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ABSTRACT 

Rapid advancements in the field of machine learning (ML) offer a substantial opportunity to accelerate discovery and reduce the costs 

associated with geothermal exploration, development, and production lifecycle. Application of new and innovative ML methods to multi-

source and multi-physics datasets may lead to the discovery of new signatures or play fairway types for the detection of hidden geothermal 

resources.  In our ML for geothermal exploration research, one of our goals is to discover the signatures (features) characterizing 

geothermal resources and favorable exploration sites from the regional-scale geothermal datasets. To achieve this goal, we have applied 

an unsupervised ML method to extract latent/hidden features or signals from the regional-scale geothermal data for geothermal resource 

exploration. The data describe the known-geothermal resources in southwest New Mexico. The unsupervised ML is based on a non-

negative matrix factorization (NMF) method coupled with a custom semi-supervised k-means clustering algorithm. Our methodology, 

called NMFk, is capable of identifying latent/hidden signals, an optimal number of clusters, and a dominant set of features hidden in the 

large-scale geothermal datasets. Based on our NMFk analyses and associating the obtained ML results with site information (e.g., regional 

physiographic provinces), the optimal number of clusters identified is equal to 4. The dominant set of attributes, among a total of 22 

geothermal attributes, that were identified through NMFk analysis include air temperature, gravity, depth to water table, elevation, crustal 

thickness, drainage, and lithium concentration. These dominant attributes in the geothermal data indicate favorable sources of data 

collection to explore geothermal resources in each province (e.g., The Rio Grande Rift, the Mogollon-Dalit volcanic field). Moreover, the 

proposed NMFk method is widely applicable to extract features/signals from large-scale geothermal data (including observational and 

simulation outputs). This broad applicability of our ML tools makes it attractive to discover, quantify, and assess hidden geothermal 

energy resources (e.g., meeting DOE-EERE GTO’s mission). 

1. INTRODUCTION AND MOTIVATION 

Enhanced Geothermal Systems (EGS) utilize engineered subsurface reservoirs that are created where there is hot rock but insufficient 

natural permeability (e.g., see Brown et al. (2012), Kelkar et al. (2015), McClure and Horne (2014)). EGS provide potential for 

dramatically expanding the use of geothermal resources and represents a domestic energy source that is clean and reliable. Through 

efficient utilization of EGS, more than 100 GWe of economically viable capacity may be available in the United States. However, to fully 

develop EGS, we need to discover locations that favor permeability enhancement (e.g., Bielicki et al. (2015), Mudunuru et al. (2015)). 

An aim of this project is to identify site/regions that are both suitably hot and have suitable permeability to access untapped geothermal 

energy. To achieve this research goal, our first step is to focus on discovering hidden features/signals from an existing geothermal data 

that is representative of well temperatures and rock permeability (e.g., attributes related to faults and fluid flow).  

To this end, we develop a new way to analyze available geologic, geochemical, and geophysical data (Bielicki et al. (2015); Pepin (2019)) 

to reduce the risk of geothermal resource exploration and increase success rates associated with EGS development. Here, we present an 

unsupervised machine learning (ML) method (Cichocki et al. 2009, Vesselinov et al. 2019) based on non-negative matrix factorization 

(NMF) coupled with a semi-supervised clustering algorithm to perform exploratory data analysis on site-scale and regional-scale 

geothermal data (Bielicki et.al, 2015 GDR; Pepin 2019) from New Mexico. Our unsupervised ML methodology, called NMFk 

(Alexandrov and Vesselinov 2014, Vesselinov et al. 2018), is capable of identifying (a) optimal number of hidden signals in geothermal 

data, and (b) the dominant set of attributes/parameters that correspond to these hidden signals. We note that our NMFk algorithm has been 

tested on a wide variety of synthetic and real-world site data other than geothermal (e.g., see Alexandrov and Vesselinov 2014, Vesselinov 

et al. 2018, 2019, TensorDecompositions, NMFk.jl, NTFk.jl).  

The goal of our work is to discover the signatures (features) characterizing geothermal resources and favorable EGS sites from the 

regional-scale geothermal datasets. ML is used to clean, preprocess, and combine independent data streams (e.g., different geothermal 

data attributes) to analyze geothermal resources in southwest New Mexico. To discover latent/hidden features along with optimal number 

of clusters in large geothermal datasets, NMFk is at the forefront among various unsupervised ML methods such as PCA, ICA, SVD and 

its variants, k-means clustering, Gaussian mixture models (Friedman et al. (2001)). Since the geothermal data attributes analyzed here are 

non-negative (e.g., lithium and boron concentrations, fault density, heat flow, silica geothermometer temperature), a ML methodology 

that preserves the non-negativity when extracting hidden signals from these attributes is preferred, making NMFk a natural choice to 

analyze this non-negative geothermal data. Note that there may some instances of geothermal data that can be non-negative. For example, 

amplitude values of seismic or acoustic signals are not always non-negative. In such a case, the NMFk workflow allows for two alternative 

approaches. The first one is to preprocess the data by applying mathematical transformations to make it non-negative and amenable for 

classical NMFk analysis. An alternative approach allowed in NMFk is to relax some of the non-negative constraints in the matrix 

decomposition process.  
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The outline of the paper is as follows: In Sec.2, we briefly review our NMFk methodology. We provide details on the regional-scale data 

and associated attributes used in our NMFk analysis in Sec.3. The regional-scale data consists of well records obtained from our previous 

Geothermal Play Fairways Analysis project (e.g., Bielicki et al. (2015); Pepin (2019)). This dataset contains hidden information on 

presence of heat, fluid, chemical concentration, and permeability in southwest NM through data attributes such as silica geothermometer 

measurements, lithium and boron concentrations, depth to water table, and fault density. Results are presented in Sec.4 and conclusions 

are drawn in Sec.4. The ML analysis and the work presented here is a part of the ongoing initiative supported by the U.S. Department of 

Energy – Geothermal Technologies Office to apply machine learning for geothermal energy exploration. 

2. UNSUPERVISED MACHINE LEARNING METHODOLOGY BASED ON NMFK 

Given observational data X of size (n,m) with non-negative values, where n is the number of observational wells from which data are 

sampled and m is the number of geothermal attributes. The goal of NMFk is to (1) decompose this matrix X into a non-negative feature 

matrix W of size (n,k) and non-negative mixing matrix H of size (k,m) and (2) find the optimal number of hidden signals k. This is achieved 

by minimizing the following objective function O based on Euclidean norm for all possible values of 𝒌 = 𝟏, 𝟐, ⋯ , 𝒅. The maximum value 

of d that can be explored is user-defined and cannot exceed m (the number of geothermal attributes): 

ℇ(𝑘) =  ‖𝑋 − 𝑊 × 𝐻‖2
2     subject to 𝑊𝑝𝑖 ≥ 0, 𝐻𝑖𝑞  ≥ 0, and ∑ 𝑊𝑝𝑖 = 1    ∀ 𝑝 = 1, 2, ⋯ , 𝑛;   𝑞 = 1, 2, ⋯ , 𝑚   

𝑘

𝑖=1

                                      (1) 

where ℇ(𝑘) is the reconstruction error for a given value of 𝑘. For each value of 𝑘 in 1, 2, ⋯ , 𝑑, Eq.1 is solved for 1000 times based on 

random initial guesses for W and H matrices. The resulting 1000 solutions of H are clustered into k clusters using a customized semi-

supervised clustering. During clustering, we enforce the condition that each of the k clusters contain equal number of solutions (i.e, 1000 

solutions). After clustering, the average silhouette width S(k) is computed. This metric, S(k) (see Vesselinov et al. 2018), measures how 

well the 1000 solutions are clustered for given value of k.  The value of S(k) varies from -1 to 1. Typically, S(k) declines sharply after an 

optimal number, kopt, is reached. kopt value can be select to be equal to the minimum number of signals that accurately reconstruct the 

observational data matrix X and the average silhouette width S(kopt) is bigger than 0.8. More details on the NMFk algorithm and its 

implantation are discussed in Alexandrov and Vesselinov 2014, Vesselinov et al. 2018. 

3. REGIONAL-SCALE KNOWN-GEOTHERMAL RESOURCES (KGR) DATA 

To illustrate our NMFk method, we use the regional-scale known-geothermal resources (KGR) data (Bielicki et al. (2015); Pepin (2019)) 

from the OpenEI’s Geothermal Data Repository (GDR) (see Bielicki et al. (2015)). The KGR data consists of wells with known 

temperatures. The data was collected during the Geothermal Play Fairways Analysis project (Bielicki et al. (2015); Pepin (2019)). These 

temperature data are developed from the USGS Identified Hydrothermal, USGS Isolated Geothermal Systems, and USGS Identified 

Delineated-Area Geothermal Systems (Pepin (2019)). The raw data from the U.S. Department of Energy National Renewable Energy 

Laboratory Geothermal Prospector tool (NREL (2018)) was processed to create this well temperature data (e.g., Courtesy of Dr. J. D. 

Pepin, USGS). The well temperature range between 22oC (low temperature resource) to 130oC (moderate/high temperature resource). 

There are 22 attributes that are associated with this well temperature data. These attributes include boron concentration, gravity anomaly, 

magnetic intensity, volcanic dike density, drainage density, fault intersection density, quaternary fault density, seismicity, New Mexico 

state map fault density, springs density, volcanic vent density, lithium concentration, precipitation, air temperature, silica geothermometer 

temperature, subcrop permeability, hydraulic gradient, water-table elevation, heat flow, elevation, depth to water table, crust thickness, 

and depth to basement. These data attributes are pre-processed (e.g., boron and lithium concentration) and transformed in to a log-scale. 

Then, they are rescaled within the range 0.0 to 1.0 using unit range transformation for NMFk analysis.  

Figure 1 shows the study area is southwest New Mexico. This region is highlighted in red and consists of known-geothermal resources. 

The right figure shows the well locations (e.g., latitude, longitude) where temperature is sampled. These well samples are clustered based 

on temperature and other attributes described above (e.g., concentration of lithium and boron, depth-to-water table) using the NMFk 

algorithm. Figure 2 shows the spatial plots of some important features used in ML analysis. The left figure shows the concentration of 

boron (~8800 records), the middle figure shows the concentration of lithium (~5800 records), and temperature from silica 

geothermometers (~8260 records). These data records are preprocessed in ArcGIS to specify feature values at the locations (Pepin (2019)) 

specified in Fig.1. Figure 3 shows the preprocessed data feature maps. Data preprocessing is performed using the records from Fig.2 based 

on ArcGIS’s inverse distance weighted (IDW) interpolation scheme. The IDW interpolation is used to specify feature values at the well 

locations based on Fig.1. Important feature maps include boron concentration (top left figure), lithium concentration (top right figure), 

temperature from silica geothermometers (bottom left figure), and water table gradient (bottom right figure). 
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Figure 1: The study area is southwest New Mexico as shown in the left figure. Well locations where temperature is sampled is 

shown in right figure with black solid dots. 

 

Figure 2: Spatial plots of some important features used in NMFk analysis.  
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Figure 3: Preprocessed data (e.g., lithium and boron concentration, silica geothermometer temperature, depth to water table) 

feature maps using ArcGIS’s inverse distance weighted (IDW) interpolation scheme.  
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4. RESULTS  

In this section, we summarize the results and analyses of NMFk algorithm on regional geothermal data described in Sec.3. Table 1 provides 

the values of reconstruction quality (𝒪) and average silhouette width (S) for different number of hidden features/signals in the data. From 

the average silhouette width values, it is clear that the possible number of hidden signals can be 2, 4, and 5; note that the solution for 3 

signals has been rejected by the algorithm. For these number of hidden signals k, the values of S(k) is close to 1. By correlating these 

hidden features with regional physiography (e.g., see Fig.1 which provides details on wells in the Colorado Plateau, the Mogollon-Datil 

volcanic field, Basin and Range, the Rio Grande rift), we conclude that the optimal number of signals is equal to four (i.e., kopt = 4) based 

on KGR. Fig.4–6 show the dominant attributes, mixing of these attributes, and spatial clustering of geothermal wells based on NMFk 

method.  

Figure 4 shows the plots of feature matrix (W), mixing matrix (H), and spatial clustering of wells based on the values of mixing matrix 

for k = 2. From this figure, it is evident that for hidden signal S1, the dominant attributes are crustal thickness, elevation, water table 

gradient, drainage, precipitation, lithium concentration, fault density, magnetic intensity, and boron concentration. For hidden signal S2, 

the dominant attributes are air temperature, gravity, boron concentration, magnetic intensity, quaternary fault density, lithium 

concentration, and temperature from silica geothermometers. Hidden signal S1 mainly corresponds to the 27 wells in cluster-1 (denoted 

by A and red color dots in cluster map) and hidden signal S2 mainly corresponds to the 17 wells in cluster-2 (denoted by B and blue color 

dots in cluster map). Correlating these well clusters with the physiographic provinces (e.g., Fig.1), wells representing cluster-1 (denoted 

by A and represented by red color dots in cluster map) are predominantly located in the Colorado Plateau and the Mogollon-Datil volcanic 

field. The mixing matrix H illustrates how the extracted signals are mixed (represented) in each observational well. Some of the wells in 

cluster-1 are located in the Rio Grande rift towards Rio Rancho, Albuquerque (e.g., see wells with coordinates in the range of ~34–35o 

latitude and ~ -107o longitude). The wells representing cluster-2 (denoted by B and blue color dots in cluster map) are mainly located in 

the Basin and Range province and the Rio Grande rift towards Las Cruces. 

Figure 5 shows the plots of feature matrix (W), mixing matrix (H), and spatial clustering of wells based on the values of mixing matrix 

for k = 4. The wells are divided in to four clusters. NMFk analysis provides us with four different hidden signals, which are S1, S2, S3, 

and S4. The dominant attributes characterizing hidden signal S1 are drainage, quaternary fault intersection density, quaternary fault 

density, seismicity, fault density, and spring density. Hidden signal S1 mainly corresponds to the 7 wells in cluster-4 (denoted by D and 

orange color dots in the cluster map). The dominant attributes characterizing hidden signal S2 include boron concentration, gravity, 

magnetic intensity, quaternary fault density, lithium concentration, air temperature, temperature from silica geothermometers, heat flow, 

and depth to basement. Hidden signal S2 mainly corresponds to the 12 wells in cluster-2 (denoted by B and blue color dots in the cluster 

map). The dominant attributes characterizing hidden signal S3 include boron concentration, magnetic intensity, drainage, lithium 

concentration, depth to water table, elevation, and crustal thickness. Hidden signal S3 mainly corresponds to the 10 wells in cluster-3 

(denoted by C and green color dots in the cluster map). The dominant attributes characterizing hidden signal S4 include magnetic intensity, 

volcanic dike density, fault density, lithium concentration, precipitation, air temperature, silica geothermometers, water table gradient, 

depth to water table, and elevation. Hidden signal S4 mainly corresponds to the 15 wells in cluster-1 (denoted by A and red color dots in 

the cluster map). Correlating the well clusters with the physiographic provinces (e.g., Fig.1), wells representing cluster-1 (denoted by A 

and represented by red color in the cluster map) are predominantly located in the Mogollon-Datil volcanic field. Wells representing cluster-

2 (denoted by B and represented by blue color in the cluster map) are predominantly located in the Basin and Range province, and 

southeast region of the Rio Grande rift (e.g., closer to Las Cruces). Wells representing cluster-3 (denoted by C and represented by green 

color in the cluster map) are predominantly located in the Colorado Plateau. Some of these wells in cluster-3 are also located in northwest 

region of the Mogollon-Datil volcanic field (e.g., see wells with coordinates in the range of ~33.5-34.5o latitude and ~ -109-108o 

longitude). Wells representing cluster-4 (denoted by D and represented by orange color in the cluster map) are predominantly located in 

northeast region of the Rio Grande rift (e.g., closer to Socorro). 

Figure 6 shows the plots of feature matrix (W), mixing matrix (H), and spatial clustering of wells based on the values of mixing matrix 

for k = 5. Similar to Fig.5, the dominant parameters are precipitation, air temperature, quaternary fault density, lithium concentration, and 

crustal thickness for S1-S5, respectively. The signals S1-S5 are mainly associated with clusters labelled by D, B, E, C, and A. Correlating 

the well clusters with the physiographic provinces, we can see that wells in A are located in the Colorado Plateau, the Mogollon-Datil 

volcanic field, and northeast of the Rio Grande rift. Wells in B and C are located mainly in southwest of the Rio Grande rift and the 

Mogollon-Datil volcanic field. Wells in D and E are predominantly in the Mogollon-Datil volcanic field and the Rio Grande rift. 

Table 1: NMFk results for regional-scale geothermal data described in Sec.3.  

Number of hidden (latent) 

features/signals (k) 
Reconstruction quality, (𝒪) Average silhouette width of 

the clusters (S) 

2 36.52 1.0 

3 28.20 0.291 

4 21.25 0.999 

5 16.76 0.998 

6 14.10 0.0928 
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7 12.02 -0.164 

8 9.91 0.217 

9 8.08 0.316 

10 6.65 0.033 

 

 

Figure 4: NMFk analysis for k = 2.  
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Figure 5: NMFk analysis for k = 4.  

 

Figure 6: NMFk analysis for k = 5. 
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5. CONCLUSIONS 

In this paper, we have presented a robust unsupervised machine learning methodology to discover hidden signals in the data and extract 

dominant attributes corresponding to these signals. The unsupervised ML is based on a non-negative matrix factorization (NMF) method 

with a custom semi-supervised clustering. Through our results, we demonstrated the applicability of NMFk method to discover optimal 

number of features. By correlating the NMFk analyses with physiography of southwest New Mexico, we conclude that the optimal number 

of clusters is kopt is equal to 4. Quantitatively, through reconstruction quality and average silhouette width of the clusters, we also showed 

that k = 4 is an optimal cluster number. For this optimal cluster number, the dominant attributes among a total of 22 analyzed geothermal 

attributes include air temperature, gravity, depth to water table, elevation, crustal thickness, drainage, and lithium concentration. These 

identified attributes may indicate favorable data sources to prospect site-scale (e.g., Truth or Consequences) geothermal resources in each 

province (e.g., the Rio Grande rift, the Mogollon-Datil volcanic field). Our future work involves extracting hidden features from subset 

of the regional geothermal data in New Mexico, quantifying uncertainties and estimating confidence intervals on resource classification 

predictions (e.g., low, moderate/high temperatures), and analyzing ArcGIS preprocessed data (e.g., IDW interpolated geothermal data in 

Fig.3) to discover new geothermal locations. To conclude, the extracted dominant features using our unsupervised machine learning 

methods indicate favorable data sources to prospect geothermal resources in each province. Moreover, the proposed NMFk analyses is 

widely applicable to extract features/signals from large-scale geothermal data (including observational and simulation outputs). This broad 

applicability of our ML tools makes it attractive for researchers in geothermal industry and institutions to use our tools to discover, 

quantify, and assess hidden geothermal energy resources (e.g., meeting DOE-EERE GTO’s mission). 
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