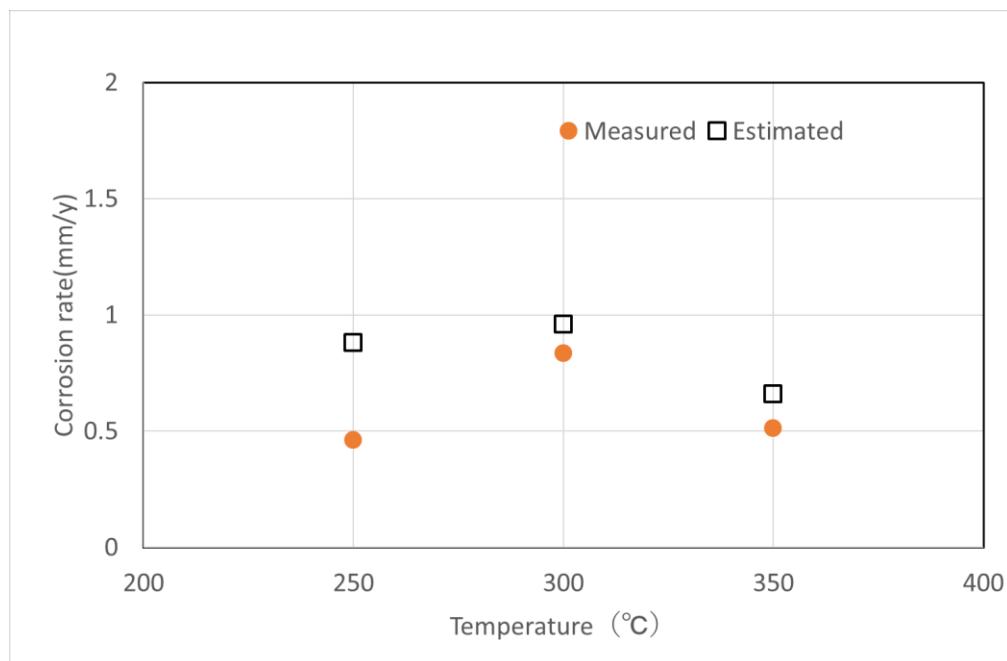




Figure 5 Simulated pH with temperature change for H<sub>2</sub>SO<sub>4</sub> condition.



**Figure 6 The corrosion rate of TN95Cr13S at H<sub>2</sub>SO<sub>4</sub> condition; compare between measured rate and estimated rate using Cr equivalent formula and simulated pH at test temperature**

## 6. CONCLUSION

It is important to select materials that have acceptable corrosion rate for geothermal brine in order to maintain and manage a geothermal power plant. Especially, when using acid brine, it is necessary to select appropriate materials that correspond to the corrosion risk.

In order to select materials that can be used in a high temperature, low pH hydrothermal environment, we have conducted a laboratory corrosion test using a Hydrothermal flow simulator owned by GNS Science. Measurement of the corrosion rate under the conditions of 250 °C, 300 °C, and 350 °C was carried out for the three materials TN95Cr13S, TN125Cr13U, and 17Cr. The test brine had a pH of 3.0 and contained non-condensable gas (Total 3%, CO<sub>2</sub>: 96%, H<sub>2</sub>S: 4%) and chloride ion (10,000 ppm).

In the case of sulfuric acid, although the corrosion rate of TN125Cr13U at 250 °C indicated 1.4 mm/year, was lower at the higher temperature conditions tested at 1 mm/year or less. When comparing the corrosion rates among the alloys tested, the same tendency was not found in all cases. The corrosion rate of 17Cr at 300 °C was 0.384 mm/year, lower than at lower and higher temperatures. In the case of hydrochloric acid, the corrosion rate was higher than with H<sub>2</sub>SO<sub>4</sub> and often exceeded 1 mm/year.

In order to compare the corrosion rate results obtained with previously developed models for corrosion rate estimate, we simulated pH change using Solveq-Chim with temperature. Considering the simulated pH, the estimated corrosion rate was highest at 300 °C. In this experiment, the measured rate of TN95Cr13S at H<sub>2</sub>SO<sub>4</sub> condition and TN125Cr13U at HCl condition corresponded, within a degree of accuracy, to the estimated corrosion rate.

## ACKNOWLEDGMENT

This R&D project was performed as part of research project “Research and Development of Geothermal Power Generation Technology”, funded by the New Energy and Industrial Technology Development Organization (NEDO).

## REFERENCES

Kurata, Y., Sanada, N., Ikeuchi, J. and Okahara, Y.: Corrosion Database System for Geothermal Materials. Reports of the Government Industrial Research Institute, Tohoku (in Japanese), 25, (1992), 7-14.

Kurata, Y., Sanada, N., Nanjo, H. and Ikeuchi, J.: Casing Pipe Materials for Deep Geothermal Wells. Geothermal Resources Council Transactions, 19, (1995), 105-109.

Reed, M. H., Spycher N. F. and Palandri, J.: Users Guid for CHIM-XPT: A Program for Computing Reaction Processes in Aqueous-Mineral-Gas Systems and MINTAB Guide. Version 2.46, Department of Geological Sciences, University of Oregon, (2014)

Sanada, N., Kurata, Y., Nanjo, H. and Ikeuchi, J.: Material Damage in High Velocity Acidic Fluids, Geothermal Resources Council Transactions, 19, (1995), 359-363.

Sanada, N., Kurata, Y. and Lichti, K: Valuation and Development of Deep Geothermal Resources--Materials Subtask Update of IEA Research Collaboration Program, Geothermal Resources Council Transactions, 21, (1997), 317-324.

Sanada, N., Kurata, Y., Nanjo, H., Kim, H., Ikeuchi, J. and Lichti, K: IEA Deep Geothermal Resources Subtask C: Materials, Progress with a Database for Materials Performance in Deep and Acidic Geothermal Wells, Proc. Word Geothermal Congress 2000 Kyushu – Tohoku, Japan., pp.2411-2416 (2000), 2411-2416.

Yanagisawa, N., Masuda, Y., Osato, K., Sato, M., Kasai, K., Sakura, K. and Fukui, T.: The estimation of the material corrosion based on previous data and compare with on-site test at geothermal field, Proc. 38th New Zealand Geothermal Workshop, Auckland, New Zealand. (2016)

Yanagisawa, N., Masuda, Y., Osato, K., Sato, M., Kasai, K., Sakura, K., Fukui, T., Akahori, M. and Lichti, K.: The material corrosion test using loop system under acidic condition at geothermal field in Japan, Proc. 39th New Zealand Geothermal Workshop, Rotorua, New Zealand. (2017)